
Asynchronous Congestion Games

(Short Paper)

Michal Penn
Technion IIT

Haifa 32000, Israel
mpenn@ie.technion.ac.il

Maria Polukarov
∗

University of Southampton
SO17 1BJ, Southampton, UK
mp3@ecs.soton.ac.uk

Moshe Tennenholtz
Technion IIT

Haifa 32000, Israel
moshet@ie.technion.ac.il

ABSTRACT
We introduce a new class of games, asynchronous congestion
games (ACGs). In an ACG, each player has a task that can
be carried out by any element of a set of resources, and
each resource executes its assigned tasks in a random order.
Each player’s aim is to minimize his expected cost which
is the sum of two terms – the sum of the fixed costs over
the set of his utilized resources and the expected cost of
his task execution. The cost of a player’s task execution
is determined by the earliest time his task is completed,
and thus it might be beneficial for him to assign his task to
several resources. We prove the existence of pure strategy
Nash equilibria in ACGs. Moreover, we present a polynomial
time algorithm for finding such an equilibrium in a given
ACG.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed
Systems; I.2.11 [Artificial Intelligence]: Distributed Ar-
tificial Intelligence —multiagent systems

General Terms
Algorithms, Theory, Economics

Keywords
Congestion games, Asynchronous distributed systems, Pure-
strategy Nash equilibrium, Algorithms

1. INTRODUCTION
Congestion games received a lot of attention in the recent

game theory and computer science literature [4, 5, 8, 9, 10].
In a classic congestion game [14], each player chooses a sub-
set of a set of available resources in order to perform his task.
The cost of using a particular resource is determined by its
congestion. The important property of congestion games is
that they possess pure strategy Nash equilibria. Monderer
and Shapley [10] introduced the notions of potential func-
tion and potential game and proved that the existence of
a potential function implies the existence of a pure strategy

∗The work was done when the author was a Ph.D. student
at the Technion IIT, Haifa 32000, Israel.

Cite as: Asynchronous Congestion Games (Short Paper), Michal Penn,
Maria Polukarov and Moshe Tennenholtz,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril,Portugal,pp.1605-1608.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Nash equilibrium. They also showed that the classes of finite
potential games and congestion games coincide.

Classic congestion games can be viewed as synchronous:
the cost suffered by a player when selecting a particular re-
source is determined only by the number of users who have
chosen that resource, and does not take into account the ac-
tual order in which the assigned tasks are executed. In this
paper we present a new class of games – asynchronous con-
gestion games (ACGs) – that models noncooperative conges-
tion settings in which resources execute their assigned tasks
in a randomly chosen order. The random order of task exe-
cution reflects, for instance, a situation where players and re-
sources are the elements of an asynchronous distributed sys-
tem, in which each process has its own independent clock1.

In ACGs, we consider a finite set of players, each having
a unit length task that can be carried out by any element
of a finite set of independent resources (machines). Each
resource executes its assigned tasks in a randomly chosen
order. As a result, a player may selfishly assign his task to
several resources, hoping that his task will be completed in
a short time by at least one of the resources. It is assumed
that resource usage is costly; that is, every player has to pay
for utilizing each of his chosen resources. More specifically,
a player’s aim is to minimize his expected total cost which
is composed by the sum of the fixed costs over the set of his
chosen resources and the cost of his task execution which is
determined by the minimum completion time of his task by
any of his chosen resources.

By considering the order of task execution, the study of
ACGs is related to the literature on selfish scheduling. There
are two types of selfish scheduling: scheduling involving self-
ish machines [2, 6, 12] in which resources attempt to opti-
mize their own objectives, and scheduling involving selfish
tasks [1, 3, 7] in which each participant’s objective is to
minimize the completion time of his task. The latter type is
closely related to congestion games. In particular, a model
in which a player is interested in minimizing the sum of the
completion times of his tasks over the set of his resources,
can be viewed as a variant of weighted congestion games.

Introducing a new class of games raises the important
question of the existence of pure strategy equilibria as well
as the computation of such equilibria. There are only few
known classes of games which possess pure strategy equilib-
ria, and there seems to be relatively little work providing
efficient and exact algorithms for computing such equilibria.
In this paper we introduce the class of ACGs and prove that
these games possess a Nash equilibrium in pure strategies,

1The idea of using random ordering in order to reflect the
asynchronous nature of processes in distributed systems is
discussed, for example, in Monderer and Tennenholtz [11].

despite the non-existence of a potential function. In ad-
dition, we present a polynomial time algorithm for finding
such an equilibrium in a given ACG.

