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ABSTRACT
One-switch utility functions are an important class of nonlinear
utility functions that can model human beings whose decisions
change with their wealth level. We study how to maximize the ex-
pected utility for Markov decision problems with given one-switch
utility functions. We first utilize the fact that one-switchutility
functions are weighted sums of linear and exponential utility func-
tions to prove that there exists an optimal policy that is both station-
ary and deterministic as the wealth level approaches negative infin-
ity. We then develop a solution method, the backward-induction
method, that starts with this policy and augments it for higher and
higher wealth levels. Our backward-induction method determines
maximal expected utilities in finite time, different from the pre-
vious functional value iteration method, that typically determines
only approximately maximal expected utilities.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search—Dynamic Programming

General Terms
Algorithms

Keywords
Decision Making, Functional Value Iteration, Markov Decision
Problem, One-Switch Utility Function, Planning, Utility Theory

1. INTRODUCTION
High-stake planning situations are planning situations with the

possibility of high wins and losses. Traditional decision-theoretic
planners typically maximize the expected reward (MER planning
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objective). In contrast, human beings are often risk-averse in high-
stake planning situations and then maximize their expectedutility
for nonlinear utility functions (MEU planning objective), which
explains why researchers have recently been very interested in
attempting to maximize the expected utility for nonlinear utility
functions or, equivalently, risk-sensitive utility functions [12, 14,
10]. We model decision-theoretic planning problems as finite goal-
directed Markov decision problems (GDMDPs), which are Markov
decision problems with strictly negative rewards (pure costs) and
goal states, in which execution stops. Our planning objective is
to maximize the expected utility for one-switch utility functions
since these risk-sensitive utility functions can model human beings
that are risk-averse but become risk-neutral in the limit astheir
wealth level increases [1]. In contrast, other decision-theoretic
planners with the MEU planning objective often use exponential
utility functions [6], which cannot model human beings whose
risk attitudes change with their wealth level. The only previous
decision-theoretic planner that can use one-switch utility functions
is based on functional value iteration [9] and typically determines
only approximately maximal expected utilities (similar tovalue it-
eration for the MER planning objective). We therefore introduce
the backward-induction method, that exploits the structure of one-
switch utility functions to determine maximal expected utilities and
an optimal policy in finite time (similar to policy iterationfor the
MER planning objective). We apply it to a painted blocksworld
problem and compare the results to those of the functional value
iteration method.

2. UTILITY FUNCTIONS
Imagine that you are a contestant on the TV show “Who Wants

to be a Millionaire” and reached the one million dollar question
with only the 50-50 lifeline remaining. Since you do not knowthe
answer, you use this lifeline to narrow down the possible answers
to two alternatives and then have to make a decision. You can ei-
ther leave with $500,000 for sure. Or you can guess the answerand
then win $1,000,000 with 50% probability (if you are correct) and
$32,000 with 50% probability (if you are wrong). The expected re-
ward of leaving is $500,000, while the expected reward of guessing
is $516,000. Thus, you would need to guess the answer in orderto
maximize the expected reward. However, many contestants choose
to leave in this situation.

Utility theory, a major branch of decision theory, explainsthis
risk-averse behavior as follows [16]: Every human being has
a monotonically non-decreasing utility function that mapstheir
wealth level to the resulting real-valued utility. A human being
maximizes the expected utility of their future wealth levelrather
than their expected future wealth level itself. The utilityfunction
determines their risk attitude. Linear utility functions imply a risk-
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Table 1: Utility-Theoretic Analysis of the Game-Show Problem
Leave Guess

Utility Function Utility of $500,000 Utility of $32,000 Utility of $1,000,000
Expected Utility

Utility Difference
Optimal Decision

(with prob. 1.0) (with prob. 0.5) (with prob. 0.5)
(Leave− Guess)

Uℓ(w) = w w0 + 500, 000 w0 + 32, 000 w0 + 1, 000, 000 w0 + 516, 000 −16, 000 Guess
Ue(w) = −γw −0.6065γw0 −0.9685γw0 −0.3679γw0 −0.6682γw0 0.0617γw0 Leave
U1s(w) = w0 + 500, 000 w0 + 32, 000 w0 + 1, 000, 000 w0 + 516, 000 −16, 000 w0 > 1.35×106 : Guess

w − Dγw −0.6065Dγw0 −0.9685Dγw0 −0.3679Dγw0 −0.6682Dγw0 +0.0617Dγw0 w0 < 1.35×106: Leave

w0 = the initial wealth level.γ = 0.999999. D = 106.

neutral risk attitude. A human being is risk-neutral iff they make
decisions that maximize their expected future wealth level. The cal-
culations for the game-show problem with the linear utilityfunction
Uℓ(w) = w (wherew is the wealth level) are shown in the first row
of Table 1. The optimal decision is to guess independent of the
initial wealth level. Concave utility functions imply a risk-averse
risk attitude. A human being is risk-averse iff they make decisions
that do not maximize their expected future wealth level provided
that the variance of their future wealth level is sufficiently reduced.
Researchers often assume for mathematical convenience that risk-
averse human beings have (concave) exponential utility functions,
which are of the formUe(w) = −γw for parameter0 < γ < 1 [4].
The calculations for the game-show problem with the exponential
utility function Ue(w) = −0.999999w are shown in the second
row of Table 1. The optimal decision is to leave independent of the
initial wealth level, which is consistent with the decisionof most
contestants in this situation. In general, different humanbeings
can have different utility functions and thus different risk attitudes.
Thus, they can make different decisions.

The decisions of human beings with linear or exponential util-
ity functions are independent of their initial wealth leveland thus
do not change as their wealth level increases, which is why these
utility functions are also known as zero-switch utility functions [1].
In reality, the decisions of human beings often change with their
wealth level, which is why it can be unrealistic to use linearand ex-
ponential utility functions. For example, the rewards in the game-
show problem are high compared to the wealth level of average
people, which explains why they are expected to be risk-averse
in game shows. However, the rewards are low compared to the
wealth level of billionaires, which explains why they are expected
to be risk-neutral. It is more realistic to assume that humanbeings
are always risk-averse but become risk-neutral in the limitas their
wealth level increases, that the utility increases monotonically with
their wealth level (since they can always give money away), and
that their decision between any two alternatives changes atmost
once as their wealth level increases. Human beings whose behavior
satisfies these assumptions have special kinds of one-switch utility
functions which are of the form

U1s(w) = w − Dγw

for parametersD > 0 and0 < γ < 1, as illustrated in Figure 1(a),
where the dashed line indicates the linear utility function. The pa-
rameterD provides an adjustable tradeoff between risk-neutrality
(linear term) and risk-aversion (exponential term). One-switch util-
ity functions were proposed in [1] and have been studied exten-
sively with many applications in the decision analysis community
[1, 11, 5, 2]. The calculations for the game-show problem with the
one-switch utility functionU1s(w) = w − 106 × 0.999999w are
shown in the third row of Table 1. The optimal decision now de-
pends on the initial wealth level. For example, the expectedutility
of leaving is−1.065×105, while the expected utility of guessing is

w

U

(0, 0)

s0 g

ck; 1 − pk

ck; pk

(a) (b)

Figure 1: (a) One-Switch Utility Function (b) Two-State GDMDP

Action Description Success probability Cost

1 do-it-yourself 0.25 $ 100
2 hire a professional 0.95 $ 1,000

3
buy a termite-free house

1.00 $10,000
... and sell the infested one!

