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ABSTRACT
In this article we introduce an integrated agent-based train,
passenger and incident simulation engine for data-driven in-
cident response in urban railway networks. We model the
movement of passengers and trains as individual agents be-
having according to parsimonious models defined by data
availability. Appropriate statistical routines are implemented
for model calibration. We also design a generic incident
model appropriate for typical localized mechanical failure
scenarios in which the transport supply is adversely im-
pacted in a short spatio-temporal window. Given the brief
and localized nature of these events, a mathematical pro-
gramming formulation is proposed, which computes the op-
timal action plan for a specific incident. The set of action
plans considered includes re-scheduling existing train ser-
vices as well as running temporary services. The numerical
performance of the simulation engine is presented using a
large dataset of real anonymized smart card data. The re-
sults of the proposed optimization framework are then eval-
uated using real incident scenarios.

Keywords
Agent-based simulation, urban public transportation net-
works, mathematical optimization

1. INTRODUCTION
Recent estimates [17] of traffic externalities illustrate the

magnitude of the congestion challenge facing medium and
large cities. Increasing space constraints are limiting the
construction of additional infrastructure, so prioritizing the
use of more space efficient transport modes remains one of
the most effective mechanisms available to curb congestion
impact. In particular, soft approaches such as modal shift,
focusing on increasing the share of public transport, have
seen renewed interest in the recent years.

However, increased utilization puts a heavy strain on pub-
lic transport networks, often resulting in more frequent me-
chanical failures, having negative short term impact on travel
delay (see [9] for examples on the road network), and nega-
tive long term impact on the trust placed by commuters in
the public infrastructure. Thus, there is high value in im-
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proving the real-time response to unexpected incidents that
adversely impact the transport supply.

A lot of efforts have focused on agent-based simulation of
transport networks, with some of the existing major com-
mercial and academic solutions dating back to the 90’s [2]
[8]. Current simulators have been shown to scale to nation-
wide size [13], [20]. Due in large part to the lack of sufficient
data for fine-grained calibration of a large set of parameters,
agent-based simulators have traditionally been used for plan-
ning applications, such as transit modeling, network design
and traffic assignment [18].

In the era of the smart card [14], in which the entry and
exit points of passengers are recorded in near real-time, ad-
vanced data analytics can be designed to accurately gener-
ate, model and simulate the movements of passengers. In
particular, data-driven and statistical methods have proven
very efficient in the extraction of meaningful insights from
large datasets [7], [10], [15], [19].

In contrast to simpler problems such as journey planning
[3], [5], [12], [16], for which unified data-driven methodolo-
gies exist for network modeling, performance evaluation, and
mathematical optimization, there remains a gap between the
identification and qualification of various local transport in-
efficiencies using data-driven methods (see for instance [11]
for bus bunching and [6] for reduced efficiency overall), and
the use of other methods, either agent-based simulations or
semi analytic methods, for scenario evaluation and optimiza-
tion of the issues identified.

In this work, we design a tractable data-driven agent-
based engine for real-time incident response in national rail-
way networks. The engine includes calibration routines lever-
aging smart card data. The proposed solution is particu-
larly relevant for online applications such as real-time train
re-scheduling. Our engine consists of an agent-based simula-
tion of train movements and passenger trajectories. Trains
and passengers are considered as agents, moving at discrete
time points in the network according to a pre-defined adap-
tive behavior model, and interacting with other agents such
as network elements, trains and passengers.

We also propose a detailed model of an action plan in case
of supply disruption, involving train re-scheduling and tem-
porary services. An action plan is introduced as a response
to an incident, for example a network disruption, to mitigate
its impact on increased travel time and passenger crowd.
The effectiveness of an action plan can be simulated and
evaluated in real-time. The simulation engine also includes
an optimization module which finds an optimal response to a
specific incident given an objective function. The problem of
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finding an optimal action plan is formulated as a mixed inte-
ger program based on an underlying multi-commodity flow
problem. Our solution is a special case of the timetabling
problem [1], [21], for more specific and limited instances.

