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ABSTRACT
The problem of coalition formation when agents are uncer-
tain about the types or capabilities of their potential partners
is a critical one. In [3] a Bayesian reinforcement learning
framework is developed for this problem when coalitions are
formed (and tasks undertaken) repeatedly: not only does the
model allow agents to refine their beliefs about the types of
others, but uses value of information to define optimal explo-
ration policies. However, computational approximations in
that work are purely myopic. We present novel, non-myopic
learning algorithms to approximate the optimal Bayesian
solution, providing tractable means to ensure good sequen-
tial performance. We evaluate our algorithms in a variety
of settings, and show that one, in particular, exhibits con-
sistently good sequential performance. Further, it enables
the Bayesian agents to transfer acquired knowledge among
different dynamic tasks.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Algorithms, Economics

Keywords
coalition formation, uncertainty, reinforcement learning

1. INTRODUCTION
Coalition formation has recently attracted much attention

in AI, allowing the dynamic formation of teams of cooper-
ating agents. Most existing models of coalition formation
assume the values of coalitions to be known with certainty,
assuming that agents have knowledge of their potential part-
ners’ capabilities, or at least that this knowledge can be
reached via communication. In many natural settings, how-
ever, rational agents must agree to coalitions and the divi-
sion of the value generated without a priori knowledge of
this value. For instance, agents are often uncertain about
the types (or capabilities) of potential partners, hence how
well they are suited to a particular tasks, hence the value
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of the coalitions in which they participate. The case of an
enterprise trying to choose subcontractors while unsure of
their capabilities is only one such example.

It is often the case that a set of rational agents have to
engage in repeated coalition formation, consisting of a se-
ries of coalition formation episodes, each of which is fol-
lowed by some collective action taken by the coalitions so
formed. This suggests opportunities to learn about oth-
ers’ abilities (types) through repeated interaction, refining
over time how coalitions are formed. It also poses the ques-
tion of how to make decisions that are sequentially ratio-
nal, given anticipated future interactions and the evolution
of an agent’s knowledge. Further, by progressively gaining
knowledge about the types of others, agents can reuse this
knowledge when meeting these same individuals in different
settings (with different coalitional values, but still depen-
dent on the types of the agents). Therefore, agents should
make future use of information they gain in this process.

Intuitively, the effects of collective (coalitional) actions
provide information about the capabilities of partners. Agents
can use this to inform their decisions regarding future coali-
tion participation. To account for such considerations, we
adopt the framework we introduced in [3]: we describe there
a reinforcement learning (RL) model that enables agents to
improve the quality of the coalitions formed (and tasks un-
dertaken) using experience gained by repeated interaction
with others and the observed effects of coalitional actions.
Specifically, a Bayesian RL model is proposed, in which
agents maintain explicit beliefs about the types of others.

Our framework in [3] makes use of a partially observable
Markov decision process (POMDP) formulation similar to
that used for multiagent RL in stochastic games [2]. This
enables the agents to assess the long-term value of coalition
formation decisions, including both the immediate value of
potential collective actions within a specific coalition and
the value of information: how what is learned about one’s
partners can influence future coalitional decisions. Agents
take action stochasticity and type uncertainty into account,
translate it into coalitional value uncertainty, and choose
actions and coalitions not only for their immediate value,
but also for their informational value.

Our main contribution in the current paper is the develop-
ment of new, non-myopic exploration methods for repeated
coalition formation under uncertainty in this framework.
Our approximation methods do not require the full solu-
tion of the exploration POMDP, hence are quite tractable
in practice. One algorithm, in particular, consistently and
handily outperforms the myopic approximation investigated
in [3] in a variety of settings, and is shown to successfully
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allow for the easy transfer of knowledge among tasks.
The rest of the paper is structured as follows: Section 2

provides background on coalition formation and Bayesian
RL; Section 3 describes the Bayesian RL framework for opti-
mal repeated coalition formation under uncertainty [3]. Sec-
tion 4 presents our main contributions, Bayesian RL algo-
rithms to approximate the solution of the exploration POMDP.
Section 5 details our experimental results, and Section 6 pro-
vides a discussion of related work.

2. BACKGROUND
In this section we provide some essential background on

coalition formation and Bayesian reinforcement learning.
Coalition formation is one of the fundamental areas of

study within cooperative game theory, which deals with sit-
uations where players act together in a cooperative equilib-
rium selection process involving some form of bargaining,
negotiation, or arbitration [11]. Let N = {1, . . . , n}, n > 2,
be a set of players. A subset S ⊆ N is called a coalition,
and we assume that agents participating in a coalition may
coordinate their activities for mutual benefit. A coalition
structure is a partition of the set of agents containing ex-
haustive and disjoint coalitions. Coalition formation is the
process by which individual agents form such coalitions, gen-
erally in order to solve a problem by combining their efforts.
The coalition formation process involves three main activ-
ities [12]: (a) searching for an optimal coalition structure;
(b) solving a joint problem facing members of each coalition;
and (c) dividing the value of the generated solution among
the coalition members.