Figure 2: Termite Problem

−1.522 × 105 if your initial wealth level is zero. Thus, you would
need to leave in order to maximize your expected utility. On the
other hand, the exponential term of the one-switch utility function
rapidly approaches zero as the initial wealth level increases and the
linear term then dominates. Thus, you would eventually needto
guess in order to maximize your expected utility. To determine at
which initial wealth levelw0 you should switch from leaving to
guessing, we solve the equation

−16, 000 + 0.0617 × 106 · 0.999999w0 = 0 ⇒ w0 = 1.35 × 106.

Thus, you should switch from leaving to guessing as your wealth
level increases beyond about $1,350,000.

3. GOAL-DIRECTED MDPS
The game-show problem involves only one action rather than

a sequence of actions, the hallmark of artificial intelligence plan-
ning. Imagine therefore that you own a termite-infested wooden
house but would like to own a termite-free house. The actionsare
given in Figure 2. The outcome of each action is either still own-
ing a termite-infested house or a termite-free house. You can thus
achieve the goal state only with a sequence of actions. For example,
you could attempt to exterminate the termites yourself twice in a
row and then buy a termite-free house, stopping after your first suc-
cess. This policy costs you $100 with probability 0.25, $100+ $100
= $200 with probability[1 − 0.25] 0.25 = 0.19, and $100 + $100 +
$10,000 = $10,200 with probability[1 − 0.25] [1 − 0.25] = 0.56.

Sequential planning problems can be described with goal-
directed Markov decision problems (GDMDPs). Formally, a
GDMDP consists of a finite set of statesS, a nonempty finite set of
goal statesG ⊆ S and a finite set of actionsAs for each non-goal
states ∈ S′ = S \G. The agent starts execution at time stept = 0
and always chooses one actiona ∈ As to execute in its current
states ∈ S;. Its execution results with probabilityP (s′|s, a) in a
finite rewardr(s, a, s′) < 0 at the current time step and a transi-
tion to successor states′ ∈ S at the next time step. The agent stops
acting when it reaches a goal state and receives no more rewards
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thereafter. We usest andat to denote the state and action at time
stept, respectively. We usert = r(st, at, st+1) to denote the re-
ward for executing actionat. (We definert = 0 after the agent
reaches a goal state.) Finally, we usewt = w0 +

Pt−1
i=0 ri to de-

note the wealth level at time stept directly before executing action
at. The wealth level starts at the initial wealth levelw0 and then
decreases over time since all rewards are negative. For example,
Figure 1(b) shows how the termite problem can be modeled as a
two-state GDMDP with three actions. One state is the start states0

(owning an infested house), and the other state is the goal stateg
(owning a termite-free house). In general, the agent has to choose
amongn actions to execute in states0, numbered from 1 ton. The
arcs indicate the state transitions for each actionk = 1 . . . n and are
annotated with their probabilitiespk and rewardsck. For the ter-
mite GDMDP, there are three actions. Their probabilities are their
failure probabilities, and their rewards are their negative costs. For
example, probabilityp1 = 0.75 and rewardc1 = −100 for action
1, namely to exterminate the termites yourself.

Policies specify which actions an agent should execute. In the
most general case, these action can probabilistically depend on the
current state as well as all previous states and actions [15]. The
agent should follow the policy that maximizes its expected utility.
For all utility functionsU and all policiesπ, we define the value
vπ

U (s, w) = limt→∞ Eπ
s,w [U(wt)] as the expected utility of an

agent with initial states = s0 and initial wealth levelw = w0 that
follows policy π. We also define the optimal valuev∗

U (s, w) =
maxπ vπ

U (s, w) as the highest possible expected utility of an agent
with initial states and initial wealth levelw. We assume that value
v∗

U (s, w) is finite for all statess ∈ S and wealth levelsw since
it is otherwise impossible to compare policies [8]. We definean

optimal policyπ∗
U to be a policy withv

π∗

U
U (s, w) = v∗

U (s, w) for
all statess ∈ S and wealth levelsw. For the utility functionsUℓ,
Ue andU1s, we refer to theMEUℓ (= MER), MEUe andMEU1s

planning objectives, respectively, and replace the subscripts U in
valuesvπ

U (s, w) andv∗
U (s,w) with ℓ, e and1s, respectively. We

use the shorthandsvπ
ℓ (s) = vπ

ℓ (s, 0) and v∗
ℓ (s) = v∗

ℓ (s, 0) =
maxπ vπ

ℓ (s, 0) = maxπ vπ
ℓ (s). Similarly, we use the shorthands

vπ
e (s) = vπ

e (s, 0) and v∗
e (s) = v∗

e (s, 0) = maxπ vπ
e (s, 0) =

maxπ vπ
e (s). We exploit the relationships between these values in

the next section.

4. PLANNING OBJECTIVES
One-switch utility functions are linear combinations of linear

and exponential utility functions:

U1s(w) = w − Dγw = Uℓ(w) + D · Ue(w).

For all one-switch utility functionsUℓ and all policiesπ, we thus
have

vπ
1s(s, w) = lim

t→∞
Eπ

s,w [U1s(wt)] = lim
t→∞

Eπ
s,w [Uℓ(wt) + D · Ue(wt)]

= lim
t→∞

Eπ
s,w [Uℓ(wt)] + D · lim

t→∞
Eπ

s,w [Ue(wt)]

= vπ
ℓ (s, w) + D · vπ

e (s, w). (1)

We therefore need to consider theMEUℓ andMEUe planning ob-
jectives. For these planning objectives, there always exists a sta-
tionary and deterministic (SD) policy that is optimal [3, 13]. An
SD policyπ maps every states ∈ S′ to the policyπ(s) ∈ As that
an agent in states should execute independent of its wealth level.
Thus, actionat = π(st) and rewardrt are independent of its ini-
tial wealth level. For the termite GDMDP, there are only three SD
policies, namelyπk(s0) = k for actionsk = 1, 2, 3.