The main contributions of this work include:

• design and implementation of a fast agent-based sim-
ulator including statistical routines for parameter cal-
ibration,

• integrated optimization framework appropriate for real-
time applications,

• evaluation of the simulation-optimization framework
on a large smart card dataset and many incident sce-
narios.

The rest of this article is organized as follows. In Sec-
tion 2 we detail the modeling assumptions underlying the
simulation engine introduced in this work. Section 3 then
introduces the optimization model corresponding to the op-
timal action plan problem. Section 4 describes calibration
results, and Section 5 walks through case studies on incident
scenarios. Finally, Section 6 presents concluding remarks.

2. TRAIN AND PASSENGER SIMULATION
In this section we present the mathematical models guid-

ing the behavior of the simulated agents. In particular, we
highlight the parsimonious modeling of the train speed pro-
files, the safety system, and the passenger route choice be-
havior, both for incident and no incident scenarios.

In the interest of space, we present the models in the con-
text of offline simulations where the initial condition is a
train and passenger free network, but the models presented
naturally extend to an online setting where the initial con-
dition contains trains and passengers already on their way.

2.1 Network and safety model
The underlying urban railway network is modeled in a

mesoscopic manner as a multi-scale directed graph where
locations such as stations, depots, turning points and plat-
forms are modeled as nodes, and tracks are modeled as
edges. Connectivity between locations and real distances
are accurately modeled by the graph structure and link at-
tributes, but the exact geometry and geographical layout
of the physical objects is not taken in consideration. We
also highlight that the graph is multi-scale in the sense that
certain locations such as station platforms belong to parent
locations, stations in this case.

In urban railway networks, every line usually has its own
dedicated track for each direction, hence a simplified safety
system is being used based on minimum headway times
upon entering a track, and minimum headway space between
trains along a track.

2.2 Train modeling
In the simulation engine, the public timetable is extended

to encompass all network elements along the path of the
train, including platforms, tracks, junctions and depots, re-
sulting in an explicit specification of the network path that
the train has to follow. Trains evolve along the tracks ac-
cording to a discrete time dynamical system based on the
train kinetic parameters and the tracks speed limit, see Fig-
ure 1. Trains attempt to run at the maximum speed that

is allowed at the current location, under the constraint that
their acceleration and deceleration bounds, and train and
track speed limits are continuously respected. In particular,
when approaching a station, the train starts to brake just in
time to reach a full stop when entering the station. Trains
try to follow the arrival and departure times prescribed in
the timetable, under the constraints imposed by the move-
ment dynamics and the safety system.

Figure 1: Example of a simulated speed profile of a
train, constrained by location-specific speed limits.

The exact location of the available rolling stock is known,
and is automatically dispatched to the trains. When the
timetable indicates that a train has to be launched at a given
starting station S, the closest available rolling stock is as-
signed to station S at the corresponding time. If the rolling
stock is not located at S on the spot, it has to first move to
S before the time indicated by the timetable. Rolling stock
composition is not modeled, as usually along an urban rail-
way line every train has the same composition and rolling
stock is very rarely reshuffled.

2.3 Passenger behavior model
The simulation engine includes a hierarchical decision model

wherein passengers first plan their route from their origin to
their destination, and then evolve along their route either
on board of a train or on foot according to a dynamical
walking time model. The route from the current position
to the destination with the minimum cost is chosen, along
the following metrics: total travel time, total walking time,
number of connections.

Given coefficients for these metrics, we define the cost
of a route as the linear combination of the route’s metric
values with the coefficients. The coefficients used in the
simulator are calibrated as described in Section 4. Typically
good values for the coefficients are 1 both for total travel
time and total walking time in minutes, and 2 for number
of connections. For every origin-destination (O/D) pair the
passenger simulation engine calculates the O/D route with
minimum cost.

The passengers always recalculate their routes when they
arrive at a platform or entrance or exit, either on foot or
alighting from a train. This allows for updating the preferred
path in case of a change in the traffic conditions, for instance
at the onset of the peak time or when new temporary lines
are launched during an incident.

