
Automated Design of Scoring Rules by
Learning from Examples

Ariel D. Procaccia, Aviv Zohar, and Jeffrey S. Rosenschein

School of Engineering and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel
{arielpro, avivz, jeff}@cs.huji.ac.il

ABSTRACT
Scoring rules are a broad and concisely-representable class
of voting rules which includes, for example, Plurality and
Borda. Our main result asserts that the class of scoring
rules, as functions from preferences into candidates, is effi-
ciently learnable in the PAC model. We discuss the appli-
cations of this result to automated design of scoring rules.
We also investigate possible extensions of our approach, and
(along the way) we establish a lemma of independent inter-
est regarding the number of distinct scoring rules.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Voting, PAC learning

1. INTRODUCTION
Voting is a well-studied method of preference aggregation,

in terms of its theoretical properties, as well as its computa-
tional aspects [5, 13]; various practical, implemented appli-
cations that use voting exist [8, 7]. In an election, n voters
express their preferences over a set of m candidates or alter-
natives. To be precise, each voter is assumed to reveal linear
preferences—a ranking of the candidates. The outcome of
the election is determined according to a voting rule.

1.1 Scoring Rules
The predominant—ubiquitous, even—voting rule in real-

life elections is the Plurality rule. Under Plurality, each

Cite as: Automated Design of Scoring Rules by Learning from Exam-
ples, Ariel D. Procaccia, Aviv Zohar and Jeffrey S. Rosenschein, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

voter awards one point to the candidate it ranks first, i.e., its
most preferred alternative. The candidate that accumulated
the most points, summed over all voters, wins the election.
Another example of a voting rule is the Veto rule: each voter
“vetoes” a single candidate; the candidate that was vetoed
by the fewest voters wins the election. Yet a third example
is the Borda rule: every voter awards m − 1 points to its
top-ranked candidate, m−2 points to its second choice, and
so forth—the least preferred candidate is not awarded any
points. Once again, the candidate with the most points is
elected.

The abovementioned three voting rules all belong to an
important family of voting rules known as scoring rules.
A scoring rule can be expressed by a vector of parameters
~α = 〈α1, α2, . . . , αm〉, where each αl is a real number and
α1 ≥ α2 ≥ · · · ≥ αm. Each voter awards α1 points to its
most-preferred alternative, α2 to its second-most-preferred
alternative, etc. Predictably, the candidate with the most
points wins. Under this unified framework, we can express
our three rules as:

• Plurality : ~α = 〈1, 0, . . . , 0〉.

• Borda: ~α = 〈m− 1,m− 2, . . . , 0〉.

• Veto: ~α = 〈1, . . . , 1, 0〉.

Voting rules are often compared on the basis of various
criteria that define potentially desirable properties. We out-
line below several important criteria, some economic, and
some computational.

1. Anonymity : The voting rule is symmetric with regard
to the voters.

2. Neutrality : The voting rule is symmetric with regard
to the candidates.

3. Consistency : If two disjoint sets of voters elect the
same candidate, this candidate is also elected by the
union of the two sets.

4. Majority : A candidate that is most preferred by a ma-
jority of voters wins the election.

5. Robustness [14]: The worst-case probability of the out-
come of the election not changing as a result of a ran-
dom mistake/fault in the preferences of the voters.

May,12-16.,2008,Estoril,Portugal,pp.951-958.

951

6. Complexity of Manipulation: Consider a coalition of
voters that aims to improve its utility from the election
by voting untruthfully. How computationally difficult
is it to find the coalition’s optimal vote?

7. Communication Complexity : The amount of commu-
nication that is required in order to determine the win-
ner of the election.

A good indication of the importance of scoring rules is
given by the fact that they are exactly the family of vot-
ing rules that are anonymous, neutral, and consistent [17].
Many other properties can be achieved by scoring rules, de-
pending on the exact parameters. To put it differently, dif-
ferent choices of the parameters of a scoring rule yield signif-
icantly different voting rules in terms of their properties. As
an example, Table 1 compares Plurality, Borda, and Veto,
on the basis of the last four properties in our list.

1.2 Our Setting and Approach
We consider the following setting: an entity, which we

refer to as the designer, has in mind a voting rule (which
may reflect the ethics of a society). We assume that the
designer is able, for each constellation of voters’ preferences
with which it is presented, to designate a winning candidate
(perhaps with considerable computational effort). In partic-
ular, one can think of the designer’s representation of the
voting rule as a black box that matches preference profiles
to winning candidates. This setting is relevant, for example,
when a designer has in mind different properties it wants its
rule to satisfy; in this case, given a preference profile, the
designer can specify a winning candidate that is compatible
with these properties.

