
Theoretical and Experimental Results on the
Goal-Plan Tree Problem

(Short Paper)
Patricia H. Shaw, Berndt Farwer, and Rafael H. Bordini

Department of Computer Science, University of Durham, Durham DH1 3LE, U.K.
{p.h.shaw,berndt.farwer,r.bordini}@durham.ac.uk

ABSTRACT
Agents programmed in BDI-inspired languages have goals to
achieve and a library of plans that can be used to achieve them,
typically requiring further goals to be adopted. This is most nat-
urally represented by a structure that has been called a Goal-Plan
Tree. One of the uses of such structure is in agent deliberation (in
particular, deciding whether to commit to achieving a certain goal
or not). This paper presents new experimental results combining
various types of goal-plan tree reasoning from the literature.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Intelligent Agents; D.2.2 [Design
Tools and Techniques]: Petri nets

General Terms
Experimentation

Keywords
Autonomous Agents, Reasoning, Petri nets

1. INTRODUCTION
Agents programmed in BDI-inspired languages have goals to

achieve and a library of plans that can be used to achieve them,
typically requiring further goals to be adopted. This is most natu-
rally represented by a structure that has been called a Goal-Plan
Tree. Whilst no planning takes place in such agents, a certain
type of reasoning – done over such representation of agents’ com-
mitments towards goals to be achieved and courses of actions to
achieve them – can significantly impact the agent’s performance by
judicious scheduling of the plan execution. More importantly, it
can significantly improve deliberation, in the sense that an agent
can make reasoned choices on whether to commit to achieving a
new goal or not.

In all the work by Thangarajah et al. [7, 8, 9, 6], a goal-plan
tree is used to represent the structure of the various plans and sub-
goals related to each goal for an individual agent. At each node
of the tree, summary information is used to represent the various
constraints under consideration. This is similar to previous work
by Clement and Durfee [1, 2, 3], using summary information with

Cite as: Theoretical and Experimental Results on the Goal-Plan Tree
Problem (Short Paper), Patricia H. Shaw, Berndt Farwer and Rafael H. Bor-
dini, Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),
May,12-16.,2008, Estoril, Portugal, pp. 1379-1382.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

HTN planning to co-ordinate the actions of multiple agents. A dif-
ferent approach was introduced by Shaw and Bordini [5], where a
goal-plan tree is mapped into a Petri net, thus avoiding the need for
summary information.

To our knowledge, while Thangarajah et al. have reported on ex-
perimental results for the individual types of reasoning, no results
appear in the literature showing what is the performance obtained
when an agent is doing all those forms of reasoning simultaneously.
It also remains unknown if their approach is still equally efficient
when the various types of reasoning are combined and how it scales
up, as the amount of summary information to handle could poten-
tially grow exponentially with the size of the goal-plan tree [3],
which could have a significant impact on the performance of the
agent for larger problems.

The work in [5] considered reasoning about both positive and
negative effects of a plan on other plans using a Petri-net based
technique. In this paper we focus on reasoning about resources
combined into a coherent reasoning process that also encompasses
reasoning about positive and negative interactions, using Petri nets
to do so. Whilst we here only use a Petri net approach to solving
the goal-plan tree problem, we are currently investigating a number
of alternative techniques.

The remainder of the paper is organised as follows. Section 2
summarises the main ideas of our formalisation of the goal-plan
tree problem and its complexity (the actual formalisation was omit-
ted due to lack of space), Section 3 shows the use of Petri nets to
produce a combination of the various types of reasoning on goal-
plan trees, Section 4 shows the experimental results and analysis
of this approach to the goal-plan tree problem, and Section 5 con-
cludes the paper.

2. THEORETICAL RESULTS (OUTLINE)
A goal-plan tree is a bipartite directed graph, connecting

(sub)goals with plans, and plans with subgoals. An example of
a goal-plan tree is shown in Figure 1, reproduced from [8]1. In or-
der for a plan within the tree to be completed, all of its subgoals
must first be completed. However, to achieve a goal or a subgoal,
only one of its alternative plans needs to be executed. The goal-
plan tree problem (GPT) is the question of whether a schedule of
execution exists that satisfies the pre- and post-conditions of each
plan, achieving all top-level goals without running out of resources.