We assume that a characteristic function υ : 2N → ℜ
defines the value υ(S) of each coalition S [11]. This υ(S)
represents the maximal payoff the members of S can jointly
receive by cooperating effectively. An allocation is a vector of
payoffs (or demands) d = (d1, ..., dn) assigning some payoff
to each i ∈ N .1

Since we adopt a Bayesian RL approach to learn the abili-
ties of other agents, we now review some relevant work. Con-
sider an agent learning to control a stochastic environment
modeled as a Markov decision process (MDP) 〈S ,A, R,Pr〉,
with finite state and action sets S ,A, reward function R,
and dynamics Pr. Pr refers to a family of transition distri-
butions Pr(s, a, ·), and Pr(s, a, s′) is the probability of reach-
ing state s′ after taking action a at s. The probability with
which reward r is obtained when state s is reached is denoted
R(s, r). The agent has to construct an optimal Markovian
policy π : S 7→ A maximizing the expected sum of future
discounted rewards over an infinite horizon. This policy, and
its value V ∗(s) at each s ∈ S , can be computed using stan-
dard algorithms such as policy or value iteration [1]. An RL
agent does not have direct access to R or Pr, so it must learn
a policy based on its interactions with the environment.

When model-based RL is used, the agent maintains an es-

timated MDP 〈S ,A, bR, cPr〉, based on the set of experiences
〈s, a, r, t〉 obtained so far. At each stage this MDP can be
solved (or approximated). Single-agent Bayesian methods
[6] assume some prior density P over possible dynamics D
and reward distributions R, which is updated with each data

1Coalitional stability (e.g., notions like the core) is a crit-
ical aspect of any theory of coalitional formation. We do
not address stability in this paper, but note that a stability
concept under the form of type uncertainty that we adopt
below, the Bayesian core, has been introduced in [3, 5].

point 〈s, a, r, t〉, and allow agents to explore optimally. In a
similar fashion, multi-agent Bayesian RL agents [2] update
prior distributions over the space of possible strategies of
others, as well as the space of possible MDP models. There
are two components of the value of performing an action at a
belief state: an expected value given the current belief state,
and a value of the action’s impact on the current belief state.
The second component, in particular, captures the expected
value of information (EVOI) of an action. Each action
gives rise to some immediate response by the environment
changing the agent’s beliefs, and subsequent action choice
and expected reward is influenced by this change. EVOI
computation can be combined with “object-level” expected
value via Bellman equations that describe the solution to the
POMDP representing the exploration-exploitation problem
of the agents. Experiments [6, 2] demonstrate the practical
value of the Bayesian approach, which allows for exploration
costs to be effectively weighed against their expected ben-
efits. This leads to informed, intelligent exploration, and
better online performance while learning than other explo-
ration models.

3. A BAYESIAN RL FRAMEWORK
The Bayesian RL models described have been applied to

the problem of repeated coalition formation under type un-
certainty by Chalkiadakis and Boutilier [3]. We describe
that model and approach in some detail here, since our main
contributions build on this model.2

In realistic settings, agents participating in coalition for-
mation activities will have to face type uncertainty and un-
certainty regarding coalitional actions and their results. The
possibility of repeated interaction provides the agents with
the ability to learn, progressively updating their beliefs about
the types of their potential partners. However, agents should
not seek to reduce uncertainty for its own sake by employ-
ing crude exploration policies: this often leads to poor on-
line performance [2]. Indeed, we generally expect that in the
limit type uncertainty will remain regarding the capabilities
of unpromising partners.

To address this, we recap the model of [3] for optimal
repeated coalition formation. Agents are interested in even-
tually forming efficient, profitable coalitions, but they also
want to gather as much reward as possible while doing so.
Optimal repeated coalition formation, or optimal coalitional
learning, aims to maximize the long-term performance of an
agent that repeatedly engages in coalition formation activi-
ties and receives its share of payoffs arising from agreed-upon
coalitional actions—as specified in agreements reached dur-
ing the aforementioned coalitional activities.

Agents repeatedly form coalitions and take coalitional ac-
tions. This gives agents the opportunity to update their
beliefs about the types of their partners by observing the
results of coalitional actions. Belief updates using our RL
formulation will in turn influence future coalition formation
decisions, which will be taken in a manner that is sequen-
tially rational. When using a Bayesian approach to repeated
coalition formation, agents are often satisfied not to learn
about the abilities of potential partners, if they expect the
costs of doing so to outweigh the anticipated benefits.

2The model in [3] also deals extensively with issues of coali-
tional stability and various processes for coalition formation
itself. Our present focus is entirely on the RL problem.
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A Bayesian Coalition Formation Model.
Assume a set of agents N = {1, . . . , n}. For each agent i,

Ti is a finite set of possible types. Each agent has a specific
type t ∈ Ti, which intuitively captures its “abilities.” Let
T = ×i∈NTi denote the set of type profiles. For any coalition
C ⊆ N , TC = ×i∈CTi, and for any i ∈ N , T−i = ×j 6=iTj .
Each agent is aware of its own type ti, but not those of other
agents. The beliefs Bi of agent i comprise a joint distribution
over T−i, and Bi(t−i) is the probability i assigns to its peers
having type profile t−i; further, Bi(tC) denotes the marginal
of Bi over any coalition of agents C.