Deterministic walking times between any pair of locations
in a station (platforms and gates) are given as input to the
simulator. The simulated walking time is a continuous piece-
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wise affine function of the number of passengers currently at
the platform or gate, see Figure 2.

Figure 2: Between any pair of locations the walk-
ing time is constant under a certain crowd level,
and then increases linearly up to a certain maximum
value.

The walking time of an individual passenger is obtained
from a random draw of a log-normal distribution with mean
value corresponding to the walking time as shown in Fig-
ure 2. Further details on the calibration procedure for the
walking time distributions are provided in Section 4.

2.4 Incident modeling
The main functionality of the solution introduced in this

work is the simulation and management of incidents, such as
network disruption, train breakdown or even a social event.
Given an incident we simulate the resulting disturbance in
train schedules and passenger flows, automatically generate
action plans as a response and optimization mechanisms in
order to achieve the best response.

An action plan consists of additional temporary train lines
defined by their itineraries and frequencies. Any feasible
train itinerary in the network may be considered as a candi-
date for the definition of additional specific train services in
an action plan, for example a shuttle service running parallel
to a disrupted track back and forth, see Figure 3. Similarly,
any user-defined bus line connecting train stations are al-
lowed, for example a shuttle service that stops at every train
station along the disrupted section of the line. Frequencies
of existing lines can also be changed.

Figure 3: Example for candidate response lines in
case of a disrupted track.

Action plans are simulated in real-time by the simulation
engine, their adequacy are evaluated, and key performance
metrics such as crowd levels and travel delays are compared
against reference values. The incident management solution

calculates a set of optimal action plans for the incident, using
mathematical optimization (see Section 3).

3. OPTIMIZATION MODEL
In this section the problem of finding an optimal action

plan is formulated as a mathematical program. The set of
objective functions considered include linear combinations
of the overall passenger delay, defined as the increment of
the total travel times of the passengers relative to the no
incident scenario, as well as the platform crowd levels.

The optimization constraints we consider include upper
bound on the follow-up times for incident response train and
bus lines, as well as number of trains and buses available for
incident response services. The optimization module returns
not only the optimal plan but also a subset of the best sub-
optimal plans.

3.1 Modeling assumptions
A mathematical program that accurately models reality

is often very complex, and cannot be directly solved by an
optimization solver. In order to make the model tractable,
especially for real-time applications, one usually needs to
simplify the model. In this section we present specific mod-
eling assumptions made for optimization, consistently with
the simulation modeling assumptions described in the pre-
vious section.

We formulate the optimization problem as an extended
version of a multi-commodity flow problem [1] over a space-
time graph, which is then formulated as a mixed integer
program (MIP), and solved by a mathematical programming
solver.

Let us define the following quantities:

• a transportation network G = (V,E) consisting of sta-
tions V and direct train and bus connections E be-
tween the stations,

• a collection of (train or bus) lines L, and for each line
l ∈ L

– an itinerary consisting of a sequence of stations
(v1

l , v
2
l . . .), v

i
l ∈ V ,

– runtimes ri
l for every leg i, that is between con-

secutive stations vi
l , v

i+1
l ,

– the number of services nl of the line,

– a common passenger capacity cl of the services of
the line,

– the turnaround time τl, which is the total time
for the services to travel on the line from start to
end,

• a collection of aggregate passengers P , for p ∈ P with

– origin and destination stations op, dp ∈ V ,

– start time sp,

– volume vp.

For every triple (o, d, s) there is only one aggregate passen-
ger p with (op, dp, sp) = (o, d, s), and this is the aggrega-
tion of all real passengers going from o to d starting at the
discretized time s, with their total number as the volume
vp.
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Abusing the standard definition of a frequency, we use
frequency and follow-up times as synonyms, and so a fre-
quency ϕ = 2 means one train every 2 minutes. Under the
assumption that trains arrive steadily, i.e. between two con-
secutive trains the difference in arrival time is constant, the
frequency thus reads ϕl = τl/nl.