First, we consider theMEUℓ planning objective: For the linear
utility function Uℓ and all SD policiesπ, we have

vπ
ℓ (s, w) = lim

t→∞
Eπ

s,w [Uℓ(wt)] = lim
t→∞

Eπ
s,w [wt]

= lim
t→∞

Eπ
s,w

"

w +

t−1
X

i=0

ri

#

= w + lim
t→∞

Eπ
s

"

t−1
X

i=0

ri

#

= w + vπ
ℓ (s), (2)

where valuesvπ
ℓ (s) are independent of the wealth levelw and sat-

isfy the policy-evaluation equations [3]

vπ
ℓ (s) = 0 ∀s ∈ G

vπ
ℓ (s) =

X

s′∈S

P (s′|s, π(s))
ˆ

r(s, π(s), s′) + vπ
ℓ (s′)

˜

∀s ∈ S′. (3)

Thus,v∗
ℓ (s, w) = w + v∗

ℓ (s), where the optimal valuesv∗
ℓ (s) are

also independent of the wealth levelw and satisfy the optimality
equations [3]

v∗ℓ (s) = 0, ∀s ∈ G

v∗ℓ (s) = max
a∈As

X

s′∈S

P (s′|s, a)
ˆ

r(s, a, s′) + v∗ℓ (s′)
˜

∀s ∈ S′.

An agent in states ∈ S′ with wealth level w fol-
lows an MEUℓ-optimal policy if it executes an action from
arg maxa∈As

P

s′∈S P (s′|s, a) [r(s, a, s′) + v∗
ℓ (s′)]. For the ter-

mite GDMDP, the policy-evaluation equations are

v
πk
ℓ

(g) = 0, v
πk
ℓ

(s0) = pk

ˆ

ck + v
πk
ℓ

(s0)
˜

+ [1 − pk]
ˆ

ck + v
πk
ℓ

(g)
˜

.

The values thus are

v
πk
ℓ

(s0) =
ck

1 − pk

.

The MEUℓ-optimal policy is π1 since v
π1
ℓ (s0) = −400,

v
π2
ℓ (s0) = −1, 052 andv

π3
ℓ (s0) = −10, 000.

Second, we consider theMEUe planning objective: For all expo-
nential utility functionsUe and all SD policiesπ, we have similarly

vπ
e (s, w) = lim

t→∞
Eπ

s,w [Ue(wt)] = lim
t→∞

Eπ
s,w [−γwt ]

= lim
t→∞

Eπ
s,w

h

−γw ·γ
Pt−1

i=0 ri

i

= γw · lim
t→∞

Eπ
s

h

−γ
Pt−1

i=0 ri

i

= γw · vπ
e (s), (4)

where the valuesvπ
e (s) are independent of the wealth levelw and

satisfy the policy-evaluation equations [13]

vπ
e (s) = −1 ∀s ∈ G

vπ
e (s) =

X

s′∈S

P (s′|s, π(s))γr(s,π(s),s′) · vπ
e (s′) ∀s ∈ S′, (5)

provided that the valuesvπ
e (s) are finite for all statess ∈ S′. Thus,

v∗
e (s, w) = γw · v∗

e (s), where the optimal valuesv∗
e (s) are also

independent of the wealth levelw and satisfy the optimality equa-
tions [13]

v∗e (s) = −1 ∀s ∈ G

v∗e (s) = max
a∈As

X

s′∈S

P (s′|s, a)γr(s,a,s′) · v∗e (s′) ∀s ∈ S′,

provided that the optimal valuesv∗
e (s) are finite for all states

s ∈ S′. An agent in states ∈ S′ with wealth level w
follows an MEUe-optimal policy if it executes an action from
arg maxa∈As

P

s′∈S P (s′|s, a)γr(s,a,s′) · v∗
e (s′). For the termite

GDMDP, the policy-evaluation equations are

v
πk
e (g) = −1 andv

πk
e (s0) = pkγck v

πk
e (s0) + [1 − pk] γckv

πk
e (g),

provided that the valuesvπk
e (s0) are finite, which is the case if
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pkγck < 1. (Otherwise,vπk
e (s0) = −∞.) The values thus are

v
πk
e (s0) =

(

− [1−pk]γck

1−pkγck
pkγck < 1

−∞ pkγck ≥ 1.

Assume that your exponential utility function isUe(w) =
−0.997w . Then, theMEUe-optimal policy isπ3 sincev

π1
e (s0) =

v
π2
e (s0) = −∞ andv

π3
e (s0) = −1.1179 × 1013.

Third, we consider theMEU1s planning objective: For all one-
switch utility functionsU1s and all SD policiesπ, we can decom-
pose the valuesvπ

1s(s, w) according to Eq. (1), Eq. (2) and Eq. (4)
as follows:

vπ
1s(s, w) = w + vπ

ℓ (s) + Dγw · vπ
e (s). (6)

For the termite GDMDP, these equations are

v
πk
1s (g, w) = U1s(w) = w − Dγw

v
πk
1s (s0, w) =

8

<

:

w +
ck

1 − pk

− Dγw ·
[1 − pk] γck

1 − pkγck
pkγck < 1

−∞ pkγck ≥ 1.

Assume that your one-switch utility function isU1s(w) = w −
10−9 × 0.997w and your initial wealth level isw = 0 (due to your
mortgage debt). Then, theMEU1s-optimal SD policy isπ3 since
v

π1
1s (s0, 0) = v

π2
1s (s0, 0) = −∞ andv

π3
1s (s0, 0) = −21, 179.

For the MEU1s planning objective, there does not necessar-
ily exist an SD policy that is optimal but there always existsan
augmented stationary and deterministic (ASD) policy that is op-
timal [9]. An ASD policy maps every combination of a state
s ∈ S′ and wealth levelw to the actionπ(s,w) ∈ As that an
agent in states with wealth levelw should execute. Thus, ac-
tion at = π(st, wt) = π(st, w0 +

Pt−1
i=0 ri) and rewardrt are

no longer independent of its initial wealth levelw0. For the ter-
mite GDMDP, assume again that your one-switch utility function
is U1s(w) = w − 10−9 × 0.997w and your initial wealth level is
zero. The policy of attempting to exterminate the termites yourself
twice in a row and then buy a termite-free house, stopping after
your first success, can be formulated as an ASD policyπ with ac-
tions π(s0, 0) = π(s0,−100) = 1 andπ(s0,−200) = 3. Its
value isvπ

1s(s
0) = 0.25 ·U1s(−100) + 0.19 ·U1s(−200) + 0.56 ·

U1s(−10, 200) = −17, 193. Thus, this ASD policy is better than
theMEU1s-optimal SD policyπ3.