A finite set of coalitional actions AC is available to a coali-
tion C. When a coalitional action is taken, it results in some
outcome o ∈ O. The odds with which an outcome is real-
ized depends on the types of the coalition members with
Pr(o|α, tC) being the probability of outcome o given that
C takes action α ∈ AC and member types are given by
tC ∈ TC (e.g., the outcome of building a house will depend
on the abilities of the team members). We also assume that
each outcome o of a coalitional action results in some reward
R(o) assigned to the coalition, and is assumed to be divisible
among its members.

The value of coalition C with member types tC is:

V (C|tC) = max
α∈AC

X

o

Pr(o|α, tC)R(o) = max
α∈AC

Q(C, α|tC)

Unfortunately, this value cannot be used in the coalition
formation process when the agents are uncertain about their
potential partners’ types. Nevertheless, each i has beliefs
about the value of any coalition based on its expectation of
this value with respect to other agents’s types, and thus can
translate type uncertainty into coalitional value uncertainty:

Vi(C) = max
α∈AC

X

tC∈TC

Bi(tC)Qi(C, α|tC) = max
α∈AC

Qi(C, α)

Here Vi(C) is not simply the expectation of V (C) w.r.t.
i’s belief about types. The expectation Qi of coalitional
action values cannot be moved outside the max operator,
since a single coalitional action must be chosen which is
useful given i’s uncertainty regarding its partners (i.e., i
might prefer different coalitional actions to be performed
by a specific coalition when he holds different beliefs). Of
course, i’s estimate of the value of any coalitional action,
may not be shared by other agents. Nevertheless, any i
is certain of its own reservation value, the amount it can
attain by acting in a singleton coalition: rv i = Vi({i}) =
maxα∈A{i}

P
o
Pr(o|α, ti)R(o).

Optimal Repeated Coalition Formation.
The RL process proceeds in stages: at each stage t, the

agents engage in some coalition formation process, based on
their current beliefs Bt

i . Once coalitions are formed, each
C ∈ CS t takes its agreed upon action αt

C and observes the
resulting outcome o of that action, as explained above. Each
agent in C then updates its beliefs:

B
t+1

i (tC) = z Pr(o|α, tC)Bt
i (tC)

where z is a normalizing constant. We often denote the up-
dated belief state as B

o,α
i . In order to make our model ap-

plicable to realistic circumstances, and in order to be able to
test the full potential of our RL algorithms, we assume only
limited observability of the realized outcomes: the agents
observe only the outcome of their own coalition’s action.

The process then repeats. Thus, the RL process consists of
coalition formation games being played (the coalition for-
mation stage) and the execution of coalitional actions and
subsequent belief updating (the RL stage).

The approach to optimal repeated coalition formation of
[3] uses Bayesian exploration [6, 2]. Bayesian agents are able
to balance exploration with exploitation, realizing sequential
performance that is optimal w.r.t. their beliefs. Bayesian ex-
ploration outperforms in expectation any other method hav-
ing the same prior knowledge. In [3], the problem of optimal
coalitional learning is cast as a POMDP, or a belief-state
MDP. Assuming an infinite horizon problem, with discount
factor γ (with 0 ≤ γ < 1), it is possible to formulate the
optimality equations for the POMDP; however, because an
agent is unaware of others’ beliefs, certain subtleties arise.

We let Qi(C, α, dC , Bi) denote the long-term value i places
on being a member of coalition C that has agreed action α
and a vector of demands dC : that is, the agent realizes that
after this action is taken, the coalition formation process will
repeat. Thus, Qi(C,α, dC , Bi) represents the quality value
of a coalitional agreement 〈C, α, dC〉 under belief state Bi.
This is defined using Bellman-like equations:

Qi(C, α, dC , Bi) =
X

o

Pr(o|C, α, Bi)[riR(o) + γVi(B
o,α
i )]

(1)

=
X

tC

Bi(tC)
X

o

Pr(o|α, tC)[riR(o) + γVi(B
o,α
i )]

Vi(Bi) =
X

C|i∈C,dC

Pr(C, α, dC |Bi)Qi(C, α, dC , Bi) (2)

Recall that R(o) is the immediate reward realized by C
for its action resulting to outcome o, and ri is the relative
demand ri = di

P

j∈C dj
of agent i given demand vector dC

(and thus riR(o) describes i’s reward share when coalitional
action α results in o). Vi(Bi) describes the value of belief
state Bi to i, deriving from the fact that while in Bi, agent
i may find itself participating in any of a number of possible
agreements, each of which has some Q-value.