3.2 Multi commodity flow problem
In order to solve the optimal action plan problem, we first

convert the discrete transport supply provided by individual
train and bus services to a continuous flow supply, and model
the passenger movements as flows in a time expanded trans-
portation network. In this space-time network the move-
ment of a train along a leg uv with a runtime of r minutes
will be represented by temporal copies of uv of time span r
as follows.
Transforming service-based supply to continuous flow
supply: let us replace every service of a line l ∈ L with 1/ϕl

new services with capacity clϕl, as if trains were split into
smaller equally sized trains with the same itinerary, running
with a frequency of 1 minute. As an example, if the follow-
up times of a line are 2 minutes, then every train of this line
is replaced by 2 trains of halved capacity. This transforma-
tion preserves the total capacity of the line, and allows for
adding a temporal copy of uv between times t and t + r,
with r the runtime, for every integer minute time slot t, as
described next.
Time expansion of the network graph: we define a sim-
ulation horizon [0, T ] with integer time-slots 0 ≤ t ≤ T, t ∈
N, for example T = 120 (minutes). We create a space-time
supply network G′ = (N,A) and flow commodities as fol-
lows. For every station v ∈ V and time slot t, N contains
a node nv,t (representing the entrance gate of the station),
and nodes nv,t,l for every line l ∈ L (representing the plat-
forms for these lines). As mentioned above, for every line
l ∈ L and leg u = vi

l , v = vi+1
l in its itinerary with runtime

r = ri
l we add leg-arcs a = −−−−−−−−→nu,t,lnv,t+r,l for every time-slot

t. Arc a has capacity ca = clϕl = clnl/τl and length ha = r.
Walking and waiting time modeling: for every station
v, line l and time-slot t we add waiting arcs −−−−−−→nv,tnv,t+1,
−−−−−−−−→nv,t,lnv,t+1,l with length h = 1. We also add destination
nodes zv for every station v ∈ V , and arrival arcs a = −−−→nv,tzv

with length ha = 0. To model the walking times, we add
walking arcs a = −−−−−−−−−→nv,t,lnv,t+w,l′ with ha = w at every sta-
tion v ∈ V , time-slot t ∈ T and line pairs l, l′, where w is
the deterministic walking time in v between the platforms
of l and l′. For l = l′ we take w = 0. We do the same for
the walking between the gates and platforms by adding the
walking arcs −−−−−−−−→nv,tnv,t+w,l,

−−−−−−−−→nv,t,lnv,t+w with length h = w for
every v, t and l.
Passenger demand: Finally, for every passenger p ∈ P we
add a commodity from nop,sp to zdp with demand vp.

3.3 Mixed integer program formulation
The resulting fractional multi-commodity flow problem is

presented below. Equations (2)-(3)-(4) are the flow con-
servation constraints, and (5) contains the service capacity
constraints. The objective (1) is the total travel time of the
passengers. Observe that the only reason why a passenger
uses a waiting arc a = −−−−−−−−→nv,t,lnv,t+1,l is that the service of the
line l leaving from nv,t,l is full.

Taking nl as a variable we get a mixed integer program
solving the optimal action plan problem. We mention that

with appropriate choice of the arc lengths other linear ob-
jectives can also be handled, for instance total travel time.

min
X

p∈P, a∈A

fp,aha s.t. (1)

X
n′∈N

fp,n′n =
X

n′∈N

fp,nn′ ∀ n 6= nop,sp , zdp , p ∈ P (2)

X
n′∈N

fp,n′n = vp for n = nop,sp ∀ p ∈ P (3)

X
n′∈N

fp,nn′ = −vp for n = zdp ∀ p ∈ P (4)

X
p∈P

fp,a ≤ clnl/τl ∀ leg-arc a = −−−−−−−−→nu,t,lnv,t+r,l ∈ A. (5)

3.4 Runtime optimization
The number of integer variables |L| is usually very low.

However, the number of fractional variables is large, on the
order of:

#fp,a = |P | · |A| ≈ (|V |2|T |) · (|E||T |). (6)

where we recall that P denotes the number of passengers;
V,E the number of vertices and edges, respectively, in the
static network graph; T the number of time steps; and A the
number of edges in the time-expanded graph. For a typical
network the resulting mixed integer program is intractable.