We have proved that GPT is NP complete by showing that
GPT ∈ NP and 3SAT≤p GPT.

Due to lack of space, we can only give a brief example showing
the idea behind the reduction. The principle is that we have one
resource for each variable. For instance, if there were n variables,
1Goals and subgoals are represented by rectangles, while plans are
represented by ovals.



SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1

SG4: TransmitData

P6: TransmitDataPlan

SG6: TransmitData

P8: TransmitDataPlan

SG5: MoveCloseToLander

P7: MoveClosePlan

P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Figure 1: Goal-plan tree for a Mars rover [8].

then there would have to be n different types of resources, and one
instance of each is available at the beginning. Plans correspond to
the literals of the 3CNF formula. Plans for both α and ¬α use the
same resource (named α), but plans for a different α′ or ¬α′ use a
different resource (α′), etc. All plans have empty preconditions.

EXAMPLE 1. Consider the formula (a∨b∨c)∧ (¬a∨¬b∨c).
We construct the following goal-plan tree (left-hand side below):

G

P

SG2

P23
c

P22
¬b

P21
¬a

SG1

P13
c

P12
b

P11
a

G

P

SG1

P13
c

G

P

SG2

P23
c

The right-hand side of the figure shows the two possible ESX-trees2

associated with the consumption of resource c. Only one branch re-
mains as the other one is truncated due to positive interaction. The
leaves represent the literals whose resources have been used; that
is, starting from the multiset of resources containing one instance
each of a, b, and c, we need only use the resources for c (corre-
sponding to c being assigned true) in constructing a schedule of
execution P13 or P23 . The total number of ESX-trees for the goal-
plan tree on the left is six, leading to other schedules (e.g., P11 ,P22

with the consumption of the resources a and b). Not using a spe-
cific resource means that any truth assignment for the propositional
variable corresponding to that resource satisfies the formula.

To show the NP-hardness of GPT, we have formally shown
the polynomial-time reducibility of 3SAT to GPT. Furthermore,
we have shown that GPT is actually in NP (again omitted due
to space). The idea is to (non-deterministically) guess an ESX-
tree for the input goal-plan tree and a sequence of the plans in it,
with their individual pre-conditions, effects, and resource alloca-
tions, then check (in polynomial time) that this actually solves the
goal-plan tree problem.

3. REASONING ABOUT RESOURCES
While in [5] we showed that it is possible to avoid the use of

summary information when reasoning about positive and negative
interactions using a Petri-net approach to the goal-plan tree prob-
lem, this is not possible when reasoning about resources. However,
2ESX-trees are obtained from goal-plan trees; only one plan to
achieve each (sub)goal is selected; reasoning techniques for pos-
itive reasoning can further trim the resulting tree.

we have here minimised the use of summary information compared
to the levels used in [9]. We only use (a compact form of) summary
information where it is absolutely required and can give a signifi-
cant improvement on the resource usage.

Summary information is used in two ways. First, a summary of
all the resource requirements is produced and used to decide if a
goal can be taken on, based on existing resource availability. Sec-
ond, where a goal or subgoal has a choice of plans, summary infor-
mation just for the subtrees is provided so as to select a preferred
plan (i.e., the one with the lowest resource requirements).

There are two main classes of resources: reusable resources and
consumable resources. An instance of a reusable resource can only
be used by one plan at a given time, but when that plan has finished
executing, the resource is available again for another plan to use
it. A typical example of such a type of resource is a communica-
tion channel. On the other hand, consumable resources can only
be used once, and then no longer exist, for example (units of) en-
ergy or time. Reusable resources can be represented as shown in
Figure 2(a). However, the results in this paper refer to reasoning
about consumable resources only; Figure 2(b) shows the basic rep-
resentation of consumable resources. It uses a check function that
is only able to fire (i.e., return “true”) if there is at least a quantity
q of that resource currently available.

:release()

Resource

[]

:use()

Reusable

(a) Reusable resource.

