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ABSTRACT
The paper deals with on-board planning for a satellite swarm
via communication and negotiation. We aim at defining in-
dividual behaviours that result in a global behaviour that
meets the mission requirements. We will present the formal-
ization of the problem, a communication protocol, a solving
method based on reactive decision rules, and first results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and gen-

eration; I.2.11 [Artificial Intelligence]: Distributed Arti-
ficial Intelligence—Coherence and coordination

General Terms
Algorithms

Keywords
Multiagent systems, Cooperative distributed problem solv-
ing, Task and resource allocation, Coordination, Coopera-
tion and teamwork

1. INTRODUCTION
Much research has been undertaken to increase satellite

autonomy such as enabling them to solve by themselves
problems that may occur during a mission, adapting their
behaviour to new events and transferring planning on-board
; even if the development cost of such a satellite is increased,
there is an increase in performance and mission possibilities
[34]. Moreover, the use of satellite swarms - sets of satellites
flying in formation or in constellation around the Earth -
makes it possible to consider joint activities, to distribute
skills and to ensure robustness.
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Multi-agent architectures have been developed for satellite
swarms [36, 38, 42] but strong assumptions on deliberation
and communication capabilities are made in order to build
a collective plan.

Mono-agent planning [4, 18, 28] and task allocation [20]
are widely studied. In a multi-agent context, agents that
build a collective plan must be able to change their goals,
reallocate resources and react to environment changes and
to the others’ choices. A coordination step must be added to
the planning step [40, 30, 11]. However, this step needs high
communication and computation capabilities. For instance,
coalition-based [37], contract-based [35] and all negotiation-
based [25] mechanisms need these capabilities, especially in
dynamic environments.

In order to relax communication constraints, coordination
based on norms and conventions [16] or strategies [17] are
considered. Norms constraint agents in their decisions in
such a way that the possibilities of conflicts are reduced.
Strategies are private decision rules that allow an agent to
draw benefit from the knowledgeable world without commu-
nication. However, communication is still needed in order to
share information and build collective conjectures and plans.

Communication can be achieved through a stigmergic ap-
proach (via the environment) or through message exchange
and a protocol. A protocol defines interactions between
agents and cannot be uncoupled from its goal, e.g. exchang-
ing information, finding a trade-off, allocating tasks and so
on. Protocols can be viewed as an abstraction of an inter-
action [9]. They may be represented in a variety of ways,
e.g. AUML [32] or Petri-nets [23]. As protocols are origi-
nally designed for a single goal, some works aim at endow-
ing them with flexibility [8, 26]. However, an agent cannot
always communicate with another agent or the communica-
tion possibilites are restricted to short time intervals.

The objective of this work is to use intersatellite connec-
tions, called InterSatellite Links or ISL, in an Earth observa-
tion constellation inspired from the Fuego mission [13, 19],
in order to increase the system reactivity and to improve the
mission global return through a hybrid agent approach. At
the individual level, agents are deliberative in order to create
a local plan but at the collective level, they use normative
decision rules in order to coordinate with one another. We
will present the features of our problem, a communication
protocol, a method for request allocation and finally, collab-
oration strategies.
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2. PROBLEM FEATURES
An observation satellite constellation is a set of satellites

in various orbits whose mission is to take pictures of various
areas on the Earth surface, for example hot points corre-
sponding to volcanos or forest fires. The ground sends the
constellation observation requests characterized by their ge-
ographical positions, priorities specifying if the requests are
urgent or not, the desired dates of observation and the de-
sired dates for data downloading.

The satellites are equipped with a single observation ins-
trument whose mirror can roll to shift the line of sight. A
minimum duration is necessary to move the mirror, so re-
quests that are too close together cannot be realized by the
same satellite. The satellites are also equipped with a de-
tection instrument pointed forward that detects hot points
and generates observation requests on-board.

The constellations that we consider are such as the orbits
of the various satellites meet around the poles. A judicious
positioning of the satellites in their orbits makes it possible
to consider that two (or more) satellites meet in the polar ar-
eas, and thus can communicate without the ground interven-
tion. Intuitively, intersatellite communication increases the
reactivity of the constellation since each satellite is within
direct view of a ground station (and thus can communicate
with it) only 10 % of the time.