In order to make the problem tractable, we introduce the
following steps. First, we make a further aggregation step in
the passengers’ level. Above we aggregated the passengers
with same origin o ∈ V , destination d ∈ V and starting
time s triple. Now we do the same for the origin o, time s
pairs. In exact terms, for each commodity source no,t ∈ N
we aggregate the collection of no,t → zd commodities where
d ∈ V to one single “tree commodity” from no,t, requiring
that no,t has as net outflow the number of passengers going
from o to any destination in the network starting at time t;
and the destination nodes zd have as net inflows the number
of passengers going from o to d starting at time t.

Second, for such a tree commodity only a subset of the
arcs a ∈ A can carry flow, so we define temporal corridors
between no,t and the zd’s for which non-zero flow values
are allowed. This corridor consists of those arcs that the
passenger may traverse assuming a route that is at most
twice as long as the shortest route. This method drastically
reduces the number of fractional variables, and makes the
problem solvable by commercial optimization solvers such
as CPLEX.

Thanks to these two improvements, the number of vari-
ables can be reduced from (6) to

#fp,a = |P | · |A| ≈ (|V ||T |) · (|E|τ), (7)

where τ is the maximum length of a shortest route.
We mention that it would also be possible to model the

waiting times by increasing the walking time w with the ex-
pected waiting time yl for line l ∈ L. Clearly, yl = 1/(2ϕl) =
τl/(2nl). This function is non-linear, but convex in nl, and
we could take linear sub-gradients to bound yl. As n can
only have integer values, if B is an upper bound on nl, only
B sub-gradients suffice. So for every line we would have one
new variable and B new constraints to add.

We remark that the first-come-first-served rule at the sta-
tions between the passengers is not considered. However,
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this shortcoming only affects the individual passenger travel
times, and the total travel time of the passengers is accu-
rately modeled.

The solution to the MIP is used as a starting point for
a local search performed using the simulation engine. The
runtime improvements made to the MIP enables spending
more computational resources on the local search.

4. EVALUATION
In this section we discuss the calibration procedure and

present experimental results on the accuracy of the simula-
tion engine in terms of passenger travel times.

4.1 Implementation
The simulation engine is implemented in C++ for perfor-

mance reasons. A careful software performance optimiza-
tion design, including efficient custom data structures yield
a runtime performance of about 5000× real-time (i.e. simu-
lating 5000 hours would take about 1h) for a typical city on
a standard desktop machine. A simple user interface pre-
senting key performance indicators is presented in Figure 4.

Figure 4: User interface showing some key perfor-
mance indicators produced by the simulation en-
gine: origin-destination demand, platform and train
crowds.

4.2 Data sources
We consider a large regional urban railway system consist-

ing of around 100 train stations, 10 train lines, and 2 million
daily passenger travels (for confidentiality we anonymize the
city and the stations). The network topology and station
model are generated from machine-readable data sources
and images providing connectivity information.

The passenger demand is provided by a 6 months dataset
of anonymized smart card data, including the following data
fields for every trip; anonymized identifier, (2) origin station,
(3) destination station, (4) entry time, (5) exit time. Train
movements from the same period are obtained from actual
timetable data for the entire network.

Knowledge and details of the incident are constructed
from a complete list of incidents in the railway system dur-
ing the same period. While location of the incident and start
and end time of the incident are always populated, the level
of details regarding the actual response plan can vary, but
often includes the number of resources used.

4.3 Calibration procedure
In this section we describe the calibration procedure for

commuter walking time, which is one of the key simulation
parameters. Indeed, a change in the walking time from the
gate to the platform can cause simulated passengers to board
a different train, which has immediate impact on the travel-
time and platform crowd metrics. We calibrate the walking
time based on smart card data and actual train trajectories.