We would like to find a concise and easily understandable
representation of the voting rule the designer has in mind.
We refer to this process as automated design of voting rules:
given a specification of properties, or, indeed, of societal
ethics, find an elegant voting rule that implements the spec-
ification. In this paper, we do so by learning from examples.
The designer is presented with different preference profiles,
drawn according to a fixed distribution. For each profile,
the designer answers with the winning candidate. The num-
ber of queries presented to the designer must intuitively be
as small as possible: the computations the designer has to
carry out in order to handle each query might be complex,
and communication might be costly.1

Now, we further assume that the “target” voting rule the
designer has in mind, i.e., the one given as a black box, is a
scoring rule. This assumption is justified by the discussion in
the previous subsection, as many reasonable properties the
designer might find desirable are achievable by scoring rules.
We would like to produce a scoring rule (represented by its
parameters ~α) that is as “close” as possible to the target
rule. This way, the designer could in principle translate the
possibly cumbersome, unknown representation of a voting
rule into a succinct one that can be easily understood and
computed. Note that this setting was previously presented
and advocated by Procaccia et al. [15]

By “close,” we mean close with respect to the fixed dis-
tribution over preference profiles. More precisely, we would

1Note that while some properties, like high Complexity of
Manipulation, do not naturally name the winner of the elec-
tion, other properties may hint at the winner, or designate
it directly (e.g., Majority, Condorcet Winner, etc.).

like to construct an algorithm that receives pairs of the form
(preferences, winner) drawn according to a fixed distribu-
tion D over preferences, and outputs a scoring rule, such
that the probability according to D that our scoring rule
and the target rule agree is as high as possible. We wish, in
fact, to learn scoring rules in the framework of the formal
PAC (Probably Approximately Correct) learning model; a
concise introduction to this model is given in Section 2.

Further justification for our agenda is given by noting that
it might be difficult to compute a voting rule on all instances,
but it might be sufficient to simply calculate the election’s
result on typical instances. The distribution D can be cho-
sen, by the designer, to concentrate on such instances.

The dimension of a function class is a combinatorial mea-
sure of the richness of the class; this dimension of a function
class is closely related to the number of examples needed to
learn it. We give tight bounds on the dimension of the class
of scoring rules, providing an upper bound of m, and a lower
bound of m− 3, where m is the number of candidates in an
election. In addition, we show that, given a set of examples,
one can efficiently construct a scoring rule that is consistent
with the examples, if one exists. Combined, these results
imply that the class of scoring rules is efficiently learnable.
In other words, given a combination of properties which is
satisfied by some scoring rule, it is possible to construct a
“close” scoring rule in polynomial time.

It is also worthwhile to ask whether it is possible to extend
this approach. Specifically, we pose the question: if the
designer has some general voting rule in mind, is it possible
to learn a “close” scoring rule? We show that the there
are voting rules which cannot be “approximated” by scoring
rules. Along the way, we show that the number of distinct
scoring rules is at most exponential in the number of voters
and candidates (whereas the number of voting rules is double
exponential).

1.3 Related Work
Currently there exists a small body of work on learning

in economic settings. Kalai [9] explores the learnability (in
the PAC model) of rationalizable choice functions. These
are functions which, given a set of alternatives, choose the
element that is maximal with respect to some linear order.
Similarly, PAC learning has very recently been applied to
computing utility functions that are rationalizations of given
sequences of prices and demands [1].

Another prominent example is the paper by Lahaie and
Parkes [10], which considers preference elicitation in combi-
natorial auctions. The authors show that preference elicita-
tion algorithms can be constructed on the basis of existing
learning algorithms. The learning model used, exact learn-
ing, differs from ours (PAC learning).

Conitzer and Sandholm [2] have studied automated mech-
anism design, in the more restricted setting where agents
have numerical valuations for different alternatives. They
propose automatically designing a truthful mechanism for
every preference aggregation setting. However, they find
that, under two solution concepts, even determining whether
there exists a deterministic mechanism that guarantees a
certain social welfare is an NP-complete problem. The au-
thors also show that the problem is tractable when designing
a randomized mechanism. In more recent work [3], Conitzer
and Sandholm put forward an efficient algorithm for de-
signing deterministic mechanisms, which works only in very

952

Majority Robustness Manipulation Communication
Plurality Yes ≥ m−2

m−1
[14] P [5] Θ(n logm) [4]

Borda No ≤ 1
m

[14] NP-complete [5] Θ(nm logm) [4]
Veto No ≥ m−2

m−1
[14] NP-complete [5] ?

Table 1: Different scoring rules greatly differ in the desiderata they satisfy

limited scenarios. In short, our setting, goals, and methods
are completely different—in the general voting context, even
framing computational complexity questions is problematic,
since the goal cannot be specified with reference to expected
social welfare.

Most importantly, this paper complements the paper of
Procaccia, Zohar, Peleg and Rosenschein which studies the
learnability of voting trees [15], with, similarly, the goal of
automated design of voting trees. Voting trees are voting
rules that iteratively compare pairs of candidates based on
the preference of the majority of voters; these rules can be
succinctly represented. Voting trees are shown to be learn-
able in certain settings, but are not efficiently learnable (un-
like scoring rules). It is important to note that the fami-
lies of scoring rules and voting trees are practically disjoint,
and that the learning-theoretic results in this paper are far
stronger.

1.4 Structure of the Paper
In Section 2 we give an introduction to the PAC model. In

Section 3, we describe our setting and rigorously prove that
the class of scoring rules is efficiently learnable. In Section 4,
we discuss extending our approach, and in Section 5, we give
our conclusions.

2. PRELIMINARIES
In this section we give a very short introduction to the

PAC model and the generalized dimension of a function
class. A more comprehensive (and slightly more formal)
overview of the model, and results concerning the dimen-
sion, can be found in [12].