The rest of the paper is organized as follows. In Section 2
we define our model. In Sections 3, 4 and 5 we present our
results. In 3 we show that ACGs are not potential games. In
Section 4 we prove that every ACG possesses a pure strategy
Nash equilibrium, despite the non-existence of a potential
function. In Section 5 we present an O(nm2) algorithm for
computing such an equilibrium. We conclude in Section 6.
Due to lack of space the proofs are omitted.

2. THE MODEL
Let N = {1, . . . , n} be a set of n players and let M =

{e1, . . . , em} be a set of m resources. Player i ∈ N chooses
a strategy σi ∈ Σi which is a nonempty subset of the re-
sources: Σi = P (M) r {∅}. Given a subset S ⊆ N of the
players, the set of strategy combinations of the members
of S is denoted by ΣS = ×i∈SΣi, and the set of strat-
egy combinations of the complement subset of players is
denoted by Σ−S (Σ−S = ΣNrS = ×i∈NrSΣi). The set
of pure strategy profiles of all the players is denoted by Σ
(Σ = ΣN). Let σ = (σ1, . . . , σn) ∈ Σ be a strategy profile.
The (m-dimensional) congestion vector that corresponds to
σ is h(σ) = (he(σ))

e∈M
, where he(σ) =

˛

˛{i ∈ N : e ∈ σi}
˛

˛.

The outcome for player i ∈ N from σ is the vector xi(σ) =
`

xi
e(σ)

´

e∈M
∈ {1, . . . , n,∞}m of the ordering numbers of

player i’s task on all the resources, where xi
e(σ) ∈ {1, . . . , n}

for e ∈ σi and xi
e(σ) = ∞ for e /∈ σi. The player’s objective

is to minimize his total cost that consists of the sum of the
fixed costs over the set of resources he uses and the cost of
the player’s task execution. The fixed cost for utilizing each
of the resources equals t units of money. The cost of task ex-
ecution is a nonnegative, nondecreasing function of its com-
pletion time; thus, the longer it takes to complete the task
execution, the greater is the cost incurred by the player. We
assume that each player pays a fixed price, say c, for a unit
of time his task is in the system before completed by at least
one of the resources and, w.l.o.g., that this cost is one unit
of money per unit of time. That is, the cost of a player’s
task execution is determined by the minimum among the
completion times of his task by his chosen resources. Hence,
the cost to player i from a strategy profile σ and his outcome
xi(σ), is defined as ci

`

σ, xi(σ)
´

= mine∈σi
xi

e(σ) + |σi|t.
Given a strategy profile σ, for any player i ∈ N and re-
source e ∈ σi, let Xi

e(σ) denote a random variable repre-
senting the ordering number of player i’s task on resource
e. Since it is assumed that each task requires a unit of
time to be processed and each unit of time costs one unit
of money, Xi

e(σ) represents the cost to player i for his task
execution by resource e. We assume that Xi

e(σ) is uniformly
distributed over {1, . . . , he(σ)}. The expected cost of player
i from strategy profile σ, Ci(σ), is therefore:

Ci(σ)=E

„

min
e∈σi

Xi
e(σ)

«

+|σi|t =

mine∈σi
he(σ)

X

q=1

Y

e∈σi

he(σ) − q + 1

he(σ)
+|σi|t.

2

The aim of a player is to minimize his own expected cost.

3. POTENTIAL FUNCTION
Here we discuss the (non-)existence of a potential function

in ACGs. In particular, in Theorem 1 below we show that

2Note that if t = 0 then the dominant strategy of each player
is to assign his task to all of the resources.

any ACG with more than two players or resources is not a
potential game. Hence, ACGs are not congestion games.

Theorem 1. Any 2× 2 ACG is a potential game but no
ACG with n > 2 players or m > 2 resources possesses a
potential function

4. THE EXISTENCE OF A PURE STRAT-
EGY NASH EQUILIBRIUM

Despite the fact that ACGs, in general, are not potential
games, in this section we prove that every ACG possesses
a Nash equilibrium in pure strategies. If the number of re-
sources is greater than or equal to the number of players
(m ≥ n) then the profile σ = (ei)i∈N

is a Nash equilibrium
as well as an optimal strategy (one that minimizes the sum
of the players’ expected costs). If m < n then proving the
existence of such an equilibrium is quite complicated, as is
demonstrated below.