The calibration procedure relies on inference of the train
from which a given tap-out record alighted. This inference
is possible when there is a dominant route between an ori-
gin and a destination, and the walking time from platform
to exit gates is much less than the time between consecutive
train arrivals. In this case, the on-arrival incoming direc-
tion of the passenger is derived as the minimal cost error,
and a passenger can be associated with the latest train to
arrive from the correct direction before the tap-out time.
The difference between the tap-out time and the train ar-
rival time provides a walking time sample. We then fit a
log-normal distribution to the sample walking time distri-
bution obtained for every station platform, for many trains
and many days. A histogram of the walking times from a
platform to an exit gate for one station is presented in Figure
5.

Figure 5: Histogram of walking times (in seconds)
obtained from train arrival times and smart card
data, with log-normal fit (red).

The calibrated walking time mean can then be used to fit
with L2 regression the piecewise affine walking time model
illustrated in Figure 2. The fitted piecewise model is used
for the platform to gate travel-time. Close parameter values
are used for walking time between other station locations
(gate to platform, platform to platform, platform to corri-
dor, etc.).

4.4 Numerical results
To measure the accuracy of the simulator we consider

the mean average error (MAE) and the mean relative er-
ror (MRE) between the simulated and the smart card based
travel-times of the passengers. We consider half of the data-
set as training set and the other half as test set.

We also measured the Bhattacharyya coefficients [4] as an
aggregated exit time error, because contrary to MAE and
MRE, this metric is oblivious to individual passengers with
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Table 1: Travel time error depending on walking
time parameters.

platform
to
plat-
form
(far)

platform
to
plat-
form
(close)

gate to
plat-
form

MAE
(min)

MRE
(%)

avg
BC
coeff.

4 min 1 min 2 min 4.9 18 0.93
4 min 0 min 2 min 5.5 21 0.91
4 min 1 min 1 min 5.7 21 0.91
3 min 1 min 2 min 4.8 19 0.93

Table 2: Travel-time error depending on number of
line changes.

passenger set MAE MRE avg BC
(min) (%) coefficient

all 4.9 18 0.93
within one line (avg) 2.5 19 0.95

the same origin, destination, and start time triple. We used
the Bhattacharyya coefficient to measure the distance of the
real and historical exit time distributions. In details, for
every origin – destination pair O/D and start time bucket
[t, t + 20min) we collect those passengers going from O to
D who start their travel in the time interval [t, t + 20min).
We take the simulated and the historical travel times for
this group, smooth them with the kernel N(0, 3min), and
calculate the Bhattacharyya coefficient between these dis-
tributions. Finally, we take the weighted average of the co-
efficients across the groups.

We present in Table 1 the error metrics corresponding to
specific parameter values for the walking time model. In the
interest of space, the values reported in the Table include
only the walking time in low crowd conditions.

The errors are presented in Table 2 for passengers travel-
ing within a single line and for passengers traveling across
multiple lines. The latter group is expected to exhibit a
larger error since the connection time is an additional source
of error.

We illustrate in Figure 6 a typical comparison output in
terms of tap-out counts. The simulated values correctly cap-
ture the trend of the ground-truth tap-out data, but several
limitations can be observed. First the simulated values lack
some of the variability inherent to true smart card data and
appear as a smoothed version of the actual data, effectively
because all agents are modeled as rationally minimizing their
travel cost. The performance of the simulator output also re-
duces significantly in the case of large variations, illustrated
here for the afternoon peak, where the simulated peak ap-
pears reduced and shifted compared to the true peak.

5. SCENARIO ANALYSIS
In this section we analyze two real historical incidents. We

compare the actual action plan deployed in reality to alter-
native action plans produced by the simulation-optimization
engine, in order to demonstrate the capability of the incident
management module to offer effective action plan options
for incident handling. For evaluation of the effectiveness of
a given action plan, we consider the following key perfor-
mance indicators, motivated by actual business metrics:

Figure 6: Tap-out count per 10 min, based on the
smart card dataset (blue) and as simulated (green)
assuming knowledge of passenger start time and des-
tination station.

• average delay (min): Average delay in minutes over
all affected passengers (delay greater than 5 minutes).