We now generalize Eq. (6) to ASD policies by reformulating
special cases of Theorems 1 and 2 from [9], which hopefully
make them more accessible to the reader. For all ASD policies
π and all wealth levelsw, we define the policyπw that satisfies
πw(s, w′) = π(s, w + w′) for all wealth levelsw′. (If π is an
SD policy, thenπw = π.) The example ASD policy for the ter-
mite GDMDP has actionsπ−100(s

0, 0) = π(s0,−100) = 1 and
π−100(s

0,−100) = π(s0,−200) = 3.
An agent with initial wealth levelw that follows policyπ ex-

ecutes actionat = π(st, w +
Pt−1

i=0 ri) at time stept, while an
agent with initial wealth level0 that follows policyπw executes
actionat = πw(st,

Pt−1
i=0 ri) = π(st, w +

Pt−1
i=0 ri) at time step

t. These actions are the same and thus the probability distributions
over the successor states and rewards are also the same. Thus, we
have

vπ
ℓ (s, w) = lim

t→∞
Eπ

s,w

"

w +

t−1
X

i=0

ri

#

= w + lim
t→∞

Eπw
s

"

t−1
X

i=0

ri

#

= w + v
πw
ℓ

(s, 0) = w + v
πw
ℓ

(s) (7)

and

vπ
e (s, w) = lim

t→∞
Eπ

s,w

h

−γw ·γ
Pt−1

i=0 ri

i

= γw · lim
t→∞

Eπw
s

h

−γ
Pt−1

i=0 ri

i

w

V(0, 0)w

1
2

3
4

5

w

V(0, 0)wi wi+1

1
2

3
6

4

5

w

V(0, 0)wi−1 wi wi+1

1
2

3

|ck|
}

(a) Determinew (b) Determinewi+1 (c) Maintain Property 2

Figure 3: Illustration of Backward Induction

= γw · vπw
e (s, 0) = γw · vπw

e (s). (8)

For all one-switch utility functionsU1s and all ASD policiesπ, we
can therefore decompose the valuevπ

1s(s, w) according to Eq. (1),
Eq. (7) and Eq. (8) as follows:

vπ
1s(s, w) = w + v

πw
ℓ (s) + Dγw · vπw

e (s). (9)

The valuesvπ
1s(s, w) satisfy policy-evaluation equations that are

implied by [9] but were not explicitly stated there

vπ
1s(s, w) = U1s(w) = w − Dγw ∀s ∈ G,∀w

vπ
1s(s, w) =

X

s′∈S

P
`

s′|s, π(s, w)
´

vπ
1s

`

s′, w + r
`

s, π(s, w), s′
´´

∀s ∈ S′,∀w,

provided that the valuesvπ
1s(s,w) are finite for all statess ∈ S′ and

all wealth levelsw. The optimal valuesv∗
1s(s, w) satisfy optimality

equations that are again implied by [9]

v∗1s(s, w) = U1s(w) = w − Dγw ∀s ∈ G,∀w

v∗1s(s, w) = max
a∈As

X

s′∈S

P (s′|s, a)v∗1s
`

s′, w + r(s, a, s′)
´

∀s ∈ S′,∀w, (10)

provided that the optimal valuesv∗
1s(s, w) are finite for

all state s ∈ S′ and all wealth levels w. Then,
an agent in states ∈ S′ with wealth level w fol-
lows an MEU1s-optimal policy if it executes an action from
arg maxa∈As

P

s′∈S P (s′|s, a)v∗
1s (s′, w + r(s, a, s′)). There-

fore, all that is left to do is to determine the optimal values
v∗
1s(s, w). The only previous approach for this purpose that we

know of is based on functional value iteration [9] and typically de-
termines the optimal valuesv∗

1s(s, w) only in the limit although it
needs to terminate in finite time in practice. However, the approach
does not provide a termination condition for improving the values
nor an error bound on the resulting policies. We therefore intro-
duce that backward-induction method that exploits the relationship
between one-switch utility functions and exponential utility func-
tions to determine the optimal valuesv∗

1s(s, w) and thus anMEU1s-
optimal policy in finite time.

5. INDUCTIVE FOUNDATION
We now establish the induction foundation for the backward-

induction method. We utilize the fact that one-switch utility func-
tions are weighted sums of linear and exponential utility func-
tions to prove that there exists an SD policy that is anMEU1s-
optimal policy as the wealth level approaches negative infinity. The
backward-induction method then starts with this policy andaug-
ments it for higher and higher wealth levels. We illustrate the
backward-induction method in Figure 3 for a general two-state
GDMDP with initial wealth level zero, where the graphs are the
value functionsvπk

1s (s0, ·) of the policiesπk. The following lemma
relates the optimal valuesv∗

1s(s, w) and v∗
e (s) and uses the fact
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that we have for allMEU1s-optimal ASD policiesπ∗
1s according to

Eq. (9)

v∗1s(s, w)=v
π∗

1s
1s (s, w)=w+v

(π∗

1s)w

ℓ
(s)+Dγwv

(π∗

1s)w
e (s). (11)

LEMMA 1. lim
w→−∞

v
∗
1s(s, w)γ−w = Dv

∗
e (s) for all statess ∈

S.

PROOF. For allMEU1s-optimal ASD policiesπ∗
1s, we have ac-

cording to Eq. (11) and the fact thatvπ
ℓ (s) ≤ v∗

ℓ (s) andvπ
e (s) ≤

v∗
e (s) for all policiesπ

v∗1s(s, w)γ−w =v
π∗

1s
1s (s, w)γ−w =wγ−w+v

(π∗

1s)w

ℓ
(s)γ−w+Dv

(π∗

1s)w
e (s)

≤wγ−w + v∗ℓ (s)γ−w + Dv∗e (s).

and thus

lim sup
w→−∞

v∗1s(s, w)γ−w ≤ lim
w→−∞

ˆ

wγ−w+v∗ℓ (s)γ−w+Dv∗e (s)
˜

=Dv∗e (s).

On the other hand, for allMEUe-optimal SD policiesπ∗
e , we have

according to Eq. (9) and the fact thatv∗
1s(s, w) ≥ vπ

1s(s, w) for all
policiesπ

v∗1s(s, w)γ−w ≥ v
π∗

e
1s (s, w)γ−w = wγ−w + v

π∗

e
ℓ

(s)γ−w + Dv
π∗

e
e (s)

= wγ−w + v
π∗

e
ℓ

(s)γ−w + Dv∗e (s)

and thus

lim inf
w→−∞

v∗1s(s, w)γ−w ≥ lim
w→−∞

h

wγ−w+v
π∗

e
ℓ

(s)γ−w +Dv∗e (s)
i

=Dv∗e (s).