The agents’ uncertainty is effectively encapsulated in the
belief-state MDP described by Eqs. 1 and 2; also, the ex-
pected value of information of a coalitional agreement is nat-
urally captured in these equations since the value equations
include the value of possible future belief states B

o,α
i that

result from current partnerships, thus reflecting new, more
refined beliefs about certain potential partners and how it
will impact future decisions. Agents enter in the negotiation
(coalition formation) process using Q-values to value coali-
tional agreements rather than immediate expected reward
estimates: that is, they incorporate the long-term value of
their decisions in this repeated coalition formation environ-
ment. The optimal course of action for the agents, then, is
to act greedily with respect to their Q-value function.3

The value function Vi above cannot be defined by maxi-
mizing Q-values, unlike typical Bellman-like equations. This
is because agent i does not have complete control over the
choice that dictates reward (i.e., the coalition that is formed).
The agent must instead predict the probability Pr(C, α, dC |Bi)
with which a specific coalitional agreement 〈C, α, dC〉 in

3We do not deal with negotiation processes in this paper, but
refer to [3, 4] for such. The framework enables the agents to
use the estimated Q-values of coalition formation decisions
within any bargaining process employed during formation.
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which it participates will arise as a result of negotiation.
However, with this in hand, the value equations provide the
means to determine the long-term value of any coalitional
agreement. Specifically, they account for how i’s beliefs will
change in the future when deciding how useful a specific
coalition is now. The sequential value of any coalitional
agreement (and action), accounting for its value of informa-
tion, is used in the formation process, as explained above.

The terms Pr(C, α, dC |Bi) can be estimated in a variety of
ways, depending on the coalition formation algorithm uses
during the formation stage. However, it is particularly chal-
lenging in realistic environments where agents do not have
full knowledge of all parameters of the negotiation process,
and/or they have limited observability of the environment
(as is our case). Since agents can observe the outcome of
their own coalition’s action only, it is not possible for them
to monitor the way the beliefs of others are changing, and
this affects their capability to estimate the Pr(C, α, dC |Bi)
probabilities. We return to this issue in the next section. We
note however that one of our non-myopic algorithms allows
the agents to sidestep this difficulty.

4. COMPUTATIONAL APPROXIMATIONS
The calculation of an exact solution to the repeated coali-

tion formation problem using the Bayesian RL formulation
of Eqs. 1 and 2 is generally infeasible. The solution of
POMDPs is generally quite difficult: and our state space and
action space grow exponentially with the number of agents.
Thus computational approximations are needed. A simple
myopic approach is developed in [3] (which we describe be-
low). We describe several new algorithms that tackle this
POMDP. These Bayesian RL algorithms can be combined
with any underlying negotiation process: the agents eval-
uate any potential agreement 〈C, α, dC〉 that may arise as
a result of a negotiation, and use these valuations to enter
negotiations that may be governed by any rules.4 In con-
trast to the simple myopic approach, most of the algorithms
we develop attempt to take the sequential value of decisions
into account.

One-Step Lookahead Algorithm.
We first present a one-step lookahead (OSLA) algorithm,

which deals only with immediate successor belief states fol-
lowing coalition action α and resulting outcome state s. The
motivation for this is that computing a value for every possi-
ble belief state in order to solve the belief-state MDP is gen-
erally impractical (and it is further complicated by the fact
that an agent is not in complete control of the choices that
dictate reward). It is possible to approximately calculate the
value of the belief states that can follow the execution of a
coalitional action (and the subsequent observed outcome)
under the current agreement. When employing the OSLA
method, Vi(B

o,α
i ) in Eq. 1, the value of a successor belief

state will be calculated myopically.
Specifically, we define the 1-step lookahead Q-value of a

4Of course, the agents may need to take the specific set of
rules into account when evaluating the various agreements.

〈C, α, dC〉 agreement for i, under belief state Bi, to be

Q
1
i (C, α, dC , Bi) =

X

o

Pr(o|C, α, Bi)[riR(o) + γV
0

i (Bs,α
i )]

(3)

=
X

tC

Bi(tC)
X

o

Pr(o|α, tC)[riR(o) + γV
0

i (B′
i)]

(where ri is i’s relative demand given dC). In this equation,
V 0

i (B′
i) represents the myopic (“0-step” lookahead) value of

successor belief state B′
i, which can be calculated using the

0-step (myopically calculated) Q-values under some B′
i as:

V
0

i (B′
i) =

X

β∈AC′ ,dC′ |i∈C′

Pr(C′
, β, dC′ |B′

i)Q
0
i (C

′
, β, dC′ , B

′
i)

(4)

Q
0
i (C

′
, β, dC′ , B

′
i) = r

′
i

X

tC′∈TC′

B
′
i(tC′)

X

o′

Pr(o′|β, tC′)R(o′)