In the PAC model, the learner is attempting to learn a
function f : X → Y , which belongs to a class F of functions
from X to Y . The learner is given a training set—a set
of points in X, x1, x2, . . . , xt, which are sampled i.i.d. (in-
dependently and identically distributed) according to a dis-
tribution D over the sample space X. D is unknown, but
is fixed throughout the learning process. In this paper, we
assume the “realizable” case, where a target function f∗(x)
exists, and the given training examples are in fact labeled
by the target function: {(xk, f∗(xk))}tk=1. The error of a
function f ∈ F is defined as

err(f) = Pr
x∼D

[f(x) 6= f∗(x)]. (1)

ε > 0 is a parameter given to the learner that defines the
accuracy of the learning process: we would like to achieve
err(h) ≤ ε. Notice that err(f∗) = 0. The learner is also
given an accuracy parameter δ > 0, that provides an upper
bound on the probability that err(h) > ε:

Pr[err(h) > ε] < δ. (2)

We now formalize the discussion above:

Definition 2.1.

1. A learning algorithm L is a function from the set of all
training examples to F with the following property:
given ε, δ ∈ (0, 1) there exists an integer s(ε, δ)—the
sample complexity—such that for any distribution D
on X, if Z is a sample of size at least s where the sam-
ples are drawn i.i.d. according to D, then with proba-
bility at least 1− δ it holds that err(L(Z)) ≤ ε.

2. L is an efficient learning algorithm if it always runs
in time polynomial in 1/ε, 1/δ, and the size of the
representations of the target function, of elements in
X, and of elements in Y .

3. A function class F is (efficiently) PAC-learnable if
there is an (efficient) learning algorithm for F .

The sample complexity of a learning algorithm for F is
closely related to a measure of the class’s combinatorial rich-
ness known as the generalized dimension.

Definition 2.2. Let F be a class of functions from X to
Y . We say F shatters S ⊆ X if there exist two functions
g, h ∈ F such that

1. For all x ∈ S, g(x) 6= h(x).

2. For all S1 ⊆ S, there exists f ∈ F such that for all x ∈
S1, f(x) = h(x), and for all x ∈ S \ S1, f(x) = g(x).

Definition 2.3. Let F be a class of functions from a set
X to a set Y . The generalized dimension of F , denoted by
DG(F), is the greatest integer d such that there exists a set
of cardinality d that is shattered by F .

Lemma 2.4. [12, Lemma 5.1] Let X and Y be two finite
sets and let F be a set of total functions from X to Y . If
d = DG(F), then 2d ≤ |F|.

The generalized dimension of a function provides both
upper and lower bounds on the sample complexity of al-
gorithms.

Theorem 2.5. [12, Theorem 5.1] Let F be a class of func-
tions from X to Y of generalized dimension d. Let L be an
algorithm such that, when given a set of t labeled examples
{(xk, f∗(xk))}k of some f∗ ∈ F , sampled i.i.d. according to
some fixed but unknown distribution over the instance space
X, produces an output f ∈ F that is consistent with the
training set. Then L is an (ε, δ)-learning algorithm for F
provided that the sample size obeys:

s ≥ 1

ε

„
(σ1 + σ2 + 3)DG(F) ln 2 + ln

„
1

δ

««
(3)

where σ1 and σ2 are the sizes of the representation of ele-
ments in X and Y , respectively.

953

Theorem 2.6. [12, Theorem 5.2] Let F be a function
class of generalized dimension d ≥ 8. Then any (ε, δ)-
learning algorithm for F , where ε ≤ 1/8 and δ < 1/4, must
use sample size s ≥ d

16ε
.

3. LEARNING SCORING RULES
Before diving in, we introduce some notation. Let N =
{1, 2, . . . , n} be the set of voters, and let C = {c1, c2, . . . , cm}
be the set of candidates. Let L be the set of linear prefer-
ences2 over C; each voter has preferences �i∈ L. We denote
the preference profile, consisting of the voters’ preferences,
by �N= 〈�1,�2, . . . ,�n〉.

Let ~α be a vector of real numbers such that αl ≥ αl+1 for
all l = 1, . . . ,m − 1. Let f~α : LN → C be the scoring rule
defined by the vector ~α, i.e., each voter awards αl points to
the candidate it ranks in the l’th place, and the rule elects
the candidate with the most points.

Since several candidates may have maximal scores in an
election, we must adopt some method of tie-breaking. Our
method works as follows. Ties are broken in favor of the
candidate that was ranked first by more voters; if several
candidates have maximal scores and were ranked first by
the same number of voters, the tie is broken in favor of the
candidate that was ranked second by more voters; and so
on.3

Let Snm be the class of scoring rules with n voters and m
candidates. Our goal is to learn, in the PAC model, some
target function f~α∗ ∈ Snm. To this end, the learner receives
a training set {(�Nk , f~α∗(�Nk)}k, where each �Nk is drawn
from a fixed distribution over LN ; let cjk = f~α∗(�Nk). For
the profile �Nk , we denote by πkj,l the number of voters that
ranked candidate cj in place l. Notice that candidate cj ’s
score under the preference profile �Nk is

P
l π

k
j,lαl.

3.1 PAC-Learnability of Snm
Our main goal in this section is to prove the following

theorem.

Theorem 3.1. For all n,m ∈ N, the class Snm is effi-
ciently PAC-learnable.