Therefore, the lemma holds.

The lemma implies that anMEU1s-optimal policy is alsoMEUe-
optimal in the limit, which is not surprising since the exponential
term in Eq. (11) grows faster than the linear term. However, not
everyMEUe-optimal policy is alsoMEU1s-optimal in the limit. For
a general two-state GDMDP, assume that there are only two actions
and both of the corresponding SD policiesπ1 andπ2 areMEUe-
optimal. Thus, we have for actionsk = 1, 2

v∗e (s0) = v
πk
e (s0) = −

[1 − pk] γck

1 − pkγck
< −1,

provided thatpkγck < 1, which implies

pk =
1 + v∗e (s0)γ−ck

1 + v∗e (s0)
and ck ∈

ˆ

logγ

`

−v∗e (s0)
´

, 0
´

.

Thus, there are combinations of probabilitiespk and rewardsck

that achieve the same optimal valuev∗
e (s0) but differ in their val-

uesv
πk
ℓ (s0) = ck

1−pk
. Only the policyπk with the highest value

v
πk
ℓ (s0) can possibly beMEU1s-optimal according to Eq. (11).

The following lemma formalizes this observation. It definesan
auxiliary GDMDP such that all policies for the auxiliary GDMDP
areMEUe-optimal for the given GDMDP. The policy that isMEUℓ-
optimal for the auxiliary GDMDP then isMEU1s-optimal for the
given GDMDP for all wealth levels no higher than some wealth
level threshold.

LEMMA 2. For all MEU1s-optimal policiesπ∗
1s, there exists a

wealth level thresholdw such that it holds for all wealth levels
w ≤ w that

1. v
(π∗

1s)w
e (s) = v∗

e (s) for all statess ∈ S′.

2. v
(π∗

1s)w

ℓ (s) = v
π∗∗

e
ℓ (s) for all statess ∈ S′, whereπ∗∗

e is any
SD MEUℓ-optimal policy for the auxiliary GDMDP which

is the same as the original GDMDP except that the agent
chooses its actions only from theMEUe-optimal actions, that
is, the sets

A∗
e (s) = arg max

a∈As

X

s′∈S

P (s′|s, a)γr(s,a,s′)v∗e (s′).

3. v∗
1s(s, w) = v

π∗∗

e
1s (s, w) for all statess ∈ S′, meaning that

π∗∗
e is anMEU1s-optimal policy for all wealth levelsw ≤ w.

The proof of the lemma can be found in [7]. We need to determine
the wealth level thresholdw to establish the induction foundation,
as shown in Figure 3(a). For a general two-state GDMDP, assume
that there are only two actions and thatπ1 is anMEU1s-optimal
policy for all wealth levelsw ≤ w, whereasπ2 is not. Assume
further thatπ1 is no longer anMEU1s-optimal policy for wealth
levels that are higher than the wealth level thresholdw by a positive
infinitesimal. Then, we have for all wealth levelsw ≤ w according
to Eq. (11) and the fact that(π1)w = π1 (sinceπ1 is an SD policy)

v∗1s(s
0, w) = v

π1
1s (s0, w) = w + v

π1
ℓ (s0) + Dγwv

π1
e (s0). (12)

Now consider any wealth levelw that is higher than the wealth level
thresholdw by a positive infinitesimal but no higher thanw − ck

for all actionsk = 1, 2. Then,v∗
1s(s

0, w + ck) = v
π1
1s (s0, w + ck)

(sincew + ck ≤ w) and we can rewrite Eq. (10) as follows:

v∗1s(s
1, w) = w − Dγw

v∗1s(s
0, w) = max

k=1,2

ˆ

pkv∗1s(s
0, w + ck) + [1 − pk] v∗1s(s

1, w + ck)
˜

= max
k=1,2

ˆ

pkv
π1
1s (s0, w + ck) + [1 − pk]

ˆ

w + ck − Dγw+ck
˜˜

= max
k=1,2

ˆ

w + q
π1
ℓ

(s0, k) + Dγwq
π1
e (s0, k)

˜

,

where the last step uses both Eq. (12) and the definitions of
the valuesq

π1
ℓ (s0, k) = ck + pkv

π1
ℓ (s0) and q

π1
e (s0, k) =

γck
ˆ

pk − 1 + pkv
π1
e (s0)

˜

for k = 1, 2. It holds thatqπ1
ℓ (s0, 1) =

v
π1
ℓ (s0) according to Eq. (3) andqπ1

e (s0, 1) = v
π1
e (s0) accord-

ing to Eq. (5).π2 is anMEU1s-optimal policy for wealth levelw
according to our assumptions, whereasπ1 is not. Thus, we have

w + q
π1
ℓ

(s0, 2) + Dγwq
π1
e (s0, 2) > w+q

π1
ℓ

(s0, 1)+Dγwq
π1
e (s0, 1)

= w+v
π1
ℓ (s0)+Dγwv

π1
e (s0)

or, equivalently,

q
π1
ℓ

(s0, 2) − v
π1
ℓ

(s0) > Dγw
ˆ

v
π1
e (s0) − q

π1
e (s0, 2)

˜

w > logγ

 

1

D
·

q
π1
ℓ

(s0, 2) − v
π1
ℓ

(s0)

v
π1
e (s0) − q

π1
e (s0, 2)

!

.

The wealth level thresholdw can thus be set to the right-hand side
of the last inequality. We actually set it to the minimum of the right-
hand side of the last inequality and the initial wealth levelsince the
agent only encounters wealth levels no higher than its initial wealth
level. If the argument of the logarithm is non-positive and the log-
arithm thus is undefined, then policyπ1 is MEU1s-optimal for all
wealth levels and we set the wealth level threshold to the initial
wealth level. The general case is just slightly more complexthan
for the two-state GDMDP since one needs to minimize over all
statess ∈ S′ and all actionsa ∈ As \ A∗

e(s). The following the-
orem summarizes the discussion. It uses the following definitions
for all statess ∈ S′ and actionsa ∈ As:

q∗e (s, a) =
X

s′∈S

P (s′|s, a)γr(s,a,s′)v∗e (s′)

q
π∗∗

e
ℓ

(s, a) =
X

s′∈S

P (s′|s, a)
h

r(s, a, s′) + v
π∗∗

e
ℓ

(s′)
i

.
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THEOREM 3. The statements in Lemma 2 hold for

w = min
s∈S′

min
a∈As\A∗

e (s)
logγ

0

@max

2

4γw0 ,
1

D
·

q
π∗∗

e
ℓ

(s, a) − v
π∗∗

e
ℓ

(s)

v∗e (s) − q∗e (s, a)

3

5

1

A .