100

x

energy

y-x y

:check("E",q);

guard x>=q

    guard (y-x)>=0;

:consume("E",x)

(b) Consumable resource.

Figure 2: Petri nets for the two main resource types.

When multiple different consumable resources are used, there
can be two types of summary information, depending on the level
of detail required. The first provides the detail splitting up the sum-
maries based on the different resources, while the second gives the
overall summary as a sum of the summaries for each resource.

The summary information can either be pre-processed (i.e., done
off-line), or produced dynamically by generating Petri nets on-the-
fly. Either way, the result is the same, and the summary information
produced gives the best case and worst case resource requirements.
These are the minimum and maximum resource requirements when
taking into account goals or subgoals that have a choice of plans
with different summary resource requirements.

Subgoal

Summary

Plan a Plan b Plan c

[bc,wcX][bc,wcX][bc,wcX]

[bc,wc] [bc,wc][bc,wc]

Figure 3: Selecting the best plan based on required resources.

The summary information is generated using the tree structure,
summing up the requirements starting at the leaves. Where there is
a choice of plans, the summaries for those plans are stored with the



subgoal to aid the selection between the plans; see Figure 3. Here,
the summaries for the different resources are accumulated together
when calculating the summary information so that only a single
number is stored for each branch, and the break down is passed
on up the tree listing the best case and worst case depending on
which branch is chosen. If some resources are required to be con-
served more than others, weights could be added here to indicate
an additional cost of using a particular resource, thus favouring the
alternatives.

g g g

g:newGoalSummary([["A",a],["B",b],["C",c]...])

r:checkTotalSummary([["A",aq],["B",bq],["C",cq],...])

aq=a+ap; bq=b+bp; cq=c+cp;...

g:complete([["A",a],["B",b],["C",c],...])

aq=ap-a; bq=bp-b; cq=cp-c; ...

[["A",0],["B",0],["C",0],..]

g:start()

[["A",ap],["B",bp],

["C",cp],...]

[["A",ap],["B",bp],

["C",cp],...]

[["A",aq],["B",bq],

["C",cq],...]

[["A",aq],["B",bq],

["C",cq],...]

Agent Summary

g

Figure 4: Checking the summary information.

After all goals have their summary information, the summary in-
formation at the root of the tree can then be used by the agent to
decide whether it is safe to start acting towards achieving the goal
in relation to the amount or resources it currently has available,
and any other goals which the agent may be already committed to
achieve. Figure 4 shows the Petri-net module used by the agent to
check the summary information before starting a goal. It keeps a
sum of the summary information for the goals that the agent is com-
mitted to achieving, so before starting a course of action to achieve
a new goal, it checks that there are sufficient resources for the sum
of existing goals and the summary from the new goal. If there is,
then the goal is adopted and when the goal has been achieved, its
summary information is removed from the summary for currently
executing goals.

4. EXPERIMENTAL RESULTS
In [5], it was shown how Petri nets can be used for goal-plan

tree reasoning, and results were given for reasoning about negative
and positive interactions between goals within an agent, along with
the combination of the two forms of reasoning. In this paper, our
experiments are aimed at studying the effects of a third type of rea-
soning, that of reasoning about consumable resources, and we here
show the results from combining this reasoning with the first two
types. To our knowledge, no experimental results combining all
three forms of reasoning have previously appeared in the literature.

The results on reasoning about negative and positive interactions
used variations on the conditions between high and normal levels
of interaction, along with the duration or impact of the interaction.
This was tested in two scenarios: an abstract scenario and a more
concrete example using a Mars Rover. The performance of the rea-
soning agent was compared against a “dummy” agent where no
such reasoning was included.

In the Petri nets, negative interaction was simulated by having
the goals using a common set of variables to store different values
that were later required. If after a goal had set a variable, and before
the goal had read the value, another goal changed the value stored
in the variable, then the first goal failed. The duration that the value
needed to be protected for was varied between normal and long, to
stress test the reasoning.

Positive interaction was simulated by multiple goals having com-
mon effects, with the effects being represented by values assigned
to variables. For multiple goals to be achieved, only one plan exe-
cution was then sufficient to produce the required effects. By set-
ting the plans higher up the goal-plan tree (i.e., nearer the root goal)
to interact with other goals, greater impact on the number of plans
executed to achieve the same goals is obtained.

