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ABSTRACT
This paper presents MADeM, a multi-modal agent decision
making to provide virtual agents with socially acceptable
decisions. We consider multi-modal decisions as those that
are able to merge multiple information sources received from
a MAS. MADeM performs social decisions since it relies on
auctions, a well known market-based coordination mecha-
nism. Our social agents express their preferences for the
different solutions considered for a specific decision problem,
using utility functions. Therefore, coordinated social behav-
iors such as task passing or planned meetings can be eval-
uated to finally obtain socially acceptable behaviors. Addi-
tionally, MADeM is able to simulate different kinds of so-
cieties (e.g. elitist, utilitarian, etc), as well as social atti-
tudes of their members such as, egoism, altruism, indiffer-
ence or reciprocity. MADeM agents have been successfully
verified in a 3D dynamic environment while simulating a
virtual university bar, where different types of waiters (eg.
coordinated, social, egalitarian) and customers (e.g. social,
lazy) interact to finally animate complex social scenes.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - Multiagent systems / Intelligent Agents

General Terms
Design, Economics, Experimentation

Keywords
Social Reasoning, Multiagent Resource Allocation, Welfare
Economics

1. INTRODUCTION AND RELATED WORK
Decision making is the cognitive process leading to the

selection of a course of action among variations. There are
several factors that influence this process, although proba-
bly the most important could be the amount of information
the agent manages when deciding its actions. This is spe-
cially important in social MAS simulations, since our aim is
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to produce socially intelligent agents capable of displaying
acceptable decisions for a specific society model.

From virtual agents community, the behavioral anima-
tion problem points to the construction of an intelligent
system which is able to integrate the different techniques
required for the realistic simulation of virtual humans be-
havior. Among them, we can include perception, motion
control, goal selection, action execution, communication be-
tween agents, interaction with the environment, etc. Tradi-
tionally, designers have sought to make their agents ratio-
nal so that they can behave efficiently (i.e. the shorter the
plan the better). Therefore, social simulations have incorpo-
rated group coordination due to the fact that self interested
agents (i.e. agents devoted to accomplish a set of goals) eas-
ily come into conflicts in a resource bounded environment
even though their goals are compatible.

Socially intelligent agents are autonomous problem solvers
that have to achieve their goals by interacting with other
similarly autonomous entities [12]. Bearing this in mind,
multi-agent systems are normally referred to as societies of
agents, and provide an elegant and formal framework to de-
sign social behaviors for autonomous agents.

Much research has been done in behavioral animation of
virtual agents for the last few years [1, 17, 19]. The pioneer
work of Dimitri Terzopoulos [20] showed how to design a
natural ecosystems animation framework with minimal in-
put from the animator. He simulated Artificial fishes in vir-
tual underwater worlds. However, human behavior is clearly
different and more complex to emulate. In [16, 19] the goal
is to design agents with a high degree of autonomy without
losing control. These agents are an extension of the BDI ar-
chitecture described in [15], and they include internal states
such as emotions, reliability, trust and others. Emotional ar-
chitectures have been also applied to virtual agents (animals
and humans) to manage sociability and rationality and to
produce believable groups of synthetic characters [8, 10, 13].
MAS-SOC [2] aims at creating a platform for multi-agent
based social simulations, which is similar to our purposes.
In this context, there is ongoing work in order to incorporate
social-reasoning mechanisms based on exchange values [18].

Behavioral animation has also been tackled from the field
of coordinated multi-agent systems. For example in Gen-
eralized Partial Global Planning (GPGP) [7], agents merge
the meta-plans describing their operational procedures and
figure out the better action in order to maximize the global
utility. Another example is Multi-agent Planning Language
(MAPL) [4], which assigns the control over each resource to
a unique agent and uses speech-acts to synchronize planned
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tasks. Collaboration is supported in the RETSINA system
[9] thanks to the use of communicative acts that synchronize
tasks and occasionally manage conflicts. Team formation
and task coordination for heuristic search planning charac-
ters is presented in [11] to adapt better to the dynamism of
shared environments.

Several approaches show realistic task-oriented behaviors,
but autonomous virtual humans should also display social
behaviors (e.g. interchanging information with their part-
ners or grouping and chatting with their friends). This kind
of social agents is required in many complex simulation en-
vironments: military/civil simulations, social pedestrians in
virtual cities, games, etc. We consider that socially accept-
able agents need to evaluate the social impact of their ac-
tions, so they could decide what to do in accordance with
the society being simulated.

The purpose of MADeM is to provide a MAS simulation
framework with agents managing multi-modal social deci-
sions. We introduce this kind of decisions as those able to
consider different focuses of attention coming from differ-
ent sources. On the one hand, different focuses of attention
(i.e. points of view) are required to provide more informed
self-interested decisions. For instance, when deciding their
actions, humans easily balance several aspects such as: effi-
ciency, tiredness, skillfulness, mood, etc. On the other hand,
a MADeM agent integrates social influence by asking exter-
nal agents about the points of view the former is interested
in. This feedback represents the preferences of the others for
a specific situation, that basically includes certain resource
and task allocations (see section 2.1). Internally, MADeM
is based on the MARA theory [5] and it uses auctions as
a basic procedure to provide the social feedback mentioned
(see [6] for a good set of social welfare examples). How-
ever, we let the agents manage more than one auction and
allocation associated to each decision, so they can simulate
multi-modal social decisions in a MAS.