The features of the problem are the following:
— 3 to 20 satellites in the constellation;
— pair communication around the poles;
— no ground intervention during the planning process;
— asynchronous requests with various priorities.

3. A MULTI-AGENT APPROACH
As each satellite is a single entity that is a piece of the

global swarm, a multi-agent system fits to model satellite
constellations [39]. This approach has been developped through
the ObjectAgent architecture [38], TeamAgent [31], DIPS
[14] or Prospecting ANTS [12].

3.1 Satellite swarm
An observation satellite swarm1 is a multi-agent system

where the requests do not have to be carried out in a fixed
order and the agents (the satellites) do not have any physical
interaction. Carrying out a request cannot prevent another
agent from carrying out another one, even the same one. At
most, there will be a waste of resources. Formally, a swarm
is defined as follows:

Definition 1 (Swarm). A satellite swarm E is a tri-

plet < S , T,Vicinity >:

— S is a set of n agents {s1 . . . sn};
— T ⊆ R

+ or N
+ is a set of dates with a total order <;

— Vicinity : S × T �→ 2S .

In the sequel, we will assume that the agents share a com-
mon clock.

For a given agent and a given time, the vicinity relation
returns the set of agents with whom it can communicate at
that time. As we have seen previously, this relation exists
when the agents meet.

1This term will designate a satellite constellation with In-
terSatellite Links.

3.2 Requests
Requests are the observation tasks that the satellite swarm

must achieve. As we have seen previously, the requests are
generated both on the ground and on board. Each agent is
allocated a set of initial requests. During the mission, new
requests are sent to the agents by the ground or agents can
generate new requests by themselves. Formally, a request is
defined as follows:

Definition 2 (Request). A request R is defined as a

tuple < idR, pos(R), prio(R), tbeg(R), bR >:

— idR is an identifier;

— pos(R) is the geographic position of R;

— prio(R) ∈ R is the request priority;

— tbeg(R) ∈ T is the desired date of observation;

— bR ∈ {true, false} specifies if R has been realized.

The priority prio(R) of a request represents how much it is
important for the user, namely the request sender, that the
request should be carried out. Thus a request with a high
priority must be realized at all costs. In our application,
priorities are comprised between 1 and 5 (the highest).

In the sequel, we will note Rt
si

the set of the requests that
are known by agent si at time t ∈ T.

For each request R in Rt
si

, there is a cost value, noted
costsi

(R) ∈ R, representing how far from the desired date
of observation tbeg(R) an agent si can realize R. So, the
more an agent can carry out a request in the vicinity of the
desired date of observation, the lower the cost value.

3.3 Candidacy
An agent may have several intentions about a request, i.e.

for a request R, an agent si may:
— propose to carry out R : si may realize R;
— commit to carry out R : si will realize R;
— not propose to carry out R : si may not realize R;
— refuse to carry out R : si will not realize R.

We can notice that these four propositions are modalities
of proposition C: si realizes R:

— �C means that si proposes to carry out R;
— �C means that si commits to carry out R;
— ¬�C means that si does not propose to carry out R;
— ¬�C means that si refuses to carry out R.
More formally:

Definition 3 (Candidacy). A candidacy C is a tuple

< idC , modC , sC , RC , obsC , dnlC >:

— idC is an identifier;

— modC ∈ {�, �,¬�,¬�} is a modality;

— sC ∈ S is the candidate agent;

— RC ∈ Rt
sC

is the request on which sC candidates;

— obsC ∈ T is the realization date proposed by sC ;

— dnlC ∈ T is the download date.

3.4 Problem formalization
Then, our problem is the following: we would like each

agent to build request allocations (i.e a plan) dynamically
such as if these requests are carried out their number is the
highest possible or the global cost is minimal. More formally,

Definition 4 (Problem). Let E be a swarm. Agents

si in E must build a set {At
s1

. . . At
sn
} where At

si
⊆ Rt

si
such
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as:

— |
S

si∈S
At

si
| is maximal;

—
P

si∈S

P
R∈At

si

prio(R) is maximal.

—
P

si∈S

P
R∈At

si

costsi
(R) is minimal.