By Theorem 2.5, in order to prove Theorem 3.1 it is suf-
ficient to validate the following two claims: 1) that there
exists an algorithm which, for any training set, runs in time
polynomial in n,m, and the size of the training set, and out-
puts a scoring rule which is consistent with the training set
(assuming one exists); and 2) that the generalized dimension
of the class Snm is polynomial in n and m.

Remark 3.2. It is possible to prove Theorem 3.1 by using
a transformation between scoring rules and sets of linear
threshold functions. Indeed, it is well-known that the VC
dimension (the restriction of the generalized dimension to
boolean-valued functions) of linear threshold functions over
Rd is d+1. In principle, it is possible to transform a scoring
rule into a linear threshold function which receives (generally
speaking) vectors of rankings of candidates as input. Given

2A binary relation which is antisymmetric, transitive, and
total.
3In case several candidates have maximal scores and identi-
cal rankings everywhere, break ties arbitrarily—say, in favor
of the candidate with the smallest index.

a training set of profiles, we could transform it into a training
set of rankings and use a learning algorithm.

However, we are interested in producing an accurate scor-
ing rule according to a distribution D on preference profiles,
which represents typical profiles. It is possible to consider
a many-to-one mapping between distributions over profiles
and distributions over the abovementioned vectors of rank-
ings. Unfortunately, when this procedure is used, it is non-
trivial to guarantee that the learned voting rule succeeds
according to the original distribution D. Moreover, this
procedure seems to require an increase in sample complex-
ity compared to the analysis given below. Therefore, we
proceed with the more “direct” agenda outlined above and
detailed below.

It is rather straightforward to construct an efficient algo-
rithm that outputs consistent scoring rules. Given a training
set, we must choose the parameters of our scoring rule in a
way that, for any example, the score of the designated win-
ner is at least as large as the scores of other candidates.
Moreover, if ties between the winner and a loser would be
broken in favor of the loser, then the winner’s score must
be strictly higher than the loser’s. Our algorithm, given as
Algorithm 1, simply formulates all the constraints as linear
inequalities, and solves the resulting linear program.

Algorithm 1 Given a training set, the algorithm returns a
scoring rule which is consistent with the given examples, if
one exists.

for k ← 1 . . . t do
Ck ← ∅
for all j 6= jk do . cjk is the winner in example k

~π∆ ← ~πkjk − ~π
k
j

l0 ← min{l : π∆
l 6= 0}

if π∆
l0 < 0 then . Ties are broken in favor of cj
Ck ← Ck ∪ {cj}

end if
end for

end for
return a feasible solution ~α to the following linear pro-
gram:

∀k, ∀cj ∈ Ck,
P
l π

k
jk,l

αl ≥
P
l π

k
j,lαl + 1

∀k, ∀cj /∈ Ck,
P
l π

k
jk,l

αl ≥
P
l π

k
j,lαl

∀l = 1, . . . ,m− 1 αl ≥ αl+1

∀l, αl ≥ 0

A linear program can be solved in time that is polynomial
in the number of variables and inequalities [16]; it follows
that Algorithm 1’s running time is polynomial in n, m, and
the size of the training set.

Remark 3.3. Notice that any vector ~α with a polyno-
mial representation can be scaled to an equivalent vector of
integers which is also polynomially representable. In this
case, the scores are always integral. Thus, instead of using
a strict inequality in the LP’s first set of constraints, we can
use a weak inequality with an additive factor of 1.

Remark 3.4. Although the transformation between learn-
ing scoring rules and learning linear threshold functions men-
tioned in Remark 3.2 has some drawbacks as a learning

954

method, results on the computational complexity of learning
linear threshold functions can be leveraged to obtain com-
putational efficiency. Indeed, well-known algorithms such as
Winnow [11] suit this purpose.

Remark 3.5. Algorithm 1 can also be used to check, with
high probability, if the voting rule the designer has in mind
is indeed a scoring rule, as described (in a different context)
by Kalai [9] (we omit the details here). This further justifies
the setting in which the voting rule the designer has in mind
is known to be a scoring rule.

So, it remains to demonstrate that the generalized dimen-
sion of Snm is polynomial in n and m. The following lemma
shows this.

Lemma 3.6. The generalized dimension of the class Snm
is at most m:

DG(Snm) ≤ m.

Proof. According to Definition 2.3, we need to show that
any set of cardinality m+ 1 cannot be shattered by F . Let
S = {�Nk }m+1

k=1 be such a set, and let h, g be the two social
choice functions that disagree on all preference profiles in S.
We shall construct a subset S1 ⊆ S such that there is no
scoring rule f~α that agrees with h on S1 and agrees with g
on S \ S1.