• delay ≥20min (#): Number of passengers with a
delay of at least 20 minutes (we take 20 minutes as the
threshold where the delay gets unacceptable to passen-
gers).

• overcrowding (min): Total duration of overcrowd-
ing events at stations, in minutes, where overcrowding
means crowd above 90% of station capacity.

The additional buses in the action plans refer to addi-
tional shuttle buses which are deployed during incidents,
and operate on incident-specific routes, in addition to nor-
mal bus services operating on regular routes in the pub-
lic transportation system. As illustrated in the results pro-
duced by our simulation optimization engine, quite often, a
significant benefit in terms of resource usage maximization
and travel delay reduction would be obtained by making the
incident-specific routes also demand-specific, i.e. tailored to
the impacted origin-destination pairs, and not only to the
impacted tracks location.

5.1 Incident Scenario 1
For this real incident, the service of a line AB..C...X be-

tween Stations A and B is disrupted in both directions due
to an infrastructure fault, see Figure 7 (we only represent 4
key stations and not all the stations on the line).

The disruption starts at 5.30AM and full service resumes
at 3PM once the infrastructure fault is resolved. In reality
service continues to run between Stations B and X during
the incident with the normal frequency of 3 minutes of the
line. There is no train service between Stations A and B,
hence 15 bus shuttle services are in operation during this
time period.

The base plan used to respond to the incident, as well as
a subset of illustrative plans considered by the optimizer,
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Figure 7: Incident Scenario 1., 5.30AM - 3PM

Table 3: Action plan (AP) comparison for Incident
Scenario 1.

base AP1 AP2 AP3

train service X ↔ B
ϕ = 3

X ↔ B
ϕ = 3

X ↔ B
ϕ = 2.5

X ↔ B
ϕ = 3,
C ↔ B
ϕ = 6

# additional
trains

0 0 4 10

shuttle bus
service

B ↔ A
ϕ = 2
15 buses

B ↔ A
ϕ = 1
30 buses

B ↔ A
ϕ = 2
15 buses

B ↔ A
ϕ = 2
15 buses

average de-
lay (min)

11 6 11 11

delay ≥ 20
min (#)

4400 900 4000 3500

overcrowding
(min)

60 10 50 40

max crowd
in bus stop

2500 300 2500 2500

are presented in Table 3. Action Plan 1 (AP1) proposes to
decrease the bus shuttle service follow-up times compared to
the base bus plan; Action Plan 2 (AP2) proposes to decrease
the train service follow-up times along the entire impact line;
and Action Plan 3 (AP3) proposes to create a non-standard
train service serving the vicinity of the impacted area be-
tween Stations C and B, in addition to the regular train
service on the entire line. In the base plan there are signifi-
cant delays between Stations A and B in the morning peak,
because the deployed bus capacity is not enough to carry
all passengers. For all action plans with bus follow-up times
of 2 minutes it holds that from Station A the average delay
compared to the no incident case is more than 30 minutes
due to the high upstream demand in the morning peak.

We populate the mixed integer problem (1) of Section 3
in our optimization module with several bus line options
between Stations A, B, C and the city center. The opti-
mization module found that the optimum solution consists
of the bus line B ↔ A with a frequency of only 1 minute.
With this bus line it is possible to completely disperse the
crowd at Station A, and also the average delay is reduced
to only 6 minutes, see Figure 8. This value of the delay is
close to the minimum physically possible.

A secondary effect of changing the bus frequency from 2
to 1 minute is that the maximum crowd in the bus stop at
Station A decreases from 2500 to 300 (Figure 9).

AP1 is not viable if the number of available buses is be-
low 30, so we also present the optimal action plans AP2

Figure 8: Delay from Station A towards X in In-
cident Scenario 1. Maximum delay of action plans
“base”, AP2 and AP3 are ≥ 30min, for AP1 it is
∼6min.

Figure 9: Crowd in Station A bus stop in Incident
Scenario 1. Maximum crowd of action plans “base”,
AP2 and AP3 are ∼2500, for AP1 it is ≤ 400.

and AP3 obtained by the optimization engine in the case of
constrained bus resources at most 15.