Our proof uses the notion of stability under single moves,
previously presented in [13], and proceeds as follows. We
define three types of single moves (A-, D- and S-moves) and
prove that a profile which is stable under all these moves
is a Nash equilibrium (see Lemma 2). We observe that the
DS-stable3 profile is easy to find, but the existence of a pro-
file which is stable under all three types of single moves
is not obvious (see Lemma 3 and the discussion following
it). We look for such a profile using two special types of
A-moves (”one- and two-step additions”, to be defined in
the sequel). Lemma 4 furthermore describes how these ad-
ditions affect DS-stable profiles. Based on this lemma, we
prove that for some DS-stable profiles the above additions
do not ruin the DS-stability (see Lemma 5). We complete
our proof by showing that applying a finite series of addi-
tion operations to such a profile results in an equilibrium
(see Lemma 6 and Corollary 7). We turn now to our results.

In a congestion setting, we are mainly interested in three
types of single moves, where each type is a deviation involv-
ing a single resource, as follows.

Definition 1. For any strategy profile σ ∈ Σ and for any
player i ∈ N , the operation of adding precisely one resource
to his strategy, σi, is called an A-move of i from σ. Simi-
larly, the operation of dropping a single resource is called a
D-move, and the operation of switching one resource with
another is called an S-move.

Lemma 2 below implies that any strategy profile in which
no player wishes unilaterally to apply a single move, is a
Nash equilibrium. This property is called the single prof-
itable move property and it allows us to consider only single
moves rather than considering all possible deviations.

Lemma 2. (The single profitable move property) Gi-
ven an ACG, let σ ∈ Σ be a strategy profile which is not in
equilibrium, and let i ∈ N be a player for which a profitable
deviation from σ is available. Then, i has a profitable A-,
D- or S-move from σ.

By Lemma 2, in order to prove the existence of a pure strat-
egy Nash equilibrium in games possessing the single prof-
itable move property, it suffices to present a strategy profile
for which no player wishes to unilaterally apply an A-, D- or
S-move. This observation motivates the following definition.

3A strategy profile which is stable under D- and S-moves
(see Definition 2).

Definition 2. A strategy profile σ is said to be A-stable
(resp., D-stable, S-stable) if there are no players with a
profitable A- (resp., D-, S-) move from σ.

In order to investigate stability under single moves in ACGs
we use the notions of light and heavy resources as well as of
even and nearly-even strategy profiles.

Definition 3. Given a strategy profile σ, resource e′ is
called σ-light if e′ ∈ arg mine∈M he(σ) and σ-heavy other-
wise. A strategy profile σ with no heavy resources will be
termed even. An even strategy profile with a common con-
gestion of k on the resources will be termed k-even. A strat-
egy profile σ satisfying |he(σ)− he′(σ)| ≤ 1 for all e, e′ ∈ M
will be termed nearly-even.

Obviously, in a nearly-even strategy profile all heavy re-
sources (if such exist) have the same congestion. Moreover,
the notions of nearly-eveness and S-stability are strongly
connected (see Lemma 3).

Lemma 3. In an ACG, a strategy profile is S-stable if and
only if it is nearly-even.

Note that the pairwise intersections of the set of S-stable
strategy profiles with the set of A-stable profiles or the set
of D-stable profiles are not empty. In particular, the strat-
egy profile σM = (M, . . . , M) is A- and S-stable, while the
profile σ0 = (ei mod m)

i∈N
is D- and S-stable (henceforth,

”DS-stable”). However, at first glance, it is not clear whether
there exists a profile which is stable under all three types of
single moves. Intuitively, one can try to achieve a Nash equi-
librium by selecting a profile which is stable under two types
of single moves and applying on it a series of single moves of
the third type. For instance, one can pick a DS-stable strat-
egy profile and try to transform it into a Nash equilibrium
by applying on it a series of profitable A-moves. However,
simple examples show that such moves may destroy the D-
or the S-stability of the selected profile; moreover, an A-
move from the selected profile may initiate a long chain of
D- and S-moves. Therefore, the chosen actions have to be
picked out in a careful and subtle way. In this context, we
first restrict the set of available A-moves to the subset of
one- and two-step addition operations, as follows.

