Strategy RV: A Tool to Approximate ATL Model Checking under Imperfect Information and Perfect Recall

Angelo Ferrando¹ and Vadim Malvone²

1 University of Genova, Italy

2 Télécom Paris, France

TELECOM

Paris

System Correctness

- ► A very important problem in critical systems:
 - ► Safety: errors cost lives (e.g. Therac-25).
 - ► Mission: errors cost in terms of objectives (e.g. Arianne 5).
 - Business: failure cost in loss of money (e.g. Denver airport).
- In such systems failure is not an option.

Our verification procedure

Data: a Model *M*, a property φ , and a variable *choice* **Result:** the verification result $C_{IR} = \{\};$ $c_{ir} = \{\};$ if choice = 0 then $c_{IR} = FindSubModelsWithPerfectInfo(M, \varphi)$; end

The Model Checking Approach to System Verification

- \blacktriangleright Model system S as a transition system M_S
- Specify property P as formula φ_P
- \blacktriangleright Check that $M_S \models \varphi_P$

Problem: for Multi-agent Systems the model checking problem is undecidable in many cases of interest

Multi-Agent Systems (MAS): Key aspects

- There are many agents (players) interacting among them.
- Each agent has a set of *strategies*.
- A strategy is a conditional plan that at each step of the game prescribes an action.
- The composition of strategies, one for each player, induces an unique computation.

The Role Played by Memory and Information

Depending on the memory, we distinguish between:

- \blacktriangleright imperfect recall strategies (IR) $\implies \sigma : St \rightarrow Act;$
- ▶ perfect recall strategies (PR) $\implies \sigma : St^+ \rightarrow Act$.

else if choice = 1 then $c_{ir} = FindSubModelsWithImperfectRecall(M, \varphi);$ end else

 $c_{IR} = FindSubModelsWithPerfectInfo(M, \varphi)$; $c_{ir} = FindSubModelsWithImperfectRecall(M, \varphi)$; end

return **GenerateAndRunMonitors** $(M, \varphi, c_{IR} \cup c_{ir})$;

Parsing of the input model

- \blacktriangleright The user inputs the Json model M and formula φ (left);
- Depending on the players' information, we distinguish between:
- perfect information games (PI);
- ▶ imperfect information games (1).

Specification: Alternating-time temporal logic

State (φ) and path (ψ) formulas in ATL^* are:

 $\varphi ::= \boldsymbol{q} \mid \neg \varphi \mid \varphi \land \varphi \mid < \boldsymbol{\Gamma} > \psi$ $\psi ::= \varphi \mid \neg \psi \mid \psi \land \psi \mid X\psi \mid (\psi U\psi)$

The strategy operator $< \Gamma >$ is read as "the agents in coalition Γ have a strategy to achieve"

Problem: Undecidability Imperfect information

	perfect information	imperfect information
imperfect recall	PSPACE-complete	PSPACE-complete
perfect recall	2 <i>EXPTIME</i> -complete	undecidable

► The tool shows the graphical representation of *M* (right).

Extraction, visualisation, and RV of sub-models

- Each sub-model is translated into its equivalent ISPL (Interpreted Systems) Programming Language) program, and verified by MCMAS;
- \blacktriangleright The list of sub-models (M_1, M_2, \ldots) satisfying a sub-formula φ' of φ is shown to the user (top left);
- ► By clicking a sub-model, its visualisation, along with the verified sub-formula φ' , are displayed (right);
- Finally, an execution trace can be reported by the user, and checked by a monitor on M using the selected sub-model and the remaining part ψ of φ (bottom left).

Our contribution

A tool to approximate the verification of Alternating-time Temporal Logic (ATL) under imperfect information and perfect recall, which is known to be undecidable, by using Runtime Verification.

High level idea

- Given a model M and a formula φ in ATL^* , we need:
- 1. to find the sub-models of M in which there is perfect information (resp., imperfect recall strategies) and a sub-formula φ' of φ is satisfied;
- 2. to use monitors to check whether the temporal remaining part ψ of φ can be satisfied and a sub-model M' identified by (1) can be reached.

Conclusions and future works

- We presented Strategy RV, a tool that, first extracts sub-models with perfect information and/or imperfect recall that satisfy a strategic objective; and then, it uses runtime verification to check the remaining temporal objectives and to reach one of the sub-models so generated.
- In future work we intend to improve the sub-models extraction and monitors generation.
- We plan to extend the approximation and monitoring techniques to more expressive languages for strategic reasoning.

contacts: angelo.ferrando@unige.it, vadim.malvone@telecom-paris.fr