Let us notice that these criteria are not necessarily com-
patible.

As the choices of an agent will be influenced by the choices
of the others, it is necessary that the agents should reason
on a common knowledge about the requests. It is thus nec-
essary to set up an effective communication protocol.

4. COMMUNICATION PROTOCOL
Communication is commonly associated with cooperation.

Deliberative agents need communication to cooperate, whe-
reas it is not necessarily the case for reactive agents [2, 41].

Gossip protocols [22, 24], or epidemic protocols, are used
to share knowledge with multicast. Each agent selects a set
of agents at a given time in order to share information. The
speed of information transmission is contingent upon the
length of the discussion round.

4.1 The corridor metaphor
The suggested protocol is inspired from what we name

the corridor metaphor, which represents well the satellite
swarm problem. Various agents go to and fro in a corridor
where objects to collect appear from time to time. Two
objects that are too close to each other cannot be collected
by the same agent because the action takes some time and
an agent cannot stop its movement. In order to optimize the
collection, the agents can communicate when they meet.

S
2S

ABel

A
1

A

3S

Figure 1: Time t

1
S

2S

Bel non A

3S

Figure 2: Time t′

Example 1. Let us suppose three agents, s1, s2, s3 and

an object A to be collected. At time t, s1 did not collect A

and s2 does not know that A exists. When s1 meets s2, it

communicates the list of the objects it knows, that is to say

A. s2 now believes that A exists and prepares to collect it.

It is not certain that A is still there because another agent

may have passed before s2, but it can take it into account in

its plan.

At time t′, s3 collects A. In the vicinity of s2, s3 commu-

nicates its list of objects and A is not in the list. As both

agents meet in a place where it is possible for s3 to have

collected A, the object would have been in the list if it had

not been collected. s2 can thus believe that A does not exist

anymore and can withdraw it from its plan.

4.2 Knowledge to communicate
In order to build up their plans, agents need to know the

current requests and the others agents’ intentions. For each
agent two kinds of knowledge to maintain are defined:

— requests (Definition 2);
— candidacies (Definition 3).

Definition 5 (Knowledge). Knowledge K is a tuple

< data(K), SK , tK >:

— data(K) is a request R or a candidacy C;

— SK ⊆ S is the set of agents knowing K;

— tK ∈ T is a temporal timestamp.

In the sequel, we will note Kt
si

the knowledge of agent si

at time t ∈ T.

4.3 An epidemic protocol
From the corridor metaphor, we can define a communica-

tion protocol that benefits from all the communication op-
portunities. An agent notifies any change within its knowl-
edge and each agent must propagate these changes to its
vicinity who update their knowledge bases and reiterate the
process. This protocol is a variant of epidemic protocols [22]
inspired from the work on overhearing [27].

Protocol 1 (Communication). Let si be an agent

in S. ∀t ∈ T:

— ∀ sj ∈ Vicinity(si, t), si executes:

1. ∀ K ∈ Kt
si

such as sj �∈ SK :

a. si communicates K to sj

b. if sj acknowledges receipt of K, SK ← SK ∪ {sj}.
— ∀ K ∈ Kt

si
received by sj at time t:

1. sj updates Kt
sj

with K

2. sj acknowledges receipt of K to si.

Two kinds of updates exist for an agent:
— an internal update from a knowledge modification by

the agent itself;
— an external update from received knowledge.
For an internal update, updating K depends on data(K):

a candidacy C is modified when its modality changes and a
request R is modified when an agent realizes it. When K is
updated, the timestamp is updated too.

Protocol 2 (Internal update). Let si ∈ S be an

agent. An internal update from si at time t ∈ T is per-

formed:

— when knowledge K is created;

— when data(K) is modified.

In both cases:

1. tK ← t;

2. SK ← {si}.

For an external update, only the most recent knowledge K

is taken into account because timestamps change only when
data(K) is modified. If K is already known, it is updated
if the content or the set of agents knowing it have been
modified. If K is unknown, it is simply added to the agent’s
knowledge.