The proof of the theorem can be found in [7]. The maximum in
the definition of the wealth level thresholdw takes care of the case
where the numerator is negative or the wealth level threshold would
otherwise be higher than the initial wealth levelw0. One needs to

determineA∗
e(s), v∗

e (s), π∗∗
e andv

π∗∗

e
ℓ (s) to calculate the wealth

level threshold. The action setsA∗
e(s) and the optimal valuesv∗

e (s)
can be calculated with theMEUe version of policy iteration [13],

and then the policyπ∗∗
e and the optimal valuesv

π∗∗

e
ℓ (s) can be cal-

culated with theMEUℓ version of policy iteration [3]. One should
not use versions of value iteration for this purpose since they typi-
cally determine optimal values only approximately. For thetermite
GDMDP, we have shown thatπ3 is the only SDMEUe-optimal
policy and thusπ∗∗

e = π3 and A∗
e(s

0) = {3}. Then, we have

v
π∗∗

e
ℓ (s0) = −10, 000, q

π∗∗

e
ℓ (s0, 1) = −7, 600, q

π∗∗

e
ℓ (s0, 2) =

−1, 500, v∗
e (s0) = −1.1179×1013 , q∗e (s0, 1) = −1.1323×1013

and q∗e (s0, 2) = −1.1278 × 1013. Therefore, the wealth level
threshold isw = −1482.0.

6. BACKWARD-INDUCTION METHOD
Algorithm 1 (BackwardInductionOneSwitch) shows our

backward-induction method, which is based on the inductivefoun-
dation from the previous section and Eq. (10). There are two
main differences to the common backward-induction method for
solving GDMDPs with finite planning horizons [15]. First, the
inductive foundation of the backward-induction method forsolv-
ing GDMDPs with finite planning horizons is trivially provided
by values that are all zero, while the inductive foundation of our
backward-induction method is provided by Theorem 3. Thus,
our backward-induction method first determines the wealth level
thresholdw and, at the same time, the optimal valuesv∗

1s(s,w) for
all statess ∈ S′ and all wealth levelsw with w ≤ w. Second, the
backward-induction method for solving GDMDPs with finite plan-
ning horizons starts at the planning horizont = T , then decreases
the time stept with a fixed step size of one, and ends at time step
0, while our backward-induction method starts at the wealthlevel
thresholdw = w, then increases the wealth levelw with a variable
step size (that is controlled by a priority queue with the wealth level
w as the key), and ends at the initial wealth levelw0.

We now explain the backward-induction method and show, at the
same time, that theMEU1s-optimal value functionsv∗

1s(s, ·) are
piecewise one-switch functions with a finite number of segments.
The backward-induction method represents theMEU1s-optimal
value functions (one for each state) and anMEU1s-optimal policy
as a finite list of tuples(wi(s), vi

ℓ(s), v
i
e(s), a

i(s)), which repre-
sent thatv∗

1s(s,w) = w+vi
ℓ(s)+Dγwvi

e(s) and thatπ∗
1s(s, w) =

ai(s) for all wealth levelsw with w ∈
`

wi(s), wi+1(s)
˜

. In this
case, we say thatai(s) is an MEU1s-optimal action for wealth
level w. VAList is a data structure that contains all of these
tuples after the termination of the backward-induction method.
GetValues(VAList , s, w) retrieves the valuesvi

ℓ(s) and vi
e(s)

from the tuple
`

wi(s), vi
ℓ(s), v

i
e(s), a

i(s)
´

in VAList with wealth
levelw ∈

`

wi(s), wi+1(s)
˜

.
The backward-induction method uses the inductive foundation

from the previous section and thus setsw0(s) = −∞, v0
ℓ (s) =

v
π∗∗

e
ℓ (s), v0

e (s) = v∗
e (s) anda0(s) = π∗∗

e (s) for all statess ∈
S′ on Lines 1–4. It also initializes the priority queuePQ. The
wealth level thresholdw is the first non-infinity wealth levelwi

Algorithm 1 Backward-Induction Method

We definesucc(s, a) =
˘

s
′ ∈ S a ∈ As, P (s′|s, a) > 0

¯

andpred(s, a) =
˘

s
′ ∈ S a ∈ As′ , P (s|s′

, a) > 0
¯

. We use the following operations on pri-
ority queues: Insert(PQ, s, w) inserts s into priority queuePQ with key w,
IsMember(PQ, s) tests whethers is in PQ, GetKey(PQ, s) returns the key ofs
in PQ (s needs to be inPQ), DecreaseKey(PQ, s, w) decreases the current key of
s in PQ to w (s needs to be inPQ with a key greater thanw), andExtractMin(PQ)
removes a state with the lowest key fromPQ and returns both the state and its key.
VAList = BackwardInductionOneSwitch(S, {As}, P, r, D, γ, w0)

1: determinev∗

e , v
π∗∗

e
ℓ

, andπ∗∗

e ;
2: for all s ∈ S′ do

3: AddList(VAList , s,−∞, v
π∗∗

e
ℓ

(s), v∗

e (s), π∗∗

e (s));
4: Insert(PQ, s,−∞);
5: A←

S

s∈S′ As;

6: while ¬IsEmpty(PQ) do
7: s, wi ← ExtractMin(PQ);
8: vi

1s ← −∞;
9: for all a ∈ As do
10: qi

ℓ(s, a), qi
e(s, a)← 0;

11: for all s′ ∈ succ(s, a) do
12: v

j

ℓ
(s′), vj

e (s′)← GetValues(VAList , s′, wi + r(s, a, s′));

13: qi
ℓ(s, a)← qi

ℓ(s, a) + P (s′|s, a)
h

r(s, a, s′) + v
j

ℓ
(s′)

i

;

14: qi
e(s, a)← qi

e(s, a) + P (s′|s, a)γr(s,a,s′)vj
e (s′);

15: if wi 6= −∞ then

16: qi
1s(s, a)← wi + qi

ℓ(s, a) + Dγwi
qi

e(s, a);
17: if qi

1s(s, a) > vi
1s or

`

qi
1s(s, a) = vi

1sand qi
e(s, a) < vi

e

´

then
18: vi

1s ← qi
1s(s, a);