Let us look at the first preference profile from our set, �N1 .
We shall assume without loss of generality that h(�N1) = c1,
while g(�N1) = c2, and that in �N1 ties are broken in favor
of c1. Let ~α be some parameter vector. If we are to have
h(�N1) = f~α(�N1), it must hold that

mX
l=1

π1
1,l · αl ≥

mX
l=1

π1
2,l · αl, (4)

whereas if we wanted f~α to agree with g we would want the
opposite:

mX
l=1

π1
1,l · αl <

mX
l=1

π1
2,l · αl (5)

More generally, we define, with respect to the profile �Nk ,
the vector ~πk∆ as the vector whose l’th coordinate is the
difference between the number of times the winner under h
and the winner under g were ranked in the l’th place:4

~πk∆ = ~πkh(�k) − ~πkg(�k). (6)

Now we can concisely write necessary conditions for f~α agree-
ing with h or g, respectively, by writing:5

~πk∆ · ~α ≥ 0 (7)

~πk∆ · ~α ≤ 0 (8)

Notice that each vector ~πk∆ has exactly m coordinates. Since
we have m+1 such vectors (corresponding to the m+1 pro-
files in S), there must be a subset of vectors that is linearly
dependent. We can therefore express one of the vectors as a

4There is some abuse of notation here; if h(�Nk) = cl then
by ~πkh(�k) we mean ~πkl .
5In all profiles except �N1 , we are indifferent to the direction
in which ties are broken.

linear combination of the others. Without loss of generality,
we assume that the first profile’s vector can be written as a
combination of the others with parameters βk, not all 0:

~π1
∆ =

m+1X
k=2

βk · ~πk∆ (9)

Now, we shall construct our subset S1 of preference profiles,
on which f~α agrees with h, as follows:

S1 = {k ∈ {2, . . . ,m+ 1} : βk ≥ 0} (10)

Suppose, by way of contradiction, that f~α agrees with h
on �Nk for k ∈ S1, and with g on the rest. We shall examine
the value of ~π1

∆ · ~α:

~π1
∆ · ~α =

m+1X
k=2

βk · ~πk∆ · ~α

=
X
k∈S1

βk · ~πk∆ · ~α+
X

k/∈S1∪{1}

βk · ~πk∆ · ~α

≥ 0

(11)

The last inequality is due to the construction of S1—
whenever βk is negative, the sign of ~πk∆ · ~α is non-positive
(f~α agrees with g), and whenever βk is positive, the sign of
~πk∆ · ~α is non-negative (agreement with h).

Therefore, by equation (5), we have that f(�N1) 6= c2 =
g(�N1). However, it holds that 1 /∈ S1, and we assumed that
f~α agrees with g outside S1—this is a contradiction.

Theorem 3.1 is thus proven. The upper bound on the
generalized dimension of Snm is quite tight: in the next sub-
section we show a lower bound of m− 3.

3.2 Lower Bound for the Generalized Dimen-
sion of Snm

Theorem 2.6 implies that a lower bound on the generalized
dimension of a function class is directly connected to the
complexity of learning it. In particular, a tight bound on
the dimension gives us an almost exact idea of the number
of examples required to learn a scoring rule. Therefore, we
wish to bound DG(Snm) from below as well.

Theorem 3.7. For all n ≥ 4, m ≥ 4, DG(Snm) ≥ m− 3.

Proof. We shall produce an example set of size m − 3
which is shattered by Snm. Define a preference profile �Nl , for
l = 3, . . . ,m− 1, as follows. For all l, the voters 1, . . . , n− 1
rank candidate cj in place j, i.e., they vote c1 �il c2 �il
· · · �il cm. The preferences �nl (the preferences of voter n
in profile �Nl) are defined as follows: candidate 2 is ranked
in place l, candidate 1 is ranked in place l + 1; the other
candidates are ranked arbitrarily by voter n. For example,
if m = 5, n = 6, the preference profile �N3 is:

�1
3 �2

3 �3
3 �4

3 �5
3 �6

3

c1 c1 c1 c1 c1 c3
c2 c2 c2 c2 c2 c4
c3 c3 c3 c3 c3 c2
c4 c4 c4 c4 c4 c1
c5 c5 c5 c5 c5 c5

955

Lemma 3.8. For any scoring rule f~α with α1 = α2 ≥ 2α3

it holds that:

f~α(�Nl) =

(
c1 αl = αl+1

c2 αl > αl+1

Proof. We shall first verify that c2 has maximal score.
c2’s score is at least (n− 1)α2 = (n− 1)α1. Let j ≥ 3; cj ’s
score is at most (n − 1)α3 + α1. Thus, the difference is at
least (n− 1)(α1 − α3)− α1. Since α1 = α2 ≥ 2α3, this is at
least (n−1)(α1/2)−α1 > 0, where the last inequality holds
for n ≥ 4.

Now, under preference profile �Nl , c1’s score is (n−1)α1 +
αl+1 and c2’s score is (n− 1)α1 + αl. If αl = αl+1, the two
candidates have identical scores, but c1 was ranked first by
more voters (in fact, by n − 1 voters), and thus the winner
is c1. If αl > αl+1, then c2’s score is strictly higher—hence
in this case c2 is the winner.

Armed with Lemma 3.8, we will now prove that the set
{�Nl }m−1

l=3 is shattered by Snm. Let ~α1 be such that α1
1 =

α1
2 ≥ 2α1

3 = α1
4 = · · · = α1

m, and ~α2 be such that α1
1 = α1

2 ≥
2α1

3 > α1
4 > · · · > α1

m. By the lemma, for all l = 3, . . . ,m−1,
f~α1(�Nl) = c1, and f~α2(�Nl) = c2.

Let T ⊆ {3, 4, . . . ,m−1}. We must show that there exists
~α such that f~α(�Nl) = c1 for all l ∈ T , and f~α(�Nl) = c2
for all l /∈ T . Indeed, configure the parameters such that
α1 = α2 > 2α3, and αl = αl+1 iff l ∈ T . The result follows
directly from Lemma 3.8.