In both scenarios, and under all conditions, the reasoning agent
significantly outperformed the dummy agent. The reasoning en-
sured that with reasoning about negative interaction, the agent was
consistently able to achieve all the goals, and used significantly
fewer plans when positive interaction was present. The two forms
of reasoning were combined without any side effects to each other,
and produced a reasoning agent that performed well under com-
bined positive and negative interaction, achieving all goals and giv-
ing a high reduction in the number of plans executed.

4.1 Resources

Plans

Goals/subgoals

Figure 5: Goal-
plan tree used
to test reason-
ing about re-
sources.

To analyse the performance of the rea-
soning about resources, we have used the
goal-plan tree shown in Figure 5. There
are 30 goals using 5 different types of
resources, with each goal using varying
quantities of each resource. The level of
resource availability was varied between
high, medium, and low availability to test
the performance of the reasoning under
highly constrained conditions, and to com-
pare the cost of reasoning against a dummy
agent when both are able to achieve all
goals. The number of goals achieved, plans
executed, and the time taken were mea-
sured, with the timings being measured using the system time on an
Apple MacBook 2.0 GHz dual core processor, 1GB memory, OS-
X 10.4 running Java version 1.5 and Renew version 2.1 [4]. The
actions within the plans were given an artificial duration of 50ms
to simulate their execution.

The results given below show the averages over 50 repeats of
each experimental setup. This setup is equivalent to that used by
Thangarajah et al. and was used to allow comparison to their ap-
proach [9].

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Reasoning Dummy Reasoning Dummy

Start Finish

G
o

al
s Low

Medium
High

(a) Number of goals started
and finished under differing
levels of resource availability.

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

70000.0

Low Medium High

Resource Availability

T
im

e 
(m

s)

Reasoning

Dummy

(b) Time to achieve the goals
under differing levels of re-
source availability.

Figure 6: Results of reasoning about resources.

Figure 6 shows the results of reasoning about resources. While
the dummy agent automatically started all the goals, the reasoning
agent only started the goals it had sufficient resources available to
achieve. As a result, the reasoning agent was able to achieve all the
goals it started, while the dummy agent wasted a lot of resources
on multiple goals, so it was generally only able to achieve a few
goals, until there were sufficient resources available to achieve all
goals (i.e., where there was high availability of resources).



The timings for the reasoning agent and the dummy agent in this
scenario are very similar; however, it should be remembered that
the reasoning agent achieves 36–96% more goals in the low and
medium resource setting. In the high resource availability, it shows
that the reasoning agent often takes the plan option with the fewer
subgoals and plans, as these often also have lower resource require-
ments. Therefore, the dummy agent appears to take slightly longer,
which also emphasises the minimal extra cost from the reasoning.

4.2 Combined reasoning
In this section, we show the results from the reasoning about

resources being combined with the reasoning for positive and neg-
ative interactions. While it is possible with some approaches that
this could cause side effects where the resource reasoning suggests
one plan option to reduce the amount of resources used and the
positive or negative reasoning suggests a different plan option, this
was not the case with this approach, and the different reasoners
were combined seamlessly.

The setup for the negative and positive interaction used here was
the one for normal levels of interaction, with random duration and
impacts. We assigned 20 top-level goals and the number of goals
achieved, plans executed, and time taken were again measured.

0.0

5.0

10.0

15.0

20.0

25.0

Reasoning Dummy Reasoning Dummy

Start Finish

G
o

al
s Low

Medium
High

(a) Number of goals started
and finished under differing
levels of resource availability.

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

70000.0

80000.0

90000.0

Low Medium High

Resource availability

T
im

e 
(m

s)

Reasoning
Dummy

(b) Time taken to achieve the
goals under differing levels
of resource availability.

Figure 7: Results from the combined reasoning.

Figure 7 shows the results from the combined reasoning. The
effects of the positive interaction are highlighted in the reasoning
with medium resource availability. While there would not normally
be sufficient resources available to achieve all the goals, with less
plans being required to achieve the goals, this has saved resources
allowing all the goals to be achieved.