Protocol 3 (External update). Let si be an agent

and K the knowledge transmitted by agent sj. ∀ K ∈ K, the

external update at time t ∈ T is defined as follows:

1. if ∃ K′ ∈ Kt
si

such as iddata(K) = iddata(K′) then

a. if tK ≥ tK′ then

i. if tK > tK′ then SK ← SK ∪ {si}
ii. if tK = tK′ then SK ← SK ∪ SK′

iii. Kt
si
← (Kt

si
\{K′}) ∪ {K}

2. else

a. Kt
si
← Kt

si
∪ {K}

b. SK ← SK ∪ {si}
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If the incoming information has a more recent timestamp,
it means that the receiver agent has obsolete information.
Consequently, it replaces the old information by the new one
and adds itself to the set of agents knowing K (1.a.i).

If both timestamps are the same, both pieces of infor-
mation are the same. Only the set of the agents knowing
K may have changed because agents si and sj may have
already transmitted the information to other agents. Con-
sequently, the sets of agents knowing K are unified (1.a.ii).

4.4 Properties
Communication between two agents when they meet is

made of the conjunction of Protocol 1 and Protocol 3. In the
sequel, we call this conjunction a communication occurrence.

4.4.1 Convergence
The structure of the transmitted information and the in-

ternal update mechanism (Protocol 2) allow the process to
converge. Indeed, a request R can only be in two states
(realized or not) given by the boolean bR. Once an internal
update is made - i.e. R is realized - R cannot go back to its
former state. Consequently, an internal update can only be
performed once.

As far as candidacies are concerned, updates only modify
the modalities, which may change many times and go back to
previous states. Then it seems that livelocks2 would be likely
to appear. However, a candidacy C is associated to a request
and a realization date (the deadline given by obsC). After
the deadline, the candidacy becomes meaningless. Thus for
each candidacy, there exists a date t ∈ T when changes will
propagate no more.

4.4.2 Complexity
It has been shown that in a set of N agents where a sin-

gle one has a new piece of information, an epidemic protocol
takes O(logN) steps to broadcast the information [33]. Dur-
ing one step, each agent has a communication occurrence.
As agents do not have much time to communicate, such a
communication occurrence must not have a too big temporal
complexity, which we can prove formally:

Proposition 1. The temporal complexity of a commu-
nication occurrence at time t ∈ T between two agents si and
sj is, for agent si,

O(|Rt
si
|.|Rt

sj
|.|S|2)

Proof 1. For the worst case, each agent sk sends |Rt
sk
|

pieces of information on requests and |Rt
sk
|.|S| pieces of in-

formations on candidacies (one candidacy for each request
and for each agent of the swarm). Let si and sj two agents
meeting at time t ∈ T. For agent si, the complexity of Pro-
tocol 1 is

O(|Rt
si
| + |Rt

si
|.|S|

| {z }

emission

+ |Rt
sj
| + |Rt

sj
|.|S|

| {z }

reception

)

For each received piece of information, agent si uses Protocol
3 and searches through its knowledge bases: |Rt

si
| pieces of

information for each received request and |Rt
si
|.|S| pieces of

2Communicating endlessly without converging.

information for each received candidacy. Consequently, the
complexity of Protocol 3 is

O(|Rt
sj
|.|Rt

si
| + |Rt

sj
|.|Rt

si
|.|S|2)

Thus, the temporal complexity of a communication occur-
rence is:

O(|Rt
si
| + |Rt

si
|.|S| + |Rt

sj
|.|Rt

si
| + |Rt

sj
|.|Rt

si
|.|S|2))

Then:

O(|Rt
si
|.|Rt

sj
|.|S|2)

5. ON-BOARD PLANNING
In space contexts, [5, 21, 6] present multi-agent archi-

tectures for on-board planning. However, they assume high
communication and computation capabilities [10]. [13] relax
these constraints by cleaving planning modules: on the first
hand, satellites have a planner that builds plans on a large
horizon and on the second hand, they have a decision mod-
ule that enables them to choose to realize or not a planned
observation.

In an uncertain environment such as the one of satellite
swarms, it may be advantageous to delay the decision until
the last moment (i.e. the realization date), especially if there
are several possibilities for a given request. The main idea
in contingency planning [15, 29] is to determine the nodes in
the initial plan where the risks of failures are most important
and to incrementally build contingency branches for these
situations.