In the absence of sufficient buses for absorbing the supply-
demand gap between Station A and Station B, the delay can-
not be further reduced by adjusting train services. However,
train services can be adjusted to better manage the incident
from the perspective of the other objectives such as mini-
mizing overcrowding time. During the incident, the crowd
increases in Station B because passengers coming from Sta-
tion A via bus, transfer there to train. This crowd can be
reduced with a more frequent train service (AP2), and even
more with the C ↔ B loop line (AP3), because more trains
disperse the crowd faster.

However, the simulator detects an unexpected side effect
of AP3. During morning peak the frequency of the X ↔ B
long loop is 3 minutes, and that of the additional C ↔ B
short loop is 6 minutes. The joint frequency then is 2 min-
utes, which is just the minimally required headway time.
This means that every third train is a short loop train, and
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Table 4: Action plan (AP) comparison for Incident
Scenario 2.

base AP1 AP2

train service C ↔ X
ϕ = 4

C ↔ X
ϕ = 4

C ↔ X
ϕ = 4,
D ↔ X
ϕ = 8

# additional trains 0 0 10
shuttle bus service B ↔ C

ϕ = 2
12 buses

B ↔ C
ϕ = 1
24 buses

B ↔ C
ϕ = 2
12 buses

average delay (min) 7 7 7
delay ≥ 20 min (#) 300 280 200
overcrowding (min) 20 19 10

from Station C only the long loop trains continue to run
downstream to X, with alternating follow-up times of 2 and
4 minutes. In turn, this results in a bunching of trains, be-
cause every second train carries almost twice as many pas-
sengers, causing even more imbalanced follow-up times and
overcrowding events down the line. This shows the impor-
tance to balance follow-up times.

5.2 Incident Scenario 2
This incident takes place during morning peak hour com-

mute. A train fault disrupts service between Stations B and
C in both directions along a line A..B..C..D...X (we only
represent 5 key stations on the line), see Figure 10. The
disruption starts at 8AM and lasts only 10 minutes. The
response plan activated consists of free shuttle bus service
between Station B and C with a frequency of 2 minutes.

Figure 10: Incident Scenario 2.

With the deployed plan around 1500 passengers are stran-
ded between Station B and Station C during the incident
because the shuttle bus service cannot absorb all the de-
mand. At the end of the incident these passengers return
from the bus stops to the train stations between B and C,
according to the passenger behavior model from Section 2.3.
This large post-incident travel demand leads to large crowds
in the station and some full trains, until crowds are finally
dispersed around 8.45AM.

With more frequent buses in AP1 there is a slight reduc-
tion in stranded passengers, and so reduced post-incident
impact, but this is very limited as the short duration of the
incident does not allow shuttle bus service to have signifi-
cant effect. The optimal action plan AP2 returned by the
optimization module employs additional trains along D ↔

X. With this additional temporary loop line, the stranded
crowd is more effectively dispersed in the busy interchange
Station D.

As we observe by comparing AP1 with the real action
plan, buses are of limited help in this incident. The reason is
that the demand from B is too high to be managed by buses,
and in addition due to the short duration of the incident, for
many buses the incident is over before they arrive at Station
C.

6. CONCLUSION
In this article we introduced a discrete time train and pas-

senger simulation engine for urban railway networks. We
described the solution architecture as well as the calibra-
tion procedures supporting fast and accurate simulation,
and presented numerical experiments on a large real world
smart card dataset illustrating the accuracy of our simula-
tion engine. We also presented a mixed integer programming
formulation for the problem of finding an optimal action
plan as a response to a localized spatio-temporal incident.
We analyzed several real incident scenarios, and quantita-
tively illustrated the performance of the simulation-based
optimization framework. While the results presented in the
context of real-time applications improve on traditional of-
fline planing calibration and evaluation results, significant
effort is still needed to more closely simulate seemingly ran-
dom behavior of certain commuters, which can significantly
impact network-wide metrics.
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