(5)

where r′i is i’s relative demand given dC′ , and Q0 values
are calculated accounting only for the expected immediate
reward of C′ (with agreed dC′) for taking β under B′

i.
To approximate Pr(C′, β, dC′ |B′

i), we view it as the prob-
ability of reaching a specific agreement 〈C′, β, dC′〉 after one
negotiation step rather than after a whole negotiation pro-
cess. In other words, we apply a lookahead bound l = 1
on the size of the underlying bargaining game tree. Specifi-
cally, an agent who wants to estimate the 1-step Q-value of
(every potential) agreement 〈C, α, dC〉 at some negotiation
step must calculate (as in Eq. 4) Pr(C′, β, dC′ |B′

i) for each
B′

i reached after the execution of α and possible observa-
tion o. However, we assume that the agent cares only for
agreements that are reachable within one negotiation step
after “fixing” his beliefs to B′

i. We use a lookahead of
1 when solving the game tree in our experiments for effi-
ciency. However, this tree-size lookahead bound could take
any value of l ≥ 1, depending on specific requirements. (An
additional issue complicating the solution of the game tree
is that the “common prior assumption” typically used when
solving Bayesian games is not valid in our setting. We defer
discussion of this issue to an extended version of this pa-
per.) Two more computational difficulties arise when one
tries to sum over all possible tC in Eqs. 3 and 5, and over
all possible formation moves (choice of coalition, action and
demands) in Eq. 4 above. Nevertheless, sampling and ap-
propriate discretization of demands can help alleviate these
problems.

In summary, thus, the OSLA method proceeds as follows:

1. At the beginning of each RL stage, each agent i with belief state
Bi calculates the 1-step Q-value Q1

i of any potential agreement
〈C, α, dC〉, using Eqs. 3, 4 and 5. The Pr(C′, β, dC′ |B′

i) in
Eq. 4 are derived for each potential successor belief state B′

i by
each agent solving a “fixed beliefs” game describing the antici-
pated negotiations, assuming a game tree size of l.

2. The calculated Q1

i values are then used by i in the subsequent
coalition formation process.

VPI Exploration Method.
Here we recast the ideas of VPI exploration [7, 6, 2] to

the repeated coalition formation setting, and propose a VPI
exploration method that estimates the (myopic) value of ob-
taining perfect information about a coalitional agreement
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given current beliefs. The sequential value of any coalitional
action, accounting for its value of information, is then used
in the formation process.

Though the basic idea of our algorithm is as in [7, 6, 2],
it differs in that we do not sample over the space of MDP
models, but rather over the space of types configurations.
In addition, the actions for which VPI is calculated are the
set of possible coalitional agreements instead of the actions
of a single agent. Finally, we propose a way to combine our
VPI technique with the OSLA technique introduced above.

To begin, consider what can be gained by learning the true
value of some coalitional agreement σ = 〈C, α, dC〉. Suppose
σ is adopted and the corresponding action α is executed, and
assume that it leads to specific exact evidence regarding the
types of the agents in C (i.e., we assume the true type vector
t
∗
C is revealed following σ). In this way, the true value of σ

is also revealed, and it can be defined as the share of the
“true” coalitional agreement value that i gets; denote this
by q∗σ = q∗

〈C,α,dC〉
= Qi(C, α, dC |t∗C), with

Qi(C, α, dC |t∗C) = ri

X

o

Pr(o|α, t
∗
C)R(o) (6)

where ri is i’s relative demand given dC . This is a “my-
opic” calculation of the specific (future) coalitional agree-
ment value, assuming the definite adoption of this agree-
ment, and the subsequent revelation of their true types.

This new knowledge is of interest only if it leads the agent
to change its decision as to what strategy to follow. Specif-
ically, there are two ways to take advantage of this new,
“perfect” information.

First, suppose that under the current belief state Bi the
value of i’s current best action σ1 = 〈C1, α1, dC1

〉 is q1 =
Qi(C1, α1, dC1|Bi), the expected value given belief state.
If the new knowledge indicates that σ is a better action
(i.e., q∗σ > q1), i should prefer σ to σ1, gaining q∗σ − q1.
Second, suppose that the value of the second best action
σ2 = 〈C2, α2, dC2〉 is q2 = Qi(C2, α2, dC2|Bi). If action σ
coincides with the action considered best, σ1, and the new
knowledge indicates that the real value q∗σ1

= q∗σ is less than
the value of the previously considered second-best action,
then the agent should prefer σ2 to σ1, gaining q2 − q∗σ1

.
Thus, the gain from learning the true value q∗σ of σ is:

gainσ(q∗σ|t
∗
C) =

(
q∗σ − q1, if σ 6= σ1 and q∗σ > q1

q2 − q∗σ, if σ = σ1 and q∗σ < q2

0, otherwise
(7)

However, the agent does not know in advance what types
(and, consequently, which Q-value) will be revealed for σ;
therefore, it needs to take into account the expected gain
given its prior beliefs. Hence, it computes the expected value
of perfect information about σ as:

EVPI(σ|Bi) =
X

t
∗
C

gainσ(q∗σ|t
∗
C)Bi(t

∗
C) (8)

This expected value of perfect information (VPI) repre-
sents the expected gain deriving from learning the true value
of coalitional agreement σ and it treated as a surrogate for
the the value of “exploring” σ. Hence, the value of σ taking
into account this expected gain is defined as:

QVi(σ|Bi) = Qi(σ|Bi) + EVPI(σ|Bi) (9)

and agents taking VPI into account should have a preference
for agreements maximizing this equation. The agents should

then use these QV values instead of using the usual Q-value
quantities in their decision making for forming coalitions.
The calculation of expected values and VPI above can be
done in a straightforward manner if the number of possible
type configurations is small. If, however, this number is too
large, sampling has to be employed.