4. ON LEARNING SCORING RULES
“CLOSE” TO TARGET RULES

Heretofore, we have concentrated on trying to learn scor-
ing rules. In particular, we have assumed that there are
scoring rules that are consistent with given training sets.
We have motivated our attention to this specific family of
rules by noting that they are exactly the family of anony-
mous, neutral, and consistent rules, and demonstrating that
it is possible to obtain a variety of properties by adjusting
the parameters that define scoring rules.

In this section, we push the envelope by asking the follow-
ing question. Given examples that are consistent with some
general voting rule, is it possible to learn a scoring rule that
is “close” to the target rule?

Mathematically, we are actually asking whether there ex-
ist target voting rules f∗ such that minf~α∈Snm err(f~α) is
large. This of course depends on the underlying distribu-
tion D. In the rest of this section, the implicit assumption
is that D is the simplest nontrivial distribution over profiles,
namely the uniform distribution. Nevertheless, the uniform
distribution usually does not reflect real preferences of vot-
ers; this is an assumption we are making for the sake of
analysis. In light of this discussion, the definition of dis-
tance between voting rules is going to be the fraction of
preference profiles on which the two rules disagree.

Definition 4.1. A voting rule f : LN → C is a
c-approximation of a voting rule g iff f and g agree on a
c-fraction of the possible preference profiles:

|{�N∈ LN : f(�N) = g(�N)}| ≥ c · (m!)n.

In other words, the question is: given a training set
{(�Nk , f(�Nj)}k, where f : LN → C is some voting rule, how

hard is it to learn a scoring rule that c-approximates f , for
c that is close to 1?

It turns out that the answer is: it is impossible. Indeed,
there are voting rules that disagree with any scoring rule on
almost all of the preference profiles; if the target rule f is
such a rule, it is impossible to find, and of course impossible
to learn, a scoring rule that is “close” to f .

For instance, consider the following voting rule that we
call flipped veto: each voter awards one point to the candi-
date it ranks last ; the winner is the candidate with the most
points. This rule is of course not reasonable as a preference
aggregation method, but still—it is a valid voting rule.

Proposition 4.2. Let f~α be a scoring rule. Then f~α is
at most a 1/m-approximation of flipped veto.

Proof. Let �N be a preference profile such that
f~α(�N) = flipped veto(�N) = c∗, for some c∗ ∈ C. Define a
set A�N ⊆ LN as follows: each profile in the set is obtained
by switching the place of a candidate c ∈ C, c 6= c∗, with the
place of c∗, in the ordering of each voter that did not rank c∗

last.6 For a preference profile �N1 ∈ A�N that was obtained
by switching c with c∗, clearly the winner under flipped veto
is still c∗, as this rule takes into account only candidates
ranked last. In addition, under f~α, the score of c in �N1 is
at least as large as the score of c∗ in �N (voters that have
not switched the two candidates are ones that rank c∗ last,
and the score of the other candidates remains unchanged—
hence f~α(�N1) = c. It follows that for any preference profile
in A�N , f~α and flipped veto do not agree.

We claim that for any two preference profiles �N1 and �N2
on which f~α and flipped veto agree, it holds that A�N1

∩
A�N2

= ∅. Indeed, assume that there exists �N∈ A�N1
∩

A�N2
. It cannot be the case that the same candidate was

switched with c∗ in order to obtain �N from both �N1 and
�N2 —that would imply �N1 and �N2 are identical. Therefore,
assume w.l.o.g. that c1 was switched with c∗ in �N1 (only in
the rankings of voters that did not rank c∗ last), and c2 was
switched with c∗ in �N2 . But this means that both c1 and
c2 are winners in �N (by the fact that c∗ was a winner in
both �N1 and �N2)—a contradiction.

In addition, in any two preference profiles �N1 and �N2
such that

f~α(�N1) = flipped veto(�N1) = c∗,

and

f~α(�N2) = flipped veto(�N2) = c∗∗,

it holds that A�N1
∩A�N2 = ∅, as flipped veto elects c∗ in all

profiles in A�N1
, but elects c∗∗ in all profiles in A�N2

.

It follows that for every preference profile on which f~α
and flipped veto agree, there are at least m − 1 distinct
profiles on which the two voting rules disagree; this proves
the proposition.

Even more interestingly, it is possible to show that almost
every voting rule cannot be approximated by scoring rules
by a factor better than 1/2.

Theorem 4.3. Let ε, δ > 0. For large enough values of
n and m, at least a (1 − δ)-fraction of the voting rules F :

6It cannot be the case that all voters ranked c∗ last, by our
tie-breaking assumption.

956

Ln → {c1, . . . , cm} satisfy the following property: no scoring
rule in Snm is a (1/2 + ε)-approximation of F .

Remark 4.4. Proposition 4.2 can seemingly be circum-
vented by removing the requirement that in a scoring rule
defined by a vector ~α, αl ≥ αl+1 for all l. Indeed, flipped
veto is essentially a scoring rule with αm = 1 and αl = 0 for
all l 6= m. However, the constant voting rule which always
elects the same candidate seems to have the same inapprox-
imability ratio, even when this property of scoring rules is
not taken into account. Moreover, Theorem 4.3 also holds
when scoring rules are not assumed to satisfy this property.