19: ai, vi
ℓ, vi

e ← a, qi
ℓ(s, a), qi

e(s, a);
20: if wi 6= −∞ then
21: AddList(VAList , s, wi, vi

ℓ, vi
e, ai);

22: for all a ∈ As do
23: InsertSP(PQ, s, wi, vi

ℓ, vi
e, qi

ℓ(s, a), qi
e(s, a), γ, w0);

24: if wi 6= −∞ then
25: for all a ∈ A do
26: for all s′ ∈ pred(s, a) do
27: InsertNeg(PQ, s′, wi − r(s′, a, s), w0);

InsertSP(PQ, s, w, vℓ, ve, qℓ, qe, γ, w0)

1: if ve 6= qe then

2: tmp←
qℓ − vℓ

ve − qe
;

3: if tmp > Dγw0 then
4: ŵ ← logγ

`

1
D
· tmp

´

;

5: if ŵ > w then
6: InsertNeg(PQ, s, ŵ, w0);

InsertNeg(PQ, s, w, w0)

1: if w < w0 then

2: if IsMember(PQ, s) then

3: if GetKey(PQ, s) > w then
4: DecreaseKey(PQ, s, w);
5: else
6: Insert(PQ, s, w);

removed from the priority queue in the main loop. The backward-
induction method then proceeds in a backward fashion. Consider
any states ∈ S′ and any segment

`

wi(s), wi+1(s)
˜

, where the
wealth levelwi+1(s) is still to be determined. We demand that two
properties hold for this segment: First, the same actionai(s) has
to beMEU1s-optimal for all wealth levelsw ∈

`

wi(s), wi+1(s)
˜

(Property 1). Second, for all wealth levelsw ∈
`

wi(s), wi+1(s)
˜

,
actionsa ∈ As and statess′ ∈ S with P (s′|s, a) > 0, there

exists ajs,i

a,s′
such thatw

j
s,i

a,s′
+1

(s′) ≤ wi(s) andw+r(s, a, s′) ∈
`

w
j

s,i

a,s′ (s′), w
j

s,i

a,s′
+1

(s′)
˜

, that is, all possible wealth levels after
the action execution should be in the same segment (Property2).
Therefore, we have for all wealth levelsw ∈

`

wi(s), wi+1(s)
˜

according to Eq. (10) and Eq. (11)

v∗1s(s, w) = max
a∈As

X

s′∈S

P (s′|s, a)v∗1s(s
′, w + r(s, a, s′))

= max
a∈As

X

s′∈S

P (s′|s, a)
h

w + r(s, a, s′) + v
j

s,i

a,s′

ℓ
(s′)

+ Dγw+r(s,a,s′)v
j

s,i

a,s′

e (s′)
i
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= max
a∈As

"

w +
X

s′∈S

P (s′|s, a)

"

r(s, a, s′) + v
j

s,i

a,s′

ℓ (s′)

#

+ Dγw
X

s′∈S

P (s′|s, a)γr(s,a,s′)v
j

s,i

a,s′

e (s′)

#

= max
a∈As

ˆ

w + qi
ℓ(s, a) + Dγwqi

e(s, a)
˜

, (13)

where we defined the valuesqi
ℓ(s, a) andqi

e(s, a) in the last step
for use below.

First, the backward-induction method calculates actionai(s) on
Lines 8–21. Since the optimal value functionv∗

1s(s, ·) is continuous
in the wealth levelw and actionai(s) is MEU1s-optimal for all
wealth levelsw ∈

`

wi(s), wi+1(s)
˜

, it is alsoMEU1s-optimal for
wealth levelwi(s), which implies according to Eq. (13)

ai(s) ∈ Â(s) = arg max
a∈As

h

wi(s) + qi
ℓ(s, a) + Dγwi(s)qi

e(s, a)
i

,

where we defined the action setŝA(s) for use below. The ac-
tion setsÂ(s) can contain actions that are notMEU1s-optimal
for all wealth levelsw ∈

`

wi(s), wi+1(s)
˜

. Figure 3(b) illus-

trates such actions. The action setÂ(s0) includes actions 2, 3,
6 (the blue, black, and cyan graphs, respectively) for the segment
`

wi(s0), wi+1(s0)
˜

, all of which intersect at the same point. Only
action 2 isMEU1s-optimal for this segment, action 3 isMEU1s-
optimal for the previous segment, and action 6 isMEU1s-optimal
for neither segment. In general, the spurious actions can beelim-
inated by comparing the actions in the action setÂ(s) for wealth
level wi(s) + δ, whereδ is a positive infinitesimal. Consider any
actionsa, a′ ∈ Â(s). Then, we have

wi(s) + qi
ℓ(s, a) + Dγwi(s)qi

e(s, a)

= wi(s) + qi
ℓ(s, a

′) + Dγwi(s)qi
e(s, a

′). (14)

Assume that actiona is MEU1s-optimal for all wealth levelsw ∈
`

wi(s), wi+1(s)
˜

, whereas actiona′ is not. Then, actiona is also
MEU1s-optimal for wealth levelwi(s) + δ, whereas actiona′ is
not. Thus, we have

wi(s) + δ + qi
ℓ(s, a) + Dγwi(s)+δqi

e(s, a)

> wi(s) + δ + qi
ℓ(s, a

′) + Dγwi(s)+δqi
e(s, a

′).

By subtracting Eq. (14) from the inequality, we have

δ + Dγwi(s)
h

γδ − 1
i

qi
e(s, a) > δ + Dγwi(s)

h

γδ − 1
i

qi
e(s, a

′)

qi
e(s, a) < qi

e(s, a
′),

Thus, the backward-induction method chooses any actionai(s) ∈
arg mina∈Â(s) qi

e(s, a).
Second, the backward-induction method calculates the values

vi
ℓ(s) = qi

ℓ(s, a
i(s)) and vi

e(s) = qi
e(s, a

i(s)) on Lines 8–21
sincev∗

1s(s, w) = w + qi
ℓ(s, a

i(s)) + Dγwqi
e(s, a

i(s)) accord-
ing to Eq. (13) andv∗

1s(s, w) = w + vi
ℓ(s) + Dγwvi

e(s) according
to our representation of the piecewise one-switch functions for all
wealth levelsw ∈ (wi(s), wi+1(s)].