Let σ ∈ Σ be a strategy profile, and for each player i ∈ N ,
let ei ∈ arg mine∈Mrσi

he. That is, ei is a lightest resource
not previously chosen by i. Then, if there exists a profitable
A-move for player i, then an A-move with ei is profitable
for i as well. If no player wishes to change his strategy in
this manner, i.e. Ci(σ) ≤ Ci(σ−i, σi + ei) for all i ∈ N ,
then Ci(σ) ≤ Ci(σ−i, σi + a) for all i ∈ N and a ∈ M r σi.
Hence, σ is A-stable. Otherwise, let N(σ) denote the subset
of all players for which there exists ei such that a unilateral
addition of ei is profitable. Let a ∈ arg minei : i∈N(σ) hei .

Let also i ∈ N(σ) be the player for which ei = a. If a is
σ-light, then let σ′ = (σ−i, σi + a). In this case we say that
σ′ is obtained from σ by a one-step addition of resource a,
and a is called an added resource. If a is σ-heavy then there
exists a σ-light resource b and a player j such that a ∈ σj

and b /∈ σj . Then let σ′ =
`

σ−{i,j}, σi + a, σj − a + b
´

. In

this case we say that σ′ is obtained from σ by a two-step
addition of resource b, and b is called an added resource.

We notice that, in both cases, the congestion of each re-
source in σ′ is the same as in σ, except for the added re-
source, with the congestion in σ′ increased by 1. Thus, if σ
is nearly-even then σ′ is also nearly-even (since the added re-
source is σ-light). Then, Lemma 3 implies the S-stability of
σ′. Lemma 4 below shows that if, in addition, σ is D-stable

then the only potential cause for the non-D-stability of σ′

is the existence of player i ∈ N with σ′
i = σi who wishes to

drop the added resource a.

Lemma 4. Let σ be a nearly-even and D-stable strategy
profile of a given ACG, and let σ′ be obtained from σ by a
one- or two-step addition of resource a. Then, there are no
profitable D-moves for any player i ∈ N with σ′

i 6= σi. For
i ∈ N with σ′

i = σi, the only possible profitable D-move (if
such exists) is to drop the added resource a.

Note that although we did not succeed in keeping the D-
stability, we have significantly reduced the set of possible
post-addition D-moves. This motivates us to present the
term of post-addition D-stability which plays a central role
in our method, as follows.

Definition 4. Let σ ∈ Σ be a strategy profile and let σ′

be obtained from σ by applying a one- or two-step addition
operation. Then, based on Lemma 4, σ is said to be post-
addition D-stable if σ′ does not admit profitable D-moves
with the added resource.

Let Σ0 ⊆ Σ denote the subset of all D-stable strategy pro-
files, and let Σ1 ⊆ Σ0 be the subset of all even and D-stable
strategy profiles. By Lemma 3, every profile in Σ1 (if such
exists) is S-stable. For any σ ∈ Σ1, let hσ denote the com-
mon congestion on the resources, and let Σ2 ⊆ Σ1 be the
subset of Σ1 consisting of all those profiles with maximum
congestion on the resources: Σ2 = arg maxσ∈Σ1 hσ. Then,

Lemma 5. Given an ACG, there exists a strategy profile
σ ∈ Σ2 that is either a pure strategy Nash equilibrium or
post-addition D-stable.

It is not clear, by first look, if the existence of a post-
addition D-stable strategy profile implies the existence of
a pure strategy Nash equilibrium. To show such an impli-
cation, post-addition D-stability should be preserved while
applying a series of addition operations. In addition, such
a series of addition operations should converge to a pure
strategy Nash equilibrium in a finite number of steps. In
this context, Lemma 6 and Observation 7 below provide the
necessary steps for completing the proof of existence of a
pure strategy equilibrium.

Lemma 6. Given an ACG, let σ be a nearly-even and
post-addition D-stable strategy profile, and let σ′ be obtained
from σ by applying on it a one- or two-step addition op-
eration. If mine∈M he(σ

′) = mine∈M he(σ) then σ′ is also
nearly-even and post-addition D-stable.