In summary, the VPI algorithm proceeds as follows:

1. The “true” Q-values of any potential agreement σ are myopi-
cally calculated via Eq. 6.

2. The gain from reaching σ is calculated via Eq. 7.

3. The VPI for agreement σ is calculated via Eq. 8.

4. The Q-values QVi for (any) σ are calculated through Eq. 9 (and
are then used in the formation process).

VPI exploration is a non-myopic method, since it reasons
about the value of future belief states, accounting for the
expected VPI of coalitional agreements and its impact on
the future decisions. Notice, however, that the VPI algo-
rithm still uses myopic calculations when determining the
value of agreements. Even though this is an approximation,
it enables the method to focus on exploiting the value of
(perfect) information regarding the types, however myopic
the estimation of this value may be. This stands in con-
trast to lookahead methods which attempt to estimate the
value of specific coalitional actions. Thus, unlike lookahead,
the VPI algorithm does not have to explicitly incorporate
the common prior hypothesis in the calculation of the Q-
values to be used during formation—and does not need to
account for the probability of agreement when transitioning
to future belief states. The VPI exploration method is thus
not tightly tied to the specific formation process used. This
myopic VPI estimation proves to work well in a variety of
experimental settings.

Nevertheless, for interest, we also developed and tested a
method which combines VPI with OSLA. This VPI-over-
OSLA method uses the application of VPI over Q-values
estimated using the OSLA method. When this method is
used, the values of currently expected best action, second
best action and exploratory action σ are estimated using
one-step lookahead (and, thus, there is a need to approxi-
mate the probabilities of future agreements in this case).

Maximum A Posteriori Type Assignment RL Algorithm.

A maximum a posteriori (MAP) type assignment algo-
rithm can also be defined: Given a belief state Bi, agent i as-
sumes that the type ti

j of an opponent j is the one specified as

the most probable by Bi(tj): that is, ti
j = argmaxtj

Bi(tj).
Thus, a vector of types tC assumed by i to represent the
true types of partners’ (in any coalition C) can be defined,
and agent i calculates Q-values as

Qi(C, α, dC |tC) = ri

X

o

Pr(o|α, tC)R(o)

Notice that this calculation is myopic, not accounting for
the sequential value of an agreement.

Myopic Bayesian RL Algorithm.
Finally, a myopic Bayesian RL algorithm was defined in

the obvious way in [3]: the agents do not reason about future
belief states, but rather just myopically assess the value of
various coalitional moves, apply an inner coalition formation
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process, and repeat. A myopic agent i calculates the value
of agreement 〈C,α, dC〉 under belief state Bi as:

Qi(C,α, dC , Bi) = ri

X

tC∈TC

Bi(tC)
X

s

Pr(o|α, tC)R(o)

5. EXPERIMENTAL EVALUATION
We conducted several types of experiments to evaluate

our methods. For space reasons, however, we only present
two in this paper. In the first set of experiments, we com-
pare our methods to each other by requiring the agents to
face the same coalition formation problem repeatedly. In the
second, our agents act in a dynamic environment, in which
potentially different tasks arise at each stage. This setting
demonstrates that our approach allows for the transfer of
knowledge between different tasks. Further, it helps demon-
strate the benefits of using the VPI method in particular.

Our agents can observe the results of the action taken by
the coalition to which they belong, but not those of any
other coalition. Thus, they can only update their beliefs
regarding their own partners at any stage. The coalition
structure in place at the beginning of each RL step is the
result of the preceding formation process. In all settings,
the experiments are run in homogeneous environments (i.e.,
all agents employ the same algorithm). The main metric we
use in all our experiments is discounted reward accumulated
by the coalitions—this reflects the sequential rationality of
agent decisions. The negotiation process used during the
formation stages has 50 steps (per RL stage), and is the
best reply with experimentation (BRE) dynamic process in-
troduced in [3]. For sampling type vectors, we used the fol-

lowing approach: if |T ||C| ≤ 1000, where |T | is the number
of types and |C| is the size of coalition C, no sampling was
used; otherwise, the sampling size was set to 100. Finally,
each experiment consists of 30 runs, and each run employs
500 RL steps, and the discount factor used was 0.985.

Our first setting has 10 agents, with 10 possible types per
agent, 3 actions per coalition, and 3 outcomes per action.
The agents form companies to bid for software projects.
There are 3“major” types (project roles) for the agents, each
with 3 or 4 “quality” types: interface designer = 〈 bad, aver-
age, expert 〉, programmer = 〈 bad, average, good, expert 〉
and systems engineer = 〈 bad, average, expert 〉. The latter
correspond to quality “points” (0 points for “bad” types and
then increasing by 1), which, when summed, characterize
the overall quality of a coalition. The agents know the ma-
jor type of their opponents, but not their quality types. The
companies bid for large, average-sized or small projects (ac-
tions), and expect to make large, average or small profit
(outcomes). The outcome (and subsequent reward) of a
coalitional action depends on the coalition’s quality and the
action performed. In general, bidding for large projects is
unlikely to be rewarding: a coalition will be unable to receive
large profits by doing so unless its overall quality is high and
there is enough diversity (regarding major types) among its
members. Also, it is to be expected that myopic agents will
find it hard to form size 2 coalitions (starting from a config-
uration structure of singletons), even if these coalitions can
serve as the “building blocks” for more promising ones. Due
to space limitations, we omit further details.