Third, the backward-induction method calculates the wealth lev-
els wi+1(s). Property 1 implies that actionai(s) is MEU1s-
optimal for wealth levelwi+1(s). We thus have for all actions
a ∈ As

wi+1(s) + qi
ℓ(s, a

i(s)) + Dγwi+1(s)qi
e(s, a

i(s))

≥ wi+1(s) + qi
ℓ(s, a) + Dγwi+1(s)qi

e(s, a)

qi
ℓ(s, a

i(s)) + Dγwi+1(s)qi
e(s, a

i(s))

(a) (b)

Figure 4: Painted Blocksworld Problem

≥ qi
ℓ(s, a) + Dγwi+1(s)qi

e(s, a)

vi
ℓ(s) + Dγwi+1(s)vi

e(s)

≥ qi
ℓ(s, a) + Dγwi+1(s)qi

e(s, a)

wi+1(s) ≤ logγ

 

1

D
·

qi
ℓ(s, a) − vi

ℓ(s)

vi
e(s) − qi

e(s, a)

!

,

where the right-hand side of the last inequality defines a poten-
tial switching point for theMEU1s-optimal action and thus a po-
tential value for the wealth levelwi+1(s) if the argument of the
logarithm is positive and the logarithm thus is defined, as illus-
trated in Figure 3(b). The determination of these potentialswitch-
ing points is essentially the same as the determination of the wealth
level threshold (with the only difference being whetherwi = −∞),
which allows the backward-induction method to combine their cal-
culation in the main loop on Lines 22–23 usingInsertSP. Prop-

erty 2 implies thatw + r(s, a, s′) ≤ w
j

s,i

a,s′
+1

(s′) and thus that

w ≤ w
j

s,i

a,s′
+1

(s′) − r(s, a, s′), where the right-hand side of this
inequality defines another potential switching point for theMEU1s-
optimal action and thus another potential value for the wealth level
wi+1(s), as illustrated in Figure 3(c) where wealth levelwi takes

the role of wealth levelw
j

s,i

a,s′
+1

and rewardck takes the role of
rewardr(s, a, s′). The backward-induction method calculates the
potential switching points on Lines 25–27 usingInsertNeg.

The backward-induction method stores the potential switch-
ing points in the priority queuePQ and processes them in
order of increasing wealth levels since the values of seg-
ment (wi(s), wi+1(s)] depend on the values of segments
(wj(s′), wj+1(s′)] for one or morej with wj+1(s′) ≤ wi(s),
which need to have been calculated already. The backward-
induction method terminates when the priority queuePQ is empty,
which happens in a finite amount of time since the wealth level
thresholdw is a finite negative value and the values of the processed
switching points are monotonically increasing by at least apositive
constant and guaranteed to be non-positive [7]. Thus, theMEU1s-
optimal value functions are indeed piecewise one-switch functions
with a finite number of segments. For the termite GDMDP, the
backward-induction method finds the followingMEU1s-optimal
policy for the initial wealth levelw0 = 0:

π∗
1s(s

0, w) =

8

>

<

>

:

1 w ∈ (−316.4, 0]

2 w ∈ (−1482.0,−316.4]

3 w ∈ (−∞,−1482.0].

7. EXAMPLE
We use the painted blocksworld problem from [9] to illustrate

risk-sensitive planning with one-switch utility functions. The do-
main is a standard blocksworld domain with five blocks that are
either white (W) or black (B). However, the move action succeeds
only with probability 0.5. When it fails, the block drops directly
onto the table. One can also execute a paint action that changes
the color of any one block and always succeeds. The move ac-
tion (M) has a reward of−1, and the paint action (P) has a re-
ward of −3. Figure 4(a) shows the initial state. The goal is to
build a stack of three blocks as shown in Figure 4(b). The painted
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{WBBW,B}
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{WBB,B,W}
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5

−1; 0.5

w ≥ −2

−
3;1

.0

w ≤ −3

−1; 0.5
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1;0

.5

{BW,WB,B}

−3; 1.0
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−
1;0

.5

−1; 0.5

Figure 5: MEU(U1s)-Optimal Policy

{WBB,BW} and{BW,WB,B}
`

wi(s),vi
1s(s)

´

vi
ℓ(s) vi

e(s) ai(s)
`

0.00,−4.50
´

`

−∞, −∞
´

−2.00 −5.00 M

{BBB,B,W}
`

wi(s),vi
1s(s)

´

vi
ℓ(s) vi

e(s) ai(s)
`

0.00,−5.31
´

`

−∞, −∞
´

−3.00 −4.63 P

{WBBW,B}
`

wi(s), vi
1s(s)

´

vi
ℓ(s) vi

e(s) ai(s)
`

0.00,−15.72
´

`

−0.38,−18.52
´

−4.25 −22.94 M
`

−1.38,−28.61
´

−4.50 −22.52 M
`

−∞, −∞
´

−5.00 −22.03 M

{WBB,B,W}
`

wi(s), vi
1s(s)

´

vi
ℓ(s) vi

e(s) ai(s)
`

0.00,−15.72
´

`

−0.38,−18.52
´

−4.25 −22.94 M
`

−1.38,−28.61
´

−4.50 −22.52 M
`

−2.38,−44.43
´

−5.00 −22.03 M
`

−∞, −∞
´

−6.00 −21.43 P

Figure 6: MEU1s-Optimal Value Functions

blocksworld problem has 162 states, which we describe as sets of
stacks by listing the blocks in each stack from bottom to top.For
example, the initial state is{WBBW,B}. We use the backward-
induction method to find anMEU1s-optimal policy for the one-
switch utility functionU1s(w) = w − 0.5 × 0.6w . Figure 5 de-
picts thisMEU1s-optimal policy, and Figure 6 shows theMEU1s-
optimal value functions in the form ofVAList entries for the five
non-goal states that are reachable from the initial state ifthe agent
follows theMEU1s-optimal policy, where we use the shorthand no-
tation vi

1s(s) = v∗
1s(s, w

i(s)) and also include the values for the
case where wealth levelwi(s) is equal to the initial wealth level
w0 = 0, which do not appear inVAList . TheMEU1s-optimal ac-
tion in state{WBB,B,W} depends on the wealth level. It is a move
action for wealth level−1 or−2 and a paint action for wealth level
−3. It takes the backward-induction method only about0.45 sec-
onds to obtain theMEUe-optimal policy on a Dell Latitude D600
laptop, while it takes functional value iteration about1.45 seconds,
although our backward-induction method in general is not guaran-
teed to be faster than functional value iteration and can, infact, be
slower. A more thorough study of the running times of functional
value iteration and the backward induction method is underway.

8. CONCLUSIONS
The backward-induction method exploits the structure of one-

switch utility functions to determine maximal expected utilities for
given GDMDPs and one-switch utility functions in finite time, dif-
ferent from the previous functional value iteration methodthat typi-
cally determines only approximately maximal expected utilities. In
the future, we intend to study how to exploit the structure ofother
nonlinear utility functions in similar ways and develop methods that
scale up to even larger planning problems.
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