5.1 A deliberative approach
Inspired from both approaches, we propose to build al-

locations made up of a set of unquestionable requests and
a set of uncertain disjunctive requests on which a decision
will be made at the end of the decision horizon. This hori-
zon corresponds to the request realization date. Proposing
such partial allocations allows conflicts to be solved locally
without propagating them through the whole plan.

In order to build the agents’ initial plans, let us assume
that each agent is equipped with an on-board planner. A
plan is defined as follows:

Definition 6 (Plan). Let si be an agent, Rt
si

a set
of requests and Ct

si
a set of candidacies. Let us define three

sets:
— the set of potential requests:

Rp = {R ∈ Rt
si
|bR = false}

— the set of mandatory requests:
Rm = {R ∈ Rp|∃C ∈ Ct

si
: modC = �, sC = si, RC = R}

— the set of given-up requests:
Rg = {R ∈ Rp|∃C ∈ Ct

si
: modC = ¬�, sC = si, RC = R}

A plan At
si

generated at time t ∈ T is a set of requests such
as Rm ⊆ At

si
⊆ Rp and � ∃ R ∈ Rg such as R ∈ At

si
.

Building a plan generates candidacies.

Definition 7 (Generating candidacies). Let si be
an agent and At1

si
a (possibly empty) plan at time t1. Let

At2
si

be the plan generated at time t2 with t2 > t1.
— ∀ R ∈ At1

si
such as R �∈ At2

si
, a candidacy C such as

mod(C) = ¬�, sC = si and RC = R is generated;
— ∀ R ∈ At2

si
such as R �∈ At1

si
, a candidacy C such as

mod(C) = �, sC = si and RC = R is generated;
— Protocol 2 is used to update Kt1

si
in Kt2

si
.
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5.2 Conflicts
When two agents compare their respective plans some

conflicts may appear. It is a matter of redundancies between
allocations on a given request, i.e.: several agents stand as
candidates to carry out this request. Whereas such redun-
dancies may sometimes be useful to ensure the realization of
a request (the realization may fail, e.g. because of clouds),
it may also lead to a loss of opportunity. Consequently,
conflict has to be defined:

Definition 8 (Conflict). Let si and sj be two agents
with, at time t, candidacies Csi

and Csj
respectively (sCsi

=
si and sCsj

= sj). si and sj are in conflict if and only if:

— RCsi
= RCsj

— modCsi
and modCsj

∈ {�, �}

Let us notice that the agents have the means to know
whether they are in conflict with another one during the
communication process. Indeed, they exchange information
not only concerning their own plan but also concerning what
they know about the other agents’ plans.

All the conflicts do not have the same strength, meaning
that they can be solved with more or less difficulty according
to the agents’ communication capacities. A conflict is soft
when the concerned agents can communicate before one or
the other carries out the request in question. A conflict is
hard when the agents cannot communicate before the real-
ization of the request.

Definition 9 (Soft/Hard conflict). Let si and sj

(i < j) two agents in conflict with, at time t, candidacies
Csi

and Csj
respectively (sCsi

= si and sCsj
= sj). If ∃

V ⊆ S such as V = {si . . . sj} and if ∃ T ∈ T such as
T = {ti−1 . . . tj−1} (ti−1 = t) where: ∀ i ≤ k <j, sk+1 ∈
Vicinity(sk, tk) with tk < obsCsi

, tk < obsCsj
and tk ≥ tk−1

then the conflict is soft else it is hard.

A conflict is soft if it exists a chain of agents between the
two agents in conflict such as information can propagate be-
fore both agents realize the request. If this chain does not
exist, it means that the agents in conflict cannot communi-
cate directly or not. Consequently, the conflict is hard.

In satellite swarms, the geographical positions of the re-
quests are known as well as the satellite orbits. So each
agent is able to determine if a conflict is soft or hard.

We can define the conflict cardinality:

Definition 10 (Conflict cardinality). Let si be an
agent and R a request in conflict. The conflict cardinality
is cardc(R) = |{C ∈ Ct

si
|modC ∈ {�, �}, CR = R}|.

The conflict cardinality corresponds to the number of agents
that are candidates or committed to the same request. Thus,
a conflict has at least a cardinality of 2.