We run our agents in two types of settings: one with a
common prior that was uniform with respect to the qual-
ity types of opponents, and one with a misinformed com-
mon prior—in this case the agent has a belief of 0.7 that

each of its opponents is of a quality type other than its real
type. The results, in terms of average discounted accumu-
lated coalitional reward, are shown in Fig. 1. To have a com-
parison metric against some form of “optimal” behaviour of
the agents, we also tested the behaviour of agents who were
fully informed regarding each others’ types (using a com-
mon prior that accurately depicted the assignment of types
to agents); we do not show the plot in order not to con-
gest the figure, but their discounted average (over 30 runs)
accumulated payoff after 500 iterations was 258726.

The results clearly show that VPI is the most successful
of the methods. It managed to accumulate 76.6% of the av-
erage discounted rewards accrued by fully informed agents
in the misinformed priors case (and 67% in the uniform pri-
ors case), with other methods not exceeding 51.7%. One
important observation is that the VPI method manages to
achieve good performance without, in most cases, signifi-
cantly reducing the agents’ uncertainty regarding the true
type of its partners. This observation reinforces the point
that it is not always necessary for agents to seek to force-
fully reduce uncertainty (e.g., via uninformed exploration)
in order to achieve good performance.

The MAP method also does quite well in these experi-
ments. It effectively employs“crude”exploration, with agents
behaving“greedily”towards the value of information they re-
ceive (slight modification of beliefs may“point”to a different
type for a partner to be taken for granted). This turned out
to be helpful here, assuming major types which are known
to agents, with only 3 or 4 unknown quality types each, and
with a reward signal that can in fact be quite clear regard-
ing the quality of coalitions. However, such conditions are
unlikely to hold in realistic environments.

On the other hand, the performance of OSLA and VPI-
over-OSLA in terms of discounted accumulated reward is,
in general, poor. We attribute this to the fact that OSLA
cannot successfully approximate Pr(C′, β, dC′ |B′

i). Notably,
however, VPI-over-OSLA achieves better performance than
OSLA. (We also note that the reward-gathering performance
of OSLA and VPI-over-OSLA in the final stages of the ex-
periments, is in general comparable to that of methods that
fare better in terms of discounted accumulated reward.)

The experiment above had agents facing the same coali-
tion formation problem—with the same transition probabil-
ities and outcomes—at each RL step. This is analogous to
having the agents facing static tasks—the same set of tasks
needs to be served at each time point—in distinction to fac-
ing dynamic tasks. One challenge in dynamic situations is
for agents to discover the type of their opponents. The need
to achieve this goal is more pressing in this case, since they
will have to put their beliefs to test facing different situations
each time.

The setting we now present tests the abilities of our agents
to achieve transfer of knowledge between tasks; this is one
of the benefits of using learning to address type uncertainty:
once agents learn about the abilities of actual and potential
partners, they can re-use this knowledge when encountering
those partners again under different circumstances. Here
we assume that the agents do not know in advance which
tasks they are going to face in the next RL step. In other
words, the agents do not know in advance which transition
to outcome states model prevails in the next RL step (they
only know the model in the current RL step). This makes
the environment truly dynamic. The POMDP assumptions
do not now hold, due the non-stationarity of the environ-
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Figure 1: First setting. Discounted average total payoff accumulated by coalitions (in 30 runs). Error bars
represent 95% confidence intervals.

ment. Therefore, lookahead methods should do poorly here,
since agents employing them would wrongfully anticipate to
encounter specific tasks again in the near future.

In our setting, 5 agents co-exist in a homogeneous environ-
ment and form coalitions over a period of 500 RL steps. Each
one of the agents is assigned with one of 5 different types
(so that the agents are of different types). The agents share
a uniform common prior regarding the types of opponents.
At each RL step, the formed coalitions have 3 coalitional
actions at their disposal, with 3 possible outcome states per
action. We assume that five bandits in the Wild West face
when trying to form a successful gang. Specifically, the
“Good”, the “Bad” and the “Ugly” (agents’ types) have to
discover each other and come together in order to “Rob the
Train” (coalitional action), so as to get the “Big Money”
(outcome state). In order to do so, they will go through an
experience-gathering phase, during which it is possible to co-
alesce with other villains, performing “petit crime” actions
of lesser significance given the coalition qualities and under-
lying stochasticity. So, during the first 400 RL steps, the
agents are faced with two “petit-crime” problems, 1 and 2,
alternatively (with a distinct outcome transition model for
each, unknown to the agents beforehand) while they face
problem 3 during the last 100 RL steps (the “Big Crime”
phase). By the time RL step 401 is reached, they should
have gained enough experience in order to tackle problem
3 (through identifying each other correctly) and fare well
in their “Big Crime” activities, or else they are going to be
making only “Some Change” during most of the last 100 RL
steps. Specifically, if during problem 3, all three of them
form a coalition and decide to rob the train, they have 85%
probability of making Big Money. The setup of problems 1
and 2, in contrast, is such that it urges the agents to form
two-agent coalitions, so that they get information regarding
their partners’ types.