In order to prove the theorem, we require the following
lemma, which may be of independent interest.

Lemma 4.5. There exists a polynomial p(n,m) such that

for all n,m ∈ N, |Snm| ≤ 2p(n,m).

Proof. It is true that there are an infinite number of
ways to choose the vector ~α that defines a scoring rule.
Nevertheless, what we are really interested in is the num-
ber of distinct voting rules. For instance, if ~α1 = 2~α2, then
f~α1 ≡ f~α2 , i.e., the two vectors define the same voting rule.

It is clear that two scoring rules f~α1 and f~α2 are distinct
only if the following condition holds: there exist two candi-
dates cj1 , cj2 ∈ C, and a preference profile �N , such that
f~α1(�N) = cj1 and f~α2(�N) = cj2 . This holds only if there
exist two candidates cj1 and cj2 and a preference profile �N
such that under α1, cj1 ’s score is strictly greater than cj2 ’s,
and under α2, either cj2 ’s score is greater or the two candi-
dates are tied, and the tie is broken in favor of cj2 .

Now, assume �N induces rankings ~πj1 and ~πj2 . The con-
ditions above can be written asX

l

πj1,lα
1
l >

X
l

πj2,lα
1
l , (12)

X
l

πj1,lα
2
l ≤

X
l

πj2,lα
2
l , (13)

where the inequality is an equality only if ties are broken
in favor of cj2 , i.e., if l0 = min{l : πj1,l 6= πj2,l}, then
πj1,l < πj2,l.

7

Let ~π∆ = ~πj1 − ~πj2 . As in the proof of Lemma 3.6, equa-
tions (12) and (13) can be concisely rewritten as

~π∆ · ~α1 > 0 ≥ ~π∆ · ~α2, (14)

where the inequality is an equality only if the first nonzero
position in ~π∆ is negative.

In order to continue, we opt to reinterpret the above dis-
cussion geometrically. Each point in Rm corresponds to a
possible choice of parameters ~α. Now, each possible choice
of ~π∆ is the normal to a hyperplane. These hyperplanes par-
tition the space into cells: the vectors in the interior of each
cell agree on the signs of dot products with all vectors ~π∆.
More formally, if ~α1 and ~α2 are two points in the interior of
a cell, then for any vector ~π∆, ~π∆ · ~α1 > 0 ⇔ ~π∆ · ~α2 > 0.
By equation (14), this implies that any two scoring rules f~α1

and f~α2 , where ~α1 and ~α2 are in the interior of the same cell,
are identical.

7W.l.o.g. we disregard the case where ~πj1 = ~πj2 ; the reader
can verify that taking this case into account multiplies the
final result by an exponential factor at most.

What about points residing in the intersection of several
cells? These vectors always agree with the vectors in one of
the cells, as ties are broken according to rankings induced
by the preference profile, i.e., according to the parameters
that define our hyperplanes. Therefore, the points in the
intersection can be conceptually annexed to one of the cells.

So, we have reached the conclusion that the number of
distinct scoring rules is at most the number of cells. Hence,
it is enough to bound the number of cells; we claim this
number is exponential in n and m. Indeed, each ~π∆ is an
m-vector, in which every coordinate is an integer in the set
{−n,−n+ 1, . . . , n− 1, n}. It follows that there are at most
(2n + 1)m possible hyperplanes. It is known [6] that given
k hyperplanes in d-dimensional space, the number of cells is
at most O(kd). In our case, k ≤ (2n + 1)m and d = m, so
we have obtained a bound of:

((2n+ 1)m)m ≤ (3n)m
2

=
“

2log 3n
”m2

= 2m
2 log 3n. (15)

Remark 4.6. This lemma implies, according to Lemma 2.4,
that there exists a polynomial p(n,m) such that for all n,m ∈
N, DG(Snm) ≤ p(n,m). However, we have already obtained
a tighter upper bound of m.

Proof of Theorem 4.3. We will surround each scoring
rule f~α ∈ Snm with a “ball” B(~α), which contains all the
voting rules for which f~α is a (1/2 + ε)-approximation. We
will then show that the union of all these balls covers at
most a δ-fraction of the set of the space of voting rules.
This implies that for at least a (1− δ)-fraction of the voting
rules, no scoring rule is a (1/2 + ε)-approximation.

For a given ~α, what is the size of B(~α)? As there are (m!)n

possible preference profiles, the ball contains rules that do
not agree with f~α on at most (1/2− ε)(m!)n preference pro-
files. For a profile on which there is disagreement, there
are m options to set the image under the disagreeing rule.8

Therefore,

|B(~α)| ≤

(m!)n

(1/2− ε)(m!)n

!
m(1/2−ε)(m!)n . (16)

How large is this expression? Let B′(~α) be the set of all
voting rules that disagree with f~α on exactly (1/2 + ε)(m!)n

preference profiles. It holds that

|B′(~α)| =

(m!)n

(1/2 + ε)(m!)n

!
(m− 1)(1/2+ε)(m!)n

=

(m!)n

(1/2− ε)(m!)n

!
((m− 1)1+2ε)1/2(m!)n

≥

(m!)n

(1/2− ε)(m!)n

!
m1/2(m!)n ,

(17)

where the last inequality holds for a large enough m. But
since the total number of voting rules, m(m!)n , is greater
than the number of rules in B′(~α), we have:

m(m!)n

B(~α)
≥ B′(~α)

B(~α)
≥

`
(m!)n

(1/2−ε)(m!)n

´
m1/2(m!)n`

(m!)n

(1/2−ε)(m!)n

´
m(1/2−ε)(m!)n

= mε(m!)n .