Corollary 7. By Lemma 6, if we can find a post-addition
D-stable strategy profile σ′ that lies in Σ2, then a pure strat-
egy Nash equilibrium can be achieved by applying on σ′, in a
sequential manner, less than m one-/two-step addition oper-
ations. This is because if we perform m addition operations

then an even D-stable strategy profile σ′′ with hσ′′

> hσ′

is
obtained, contradicting σ′ ∈ Σ2.

Theorem 8 below follows directly from Lemmas 5 and 6, and
Corollary 7.

Theorem 8. Every ACG possesses a Nash equilibrium in
pure strategies.

5. COMPUTATION OF A PURE STRATEGY
NASH EQUILIBRIUM

We are now ready to present our Asynchronous Nash equi-
librium (ANE)-algorithm that constructs a pure strategy

Nash equilibrium in any given ACG. Let us start with a
brief description of the algorithm:

• Based on Lemma 6, the goal of the algorithm is to find
a strategy profile in Σ2 which is either a pure strategy Nash
equilibrium or post-addition D-stable. In the latter case,
the strategy profile can be turned into a Nash equilibrium
by applying on it at most m − 1 one-/two-step addition
operations. For that, the algorithm has to determine a value
k∗ = maxσ∈Σ1 hσ that represents the common congestion on
the resources for any strategy profile in Σ2.

• To find k∗ as above, the algorithm uses a variable k
initiated with the value k = n and gradually decreases until
k∗ is found (Steps [0] – [1]).

• For k = n, the only even strategy profile with n being its
common congestion is σ = (M, . . . , M), which is obviously
A- and S-stable. If σ is also D-stable then k∗ = n, and the
algorithm outputs σ and halts (Step [0]). Otherwise, k∗ < n
and the algorithm proceeds with k = n − 1 (Step [1]).

• Given ⌊ n
m
⌋ < k < n, the algorithm checks whether a

k-even D-stable strategy profile exists. If there is no such
profile then k∗ < k and the algorithm proceeds with the
next value of k (repeating Step [1]). Otherwise, k∗ = k.

• If k∗ = ⌊ n
m
⌋ then the algorithm constructs a strategy

profile σ = (ei mod m)
i∈N

(Step [2]). As we prove, σ is a
Nash equilibrium.

• Otherwise, k∗ > ⌊ n
m
⌋. In this case, the algorithm con-

structs a k∗-even strategy profile σ with n∗ = n
“

⌊k∗m
n

⌋ + 1
”

−

k∗m players using ⌊k∗m
n

⌋ resources and n − n∗ = k∗m −

n⌊k∗m
n

⌋ players using ⌊k∗m
n

⌋+ 1 resources (Step [3]). As we
prove, the obtained σ is D- and S-stable. If σ is also A-stable
then the algorithm outputs σ and halts (Step [4]). Other-
wise, we show that σ ∈ Σ2 and is post-addition D-stable.
Then, based on Lemma 6 and Corollary 7, a pure strategy
Nash equilibrium is achieved by applying at most m−1 one-
or two-step additions on σ (Steps [5] – [9]).

The ANE-algorithm is presented below.

ANE-algorithm

Step [0] If t ≤
P

n
q=1

“

n−q+1
n

”m−1
q−1

n
then set

σ := (M, . . . , M) and QUIT;
Otherwise, set k := n − 1 and go to Step [1];

Step [1] If t >
P

k
q=1

“

k−q+1
k

”⌈ km
n

⌉−1
q−1

k
then set

k := k − 1; Otherwise go to Step [3];
Step [2] If k = ⌊ n

m
⌋ then set σ := (ei mod m)i∈N

and QUIT; Otherwise go to Step [1];
Step [3] Set n∗ := n

`

⌊ km
n

⌋ + 1
´

− km;
For i = 1 to n∗:

Set σi = {er ∈ M : 1 ≤ r ≤ ⌊ km
n

⌋}
and reorder the resources:
for all er ∈ M set er := e“

r+⌊ km
n

⌋
”

mod m
;

If n∗ = n then go to Step [4];
Otherwise, for i = n∗ + 1 to n:

Set σi = {er ∈ M : 1 ≤ r ≤ ⌊ km
n

⌋ + 1}
and reorder the resources:
for all er ∈ M set er := e“

r+⌊ km
n

⌋+1
”

mod m
;

Step [4] If t ≥
P

k
q=1

“

k−q+1
k

”⌊ km
n

⌋
q−1
k+1 then QUIT;