It is obvious from the results of Figure 2 that VPI domi-
nates the other methods in terms of discounted accumulated
rewards (i.e., behaviour during the “experience-gathering”
phase); it is also dominant in terms of accumulated rewards
during the final stage of the experiment (154572 compared to
66051.3 for Myopic, 5651.13 for OSLA and 3087.73 for VPI-
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over-OSLA). This is because it uses myopic VPI regarding
the types of partners, and does not deal intrinsically with
the expected utility of future anticipated coalitional actions
in subsequent belief states (the VPI method is not tightly
linked to the “internal” coalition formation process used).
In contrast, the lookahead methods’ behaviour was much
poorer, as expected. Nevertheless, OSLA and VPI-over-
OSLA agents do manage to collect, during the last phase, ap-
proximately 10 and 6 times more reward, respectively, than
the MAP agents, who have been utterly confused by the
setup. We also note that in a similar setting—where agents
knew beforehand the set of dynamic tasks to be faced in the
next step—OSLA and VPI-over-OSLA did a lot better, with
VPI-over-OSLA outperforming Myopic and OSLA.

To conclude, we note that apart from consistently out-
performing the other methods, VPI is also a quite scalable
method, whose worst case running time (for an entire run,
including the negotiation phases, in the 10-agent setting)
is on the order of 700s. This makes the method more at-
tractive for realistic settings. By comparison, OSLA can
exhibit running time of the order of >25 hours per run (in
the 10-agent setting). No parallelism was used in those ex-
periments; however, the autonomous agents can be assumed
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to be performing their calculations in parallel, which could
mean that the total time for the experiments would be re-
duced by a factor close to the number of agents.

6. RELATED WORK AND DISCUSSION
Much of the coalition formation related work done in AI is

motivated by the need to serve tasks requiring the utilization
of various resources found among a collection of agents. We
note that resources can be readily incorporated in our model,
since they can be thought of as determining the agent types.

Shehory and Kraus [13, 14] present coalition formation
algorithms which take into account the capabilities of the
various agents. However, the agents rely on information
communicated to them by their potential partners in order
to form their estimation of others’ capabilities. This is the
case also for the approach of [15], which utilizes coalition
formation algorithms in order to achieve collaboration of
agents so that tasks of common interest are served (but they
do not deal with individual rationality).

Kraus, Shehory and Taase [8, 9] proposed a heuristic coali-
tion formation method in the “Request for Proposal” do-
main, under a restricted form of coalitional value uncer-
tainty. Again, the focus of their work is on social-welfare
maximization rather than individual rationality. Further-
more, no learning is involved, since they do not tackle re-
peated coalition formation: a formed coalition “walks away”
from negotiations and it cannot be decomposed. Campos
and Willmott on the other hand, do bring repeated coali-
tion formation into the picture in [10]. They tackle “itera-
tive coalition games” that may involve up to 100 agents to
fulfill a task which does not change over time. The agents
use pre-described strategies (such as tit-for-tat) for joining or
abandoning partners—thus, the approach is basically static.

In distinction to the aforementioned approaches, our frame-
work enables agents to not only dynamically choose the tasks
they wish to deal with, but also to choose the proper way
(action) to deal with them. Task execution is readily incor-
porated in our model by simply viewing the tasks as entailing
the use of specific action sets. Finally, our approach poten-
tially enables the agents to form the most suitable coalitions
for a new problem “online”—in the sense that knowledge ac-
quired during executing one task is readily “transferable” to
another through the estimation of the types (capabilities) of
partners. Thus, the agents do not have to experience deal-
ing with a new specific problem for some time period before
deciding on ways to attack it.

7. CONCLUSIONS
In this paper we presented novel non-myopic algorithms

to approximate the optimal Bayesian solution to the coali-
tional exploration-exploitation problem, weighing the need
to explore the abilities of potential partners with the need to
exploit acquired knowledge. We made use of the Bayesian
multiagent RL framework for repeated coalition formation
under type uncertainty and reward stochasticity originally
proposed in [3]: this framework facilitates the sequential
decision making of the agents through experience gathered
by observation of the effects of coalitional actions. We fur-
ther verified the flexibility and generality of this framework
by exposing its ability to incorporate a variety of RL algo-
rithms and prior beliefs, and demonstrating experimentally
how it enables the agents to dynamically form coalitions,
serve tasks and transfer knowledge among them.

Apart from verifying the overall effectiveness of our ap-
proach, our experiments also indicate that our Bayesian
coalitional VPI method, in particular, is the most successful
of our methods. We have recently applied these methods
in larger, more realistic settings; specifically, we have seen
very encouraging results when applying these ideas to the
computational trust domain [16].
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