(18)

8This way, we also take into account voting rules that agree
with f~α on more than (1/2 + ε)(m!)n profiles.

957

Therefore

B(~α) ≤ m(m!)n

mε(m!)n
= m(1−ε)(m!)n . (19)

If the union of balls is to cover at least a δ-fraction of
the set of voting rules, we must have |Snm| · m(1−ε)(m!)n ≥
δ ·m(m!)n ; equivalently, it must hold that |Snm| ≥ δ ·mε(m!)n .
However, Lemma 4.5 implies that |Snm| is exponential in n
and m, so for large enough values of n and m, the above
condition does not hold.

5. CONCLUSIONS
We have shown that the class of scoring rules is efficiently

learnable in the PAC model. We have argued that, given
a black box specification of the choice criteria of the soci-
ety, learning from examples allows one to efficiently (albeit
approximately) design such a rule. The black box reflects
some ideal voting rule the designer has in mind, which satis-
fies, for instance, different desirable properties. The designer
thus essentially translates a cumbersome representation of a
voting rule (hidden within the black box) to a concisely rep-
resented voting rule which is easy to understand and apply.

We mentioned that scoring rules can capture a wide vari-
ety of properties. However, in Section 4 we explored extend-
ing our approach, and showed that many voting rules cannot
be approximated using scoring rules. However, this negative
result relied implicitly on assuming a uniform distribution
over profiles. Moreover, it might be the case that some of
the important families of voting rules can be approximated
by scoring rules. Therefore, we do not rule out at this point
the application of our approach to designing general voting
rules by directly learning scoring rules which approximate
them.

Comparing our learning-theoretic results with those ob-
tained in the context of learning voting trees [15], we con-
clude that scoring rules are far superior to voting trees with
respect to the approach of automated design of voting rules.
Indeed, in general, learning voting trees entails a training
set of exponential size. Furthermore, finding a voting tree
that is consistent with the given training set is NP-hard.

6. ACKNOWLEDGMENT
This work was partially supported by Israel Science Foun-

dation grant #898/05. Ariel Procaccia is supported by the
Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities.

7. REFERENCES
[1] E. Beigman and R. Vohra. Learning from revealed

preference. In Proceedings of the Seventh ACM
Conference on Electronic Commerce, pages 36–42,
2006.

[2] V. Conitzer and T. Sandholm. Complexity of
mechanism design. In Proceedings of the Eighteenth
Annual Conference on Uncertainty in Artificial
Intelligence, pages 103–110, 2002.

[3] V. Conitzer and T. Sandholm. An algorithm for
automatically designing deterministic mechanisms
without payments. In Proceedings of the Third
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 128–135, 2004.

[4] V. Conitzer and T. Sandholm. Communication
complexity of common voting rules. In Proceedings of
the Sixth ACM Conference on Electronic Commerce,
pages 78–87, 2005.

[5] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate?
Journal of the ACM, 54:1–33, 2007.

[6] H. Edelsbrunner. Algorithms in Combinatorial
Geometry, volume 10 of EATCS Monographs on
Theoretical Computer Science. Springer, 1987.

[7] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen.
Voting for movies: the anatomy of a recommender
system. In Proceedings of the Third Annual Conference
on Autonomous Agents, pages 434–435, 1999.

[8] T. Haynes, S. Sen, N. Arora, and R. Nadella. An
automated meeting scheduling system that utilizes
user preferences. In Proceedings of the First
International Conference on Autonomous Agents,
pages 308–315, 1997.

[9] G. Kalai. Learnability and rationality of choice.
Journal of Economic Theory, 113(1):104–117, 2003.

[10] S. Lahaie and D. C. Parkes. Applying learning
algorithms to preference elicitation. In Proceedings of
the Fifth ACM Conference on Electronic Commerce,
pages 180–188, 2004.

[11] N. Littlestone. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318, 1988.

[12] B. K. Natarajan. Machine Learning: A Theoretical
Approach. Morgan Kaufmann, 1991.

[13] A. D. Procaccia and J. S. Rosenschein. Junta
distributions and the average-case complexity of
manipulating elections. Journal of Artificial
Intelligence Research, 28:157–181, February 2007.

[14] A. D. Procaccia, J. S. Rosenschein, and G. A.
Kaminka. On the robustness of preference aggregation
in noisy environments. In The Sixth International
Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2007), pages 416–422,
Honolulu, Hawaii, May 2007.

[15] A. D. Procaccia, A. Zohar, J. Peleg, and J. S.
Rosenschein. Learning voting trees. In Proceedings of
the Twenty-Second Conference on Artificial
Intelligence (AAAI 2007), pages 110–115, 2007.

[16] R. J. Vanderbei. Linear Programming: Foundations
and Extensions. Springer, 2nd edition, 2001.

[17] H. P. Young. Social choice scoring functions. SIAM
Journal of Applied Mathematics, 28(4), 1975.

958