Step [5] For all i ∈ N , select ei ∈ arg mine∈Mrσi
he(σ);

Step [6] Set N(σ) := {i ∈ N : Ci(σ−i, σi + ei) < Ci(σ)};
If N(σ) = ∅ then QUIT;

Step [7] Set M(σ) := {e ∈ M : ∃i ∈ N(σ), e = ei};
Step [8] Select a∗ ∈ arg mine∈M(σ) he(σ)

and i∗ ∈ {i ∈ N(σ) : ei = a∗};
Step [9] If a∗ is σ-light set σi∗ := σi∗ + a∗

and go to Step [5];
Otherwise select a σ-light resource b∗

and j∗ ∈ {i ∈ N : a∗ ∈ σi, b∗ /∈ σi},
set σi∗ := σi∗ + a∗, σj∗ := σj∗ − a∗ + b∗,
and go to Step [5].

Theorem 9. The ANE-algorithm finds a pure strategy
Nash equilibrium in any given ACG, and its time complexity
is O(nm2).

6. SUMMARY AND FUTURE WORK
In this paper, we introduced and investigated the class of

asynchronous congestion games – ACGs – which extends the
models of congestion games to allow for a random ordering
of task execution. In an ACG, each player aims to minimize
his own cost which is determined by the sum of two terms:
the execution cost of his task which is assumed to be pro-
portional to its completion time, and the sum of the fixed
costs over the resources he uses. The completion time of
the player’s task is determined by the minimum among its
completion times by all of his chosen resources.

We studied the existence of a pure strategy Nash equilib-
rium and a potential function in ACGs. We showed that
only ACGs with 2 players and 2 resources are potential
games, and any other ACG is not a potential game. Never-
theless, we proved that any ACG possesses a pure strategy
Nash equilibrium. We presented a non-trivial polynomial
time algorithm for constructing a pure strategy Nash equi-
librium in a given ACG.

The model of ACGs can be extended in various ways. One
can consider other probability distributions over the set of
permutations (orders) of the tasks assigned to a particular
resource. In addition, it will be a challenge to consider dif-
ferent processing times rather than these of single units. We
believe that such extension will be significantly more diffi-
cult to analyze. It is also of interest to study the stability
under deviations of coalitions and the social (in)efficiency of
equilibria in ACGs.

7. REFERENCES
[1] E. Angel, E. Bampis, and F. Pascual. Truthful algorithms for

scheduling selfish tasks on parallel machines. In WINE-05,
pages 698–707, 2005.

[2] V. Auletta, R. Prisco, P. Penna, and G. Persiano. Determinisitc
truthful approximation mechanisms for scheduling related
machines. In STACS-04, pages 608–619, 2004.

[3] T. Carroll and D. Grosu. Selfish multi-user task scheduling. In
ISPDC-06, pages 99–106, 2006.

[4] G. Christodoulou and E. Koutsoupias. The price of anarchy of
finite congestion games. In STOC-05, pages 67–73, 2005.

[5] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity
of pure Nash equilibria. In STOC-04, pages 604–612, 2004.

[6] D. Grosu and T. Carroll. A strategyproof mechanism for
scheduling divisible loads in distributed systems. In ISPDC-05,
pages 83–90, 2005.

[7] E. Koutsoupias. Selfish task allocation. Bulletin of EATCS,
81:79–88, 2003.

[8] I. Milchtaich. Congestion games with player-specific payoff
functions. Games and Economic Behavior, 13:111–124, 1996.

[9] D. Monderer. Solution-based congestion games. Advances in
Mathematical Economics, 8:397–407, 2006.

[10] D. Monderer and L. Shapley. Potential games. Games and
Economic Behavior, 14:124–143, 1996.

[11] D. Monderer and M. Tennenholtz. Distributed games. Games
and Economic Behavior, 28:181–188, 1999.

[12] N. Nisan and A. Ronen. Algorithmic mechanism design. Games
and Economic Behavior, 35(1/2):166–196, 2001.

[13] M. Penn, M. Polukarov, and M. Tennenholtz. Congestion
games with load-dependent failures: identical resources. In
EC-07, pages 210–217, 2007.

[14] R. Rosenthal. A class of games possessing pure-strategy Nash
equilibria. International Journal of Game Theory, 2:65–67,
1973.