6. COLLABORATION STRATEGIES
In space contexts, communication time and agents’ com-

puting capacities are limited. When they are in conflict, the
agents must find a local agreement (instead of an expensive
global agreement) by using the conflict in order to increase
the number of realized requests, to decrease the time of mis-
sion return, to increase the quality of the pictures taken or
to make sure that a request is carried out.

Example 2. Let us suppose a conflict on request R be-
tween agents si and sj. We would like that the most expert
agent, i.e. the agent that can carry out the request under
the best conditions, does it. Let us suppose si is the expert.
si must allocate R to itself. It remains to determine what
sj must do: sj can either select a substitute for R in order
to increase the number of requests potentially realized, or do
nothing in order to preserve resources, or allocate R to itself
to ensure redundancy.

Consequently, we can define collaboration strategies de-
dicated to conflict solving. A strategy is a private (namely
intrinsic to an agent) decision process that allows an agent
to make a decision on a given object. In our application,
strategies specify what to do with redundancies.

6.1 Cost and expertise
In our application, cost is linked to the realization dates.

Carrying out a request consumes the agents’ resources (e.g.:
on-board energy, memory). Consequently, an observation
has a cost for each agent which depends on when it is real-
ized: the closer the realization date to the desired date of
observation, the lower the cost.

Definition 11 (Cost). Let si be an agent. The cost
costsi

(RC) ∈ R to carry out a request RC according to a
candidacy C is defined as: costsi

(RC) = |obsC − tbeg(RC)|.

From this cost notion, we can formally define an expert no-
tion between two agents. The expertise for an agent means
it can realize the request at the lower cost.

Definition 12 (Expertise). Let si and sj ∈ S be two
agents and R a request. Agent si is an expert for R if and
only if costsi

(R) ≤ costsj
(R).

6.2 Soft conflict solving strategies
Three strategies are proposed to solve a conflict. The ex-

pert strategy means that the expert agent maintains its can-
didacy whereas the other one gives up. The altruist strategy
means that the agent that can download first3, provided the
cost increase is negligible, maintains its candidacy whereas
the other one gives up. The insurance strategy means that
both agents maintain their candidacies in order to ensure
redundancy.

Strategy 1 (Expert). Let si and sj be two agents in
conflict on their respective candidacies Csi

and Csj
such as

si is the expert agent. The expert strategy is: modCsi
= �

and modCsj
= ¬�.

Strategy 2 (Altruist). Let si and sj be two agents
in conflict on their respective candidacies Csi

and Csj
such

as si is the expert agent. Let ε ∈ R
+ be a threshold on the

cost increase. The altruist strategy is : if dnlCsi
> dnlCsj

and |costsi
(R) − costsj

(R)| < ε then modCsi
= ¬� and

modCsj
= �.

Strategy 3 (Insurance). Let si and sj be two agents
in conflict on their respective candidacies Csi

and Csj
such

as si is the expert agent. Let α ∈ R be a priority threshold.

The insurance strategy is : if prio(R)
cardc(R)−1

> α then modCsi

= � and modCsj
= �.

3i.e. the agent using memory resources during a shorter
time.
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In the insurance strategy, redundancy triggering is ad-
justed by the conflict cardinality cardc(R). The reason is
the following: the more redundancies on a given request,
the less a new redundancy on this request is needed.

The three strategies are implemented in a negotiation pro-
tocol dedicated to soft conflicts. The protocol is based on
a subsumption architecture [7] on strategies: the insurance
strategy (1 ) is the major strategy because it ensures redun-
dancy for which the swarm is implemented. Then the altru-
ist strategy comes (2 ) in order to allocate the resources so as
to enhance the mission return. Finally, the expert strategy
that does not have preconditions (3 ) enhances the cost of
the plan.

Protocol 4 (Soft conflict solving). Let R be a
request in a soft conflict between two agents, si and sj.
These agents have Csi

and Csj
for respective candidacies.

Let si be the expert agent. Agents apply strategies as fol-
lows:

1. insurance strategy (α)
2. altruist strategy (ε)
3. expert strategy

The choice of parameters α and ε allows to adjust the
protocol results. For example, if ε = 0, the altruist strategy
is never used.