While even the dummy agent would normally be able to achieve
all the goals with high resource availability, when the negative and
positive interactions among the plans were added, it simply failed
due to the negative interaction, even though there were some re-
sources left at the end.

Due to the reduction in the number of plans that the reasoning
agent was executing compared to the dummy agent, the time taken
for the reasoning agent to achieve more goals is actually less than
the dummy agent. This is emphasised where resource availabil-
ity is higher, allowing the dummy agent to execute more plans in
(failed) attempts to achieve goals. Remember, the dummy agent
was attempting to execute plans to achieve goals even where the
goals did not succeed due to running out of resources or negative
interference.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an alternative practical approach

to reasoning about resources when an agent takes on multiple long-
term goals to achieve. The GPT is of fundamental importance for
any agent developed with a (BDI-like) agent-oriented programming
language, yet so far the complexity of the problem was not known.

Our experimental results clearly show a significant improvement
in the number of goals being achieved due to reasoning on goal-
plan trees, with little impact in the time taken to perform the rea-
soning. While [5] showed results for combining positive and nega-
tive interactions, to the best of our knowledge, this is the first time
that results for reasoning about positive and negative interactions
between goals as well as reasoning about consumable resources
(all performed in one combined process), have been obtained. The
results also suggest a tractable subclass of instances, although the
general problem is NP-hard. We aim at a formal characterisation
of this class in future work.

The Petri nets used in our experiments have so far been produced
manually, but their modular design provides scope for automating
this process, so that it can be incorporated into an agent architecture
for on-the-fly reasoning about new goals to be potentially adopted
(note that this is important where agents can change their plan li-
braries at run time). Our long-term objective is to incorporate such
reasoning into the interpreters of agent-oriented programming lan-
guages, and to experiment with various different techniques so as
to find, experimentally, the conditions on the structure of the goal-
plan tree where each works best.

6. REFERENCES
[1] B. J. Clement and E. H. Durfee. Identifying and resolving

conflicts among agents with hierarchical plans. In Proc. AAAI
Workshop on Negotiation: Settling Conflicts and Identifying
Opportunities, Technical Report WS-99-12, pages 6–11.
AAAI Press, 1999.

[2] B. J. Clement and E. H. Durfee. Theory for coordinating
concurrent hierarchical planning agents using summary
information. In AAAI’99/IAAI’99: Proc. 16th Nat. Conf. on
Artificial Intelligence and the 11th Innovative Applications of
AI Conf., pages 495–502. Am. Assoc. for AI, 1999.

[3] B. J. Clement and E. H. Durfee. Performance of coordinating
concurrent hierarchical planning agents using summary
information. In Proc. 4th Int. Conf. on Multi-Agent Systems
(ICMAS’00), pages 373–374. IEEE Comp. Soc., 2000.

[4] O. Kummer, F. Wienberg, and M. Duvigneau. Renew – the
Reference Net Workshop. Release 2.1. Available at:
http://www.renew.de/, May 2006.

[5] P. Shaw and R. Bordini. Towards alternative approaches to
reasoning about goals. In Proc. 5th Int. Workshop on
Declarative Agent Languages and Technologies (DALT’07),
held with AAMAS’07, pages 104–121. LNCS 4897, Springer,
2008.

[6] J. Thangarajah and L. Padgham. An empirical evaluation of
reasoning about resource conflicts in intelligent agents. In
Proc. 3rd Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS’04), pages 1298–1299, 2004.

[7] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
avoiding interference between goals in intelligent agents. In
Proc. 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI’03), pages 721–726. Morgan Kaufmann, 2003.

[8] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
exploiting positive goal interaction in intelligent agents. In
Proc. 2nd Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS’03), pages 401–408. ACM
Press, 2003.

[9] J. Thangarajah, M. Winikoff, and L. Padgham. Avoiding
resource conflicts in intelligent agents. In F. van Harmelen,
editor, Proc. 15th European Conf. on Artifical Intelligence
2002 (ECAI’02). IOS Press, 2002.