6.3 Hard conflict solving strategies
In case of a hard conflict, the agent that is not aware will

necessarily realize the request (with success or not). Con-
sequently, a redundancy is useful only if the other agent is
more expert or if the priority of the request is high enough to
need redundancy. Therefore, we will use the insurance strat-
egy (refer to Section 6.2) and define a competitive strategy.

The latter is defined for two agents, si and sj , in a hard
conflict on a request R. Let si be the agent that is aware of
the conflict4.

Strategy 4 (Competitive). Let λ ∈ R
+ be an cost

threshold. The competitive strategy is: if costsi
(R) < costsj

(R) − λ then modCsi
= �.

Protocol 5 (Hard conflict solving). Let si be an
agent in a hard conflict with an agent sj on a request R. si

applies strategies as follows:
1. insurance strategy (α)
2. competitive strategy (λ)
3. withdrawal : modCsi

= ¬�

6.4 Generalization
Although agents use pair communication, they may have

information about several agents and conflict cardinality
may be more than 2. Therefore, we define a k-conflict as
a conflict with a cardinality of k on a set of agents propo-
sing or committing to realize the same request. Formally,

Definition 13 (k-conflict). Let S = {s1 . . . sk} be a
set of agents with respective candidacies Cs1

. . . Csk
at time

t. The set S is in a k-conflict if and only if:
— ∀1 ≤ i ≤ k, sCsi

= si;
— !∃R such as ∀1 ≤ i ≤ k, RCsi

= R;

4i.e. the agent that must make a decision on R.

— ∀1 ≤ i ≤ k, modCsi
∈ {�, �}.

— S is maximal (⊆) among the sets that satisfy these
properties.

As previously, a k-conflict can be soft or hard. A k-conflict
is soft if each pair conflict in the k-conflict is a soft conflict
with respect to Definition 9.

As conflicts bear on sets of agents, expertise is a total
order on agents. We define rank-i-expertise where the con-
cerned agent is the ith expert.

In case of a soft k-conflict, the rank-i-expert agent makes
its decision with respect to the rank-(i + 1)-expert agent
according to Protocol 4. The protocol is applied recursively
and α and ε parameters are updated at each step in order
to avoid cost explosion5.

In case of a hard conflict, the set S of agents in conflict
can be splitted in SS (the subset of agents in a soft conflict)
and SH (the subset of unaware agents). Only agents in SS

can take a decision and must adapt themselves to agents in
SH . The rank-i-expert agent in SS uses Protocol 5 on the
whole set SH and the rank-(i− 1)-expert agent in SS . If an
agent in SS applies the competitive strategy all the others
withdraws.

7. EXPERIMENTS
Satellite swarm simulations have been implemented in JA-

VA with the JADE platform [3]. The on-board planner is
implemented with linear programming using ILOG CPLEX
[1]. The simulation scenario implements 3 satellites on 6-
hour orbits. Two scenarios have been considered: the first
one with a set of 40 requests with low mutual exclusion and
conflict rate and the second one with a set of 74 requests
with high mutual exclusion and conflict rate.

For each scenario, six simulations have been performed:
one with centralized planning (all requests are planned by
the ground station before the simulation), one where agents
are isolated (they cannot communicate nor coordinate with
one another), one informed simulation (agents only commu-
nicate requests) and three other simulations implementing
the instanciated collaboration strategies (politics):

— neutral politics: α, ε and λ are set to average values;
— drastic politics: α and λ are set to higher values, i.e.

agents will ensure redundancy only if the priorities are high
and, in case of a hard conflict, if the cost payoff is much
higher;

— lax politics: α is set to a lower value, i.e. redundancies
are more frequent.

In the case of low mutual exclusion and conflict rate (Ta-
ble 1), centralized and isolated simulations lead to the same
number of observations, with the same average priorities.
Isolation leading to a lower cost is due to the high num-
ber of redundancies: many agents carry out the same re-
quest at different costs. The informed simulation reduces
the number of redundancies but sligthly increases the aver-
age cost for the same reason. We can notice that the use of

5For instance, the rank-1-expert agent withdraws due to the
altruist strategy and the cost increases by ε in the worst
case, then rank-2-expert agent withdraws due to the altruist
strategy and the cost increases by ε in the worst case. So
the cost has increased by 2ε in the worst case.
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Simulation Observations Redundancies Messages Average priority Average cost

Centralized 34 0 0 2.76 176.06

Isolated 34 21 0 2.76 160.88

Informed 34 6 457 2.65 165.21

Neutral politics 31 4 1056 2.71 191.16

Drastic politics 24 1 1025 2.71 177.42

Lax politics 33 5 1092 2.7 172.88

Table 1: Scenario 1 - the 40-request simulation results

Simulation Observations Redundancies Messages Average priority Average cost

Centralized 59 0 0 2.95 162.88

Isolated 37 37 0 3.05 141.62

Informed 55 27 836 2.93 160.56

Neutral politics 48 25 1926 3.13 149.75

Drastic politics 43 21 1908 3.19 139.7

Lax politics 53 28 1960 3 154.02

Table 2: Scenario 2 - the 74-request simulation results

collaboration strategies allows the number of redundancies
to be much more reduced but the number of observations
decreases owing to the constraint created by commitments.
Furthermore, the average cost is increased too. Nevertheless
each avoided redundancy corresponds to saved resources to
realize on-board generated requests during the simulation.

In the case of high mutual exclusion and conflict rate (Ta-
ble 2), noteworthy differences exist between the centralized
and isolated simulations. We can notice that all informed
simulations (with or without strategies) allow to perform
more observations than isolated agents do with less redun-
dancies. Likewise, we can notice that all politics reduce the
average cost contrary to the first scenario. The drastic poli-
tics is interesting because not only does it allow to perform
more observations than isolated agents do but it allows to
highly reduce the average cost with the lowest number of
redundancies.

As far as the number of exchanged messages is concerned,
there are 12 meetings between 2 agents during the simula-
tions. In the worst case, at each meeting each agent sends
N pieces of information on the requests plus 3N pieces of
information on the agents’ intentions plus 1 message for the
end of communication, where N is the total number of re-
quests. Consequently, 3864 messages are exchanged in the
worst case for the 40-request simulations and 7128 messages
for the 74-request simulations. These numbers are much
higher than the number of messages that are actually ex-
changed. We can notice that the informed simulations, that
communicate only requests, allow a higher reduction.

In the general case, using communication and strategies
allows to reduce redundancies and saves resources but in-
creases the average cost: if a request is realized, agents that
know it do not plan it even if its cost can be reduce af-
terwards. It is not the case with isolated agents. Using
strategies on little constrained problems such as scenario 1
constrains the agents too much and causes an additional cost
increase. Strategies are more useful on highly constrained
problems such as scenario 2. Although agents constrain
themselves on the number of observations, the average cost
is widely reduce.

8. CONCLUSION AND FUTURE WORK
An observation satellite swarm is a cooperative multi-

agent system with strong constraints in terms of commu-
nication and computation capabilities. In order to increase
the global mission outcome, we propose an hybrid approach:
deliberative for individual planning and reactive for collabo-
ration.

Agents reason both on requests to carry out and on the
other agents’ intentions (candidacies). An epidemic com-
munication protocol uses all communication opportunities
to update this information. Reactive decision rules (strate-
gies) are proposed to solve conflicts that may arise between
agents. Through the tuning of the strategies (α, ε and λ)
and their plastic interlacing within the protocol, it is possi-
ble to coordinate agents without additional communication:
the number of exchanged messages remains nearly the same
between informed simulations and simulations implementing
strategies.

Some simulations have been made to experimentally val-
idate these protocols and the first results are promising but
raise many questions. What is the trade-off between the
constraint rate of the problem and the need of strategies?
To what extent are the number of redundancies and the av-
erage cost affected by the tuning of the strategies?

Future works will focus on new strategies to solve new
conflicts, specially those arising when relaxing the indepen-
dence assumption between the requests. A second point is
to take into account the complexity of the initial planning
problem. Indeed, the chosen planning approach results in a
combinatory explosion with big sets of requests: an anytime
or a fully reactive approach has to be considered for more
complex problems.
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