The rest of the paper is organized as follows: The next
section presents the MADeM information domain, that ba-
sically includes the types of resources being used (section
2.1) and the agent preferences representation (section 2.2).
Then, we explain the decision making procedure, including
the auctioning process (section 3) and the winner determi-
nation problems faced (sections 3.1, 3.2). Section 4 shows
the MAS framework designed to integrate MADeM agents
and an application example created to verify the agent so-
cial skills. Finally, we show the social behaviors obtained by
different types of agents (eg. waiters, customers) according
to the main MADeM parameters.

2. MADEM: MULTI-MODAL AGENT DE-
CISION MAKING

The multi-modal agent decision making presented in this
paper (MADeM) is based on the MARA theory, thus, it
shares a similar domain of definition but making some ad-
ditions to it. We summarize them as follows:

• A set of agents A = {a1, ..., an} where each ai repre-
sents a particular agent involved in the decision. A
vector of weights −→w =< w1, ..., wn > is associated
to each agent representing the internal attitude of the
agent towards other individuals. This information will
be used to weigh the information received from other
agents (section 3.1).

• A set of resources to be allocated by the agents R =
{r1, ..., rm}. The definition of resources we use is differ-
ent from the classical definitions found in the literature
and it will be explained in detail in section 2.1.

• Instead of having only one utility function as in clas-
sical MARA problems, each agent will have a set of
utility functions {U1, U2, ..., Uq}. These utility func-
tions will be used to evaluate the allocations from dif-
ferent points of view. We better explain the utility
functions for our agents in section 2.2. Additionally,
each agent will have a vector of utility weights −→wu =<
wu1 , ..., wuq > representing the importance given to
each point of view in the multi-modal agent decision
making.

MADeM also has a winner determination procedure to de-
cide the winner allocation of an auction and consequently,
simulate socially acceptable decisions of agents. But as com-
plex decisions may need to consider more than one point of
view, the auctioneer may require from each agent to express
its preferences using several utility functions. Therefore the
auctioneer will receive several utility values for the proposed
allocations and, as a result, will have to execute several win-
ner determination procedures, one for each point of view,
and a final multi-modal winner determination procedure to
decide which point of view has the winner allocation. The
details of the whole winner determination procedure will be
explained in sections 3.1 and 3.2.

An example illustrating the functionality of MADeM could
be a customer entering a virtual bar and deciding which
waiter to place his order to. Different points of view could
be considered: to ask the nearer waiter (i.e. tiredness), to
ask the less occupied waiter (i.e. utilitarianism) or to ask
a waiter who is a friend of him (i.e. sociability). Auctions
are used to select the better candidates for each category.
In this case, utility weights would express personal tenden-
cies such as laziness, impatience or sociability. Looking at
them, MADeM would be able to choose among these three
possibilities.

2.1 Types of resources
In order to obtain social and intelligent behaviors, we pro-

vide the agents with the ability to ask for opinion or so-
cial feedback about different solutions for a specific decision
problem (e.g. whether to pass the execution of a task to
another agent or not). Agents do this by following an auc-
tioning mechanism in which the resources being auctioned
are tasks. Task auctioning has been widely used in the MAS
community but its application to social virtual agents is not
so common and needs to take new issues into account. The
novelty of our approach is that we do not auction only the
execution of a task as found in the literature. Instead, the
resource to be auctioned is what we term task slots. We
consider task slots as slots that need to be assigned in order
to execute a task, thus, they can be considered as parame-
ters of the action. When considering any kind of task, we
differentiate two main types of task slots: agent slots which
correspond to agents that play different roles in the task
execution, as for example the executant of the task or the
beneficiary of the task; and object slots, that correspond to
objects needed to perform the action.

We also differentiate slots depending on the role they play
in the task. There is a slot present in every kind of task
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which is the agent who carries it out (Age). Besides, we con-
sider as general slots two additional slots present in many
tasks: the main object of the action (Objm) and the bene-
ficiary or destinatary in any sense of the action (Agd). For
example, in the Give action, Age is the agent who initially
has the object, Objm is the object being given and Agd is
the agent who receives the object. In any case, it is always
possible for a particular problem to consider more task slots
if necessary.

It can be seen that the classical task auctioning is sub-
sumed within our approach as it corresponds to the auc-
tioning of the Age slot. Moreover, the auctioning of objects
is also possible by auctioning the appropriate task slot of the
considered action (e.g. the Objm slot of an action Own).

According to this, we represent resources or task slots as
r = task(slot), where we consider the slot as a typed param-
eter according to an ontology defined for the problem. An
assignment of an element (agent or object) to a slot is then
represented as task(slot) ← element, and an allocation P of
elements to task slots has the following representation:

P = {t1(s1) ← e1, t1(s2) ← e2, . . . , t1(sn) ← en, t2(s1) ←
en+1, . . . , tm(sn) ← en∗m}

Therefore, we represent each one of the solutions consid-
ered for a decision problem as an allocation of this type.

For example, in the bar environment presented in section 4
we have modelled the task Give(Waiter, Object, Customer)
as the action used by waiters to give a product to a customer.
In this task we have 2 slots that may be auctioned: the Age,
which is the waiter that gives, and the Agd, which is the
customer that receives the product. These slots would be
represented as Give(Age) and Give(Agd). Hence, a pos-
sible allocation for these slots could be < Give(Age) ←
a1, Give(Agd) ← a5 >, given that a1 is a waiter and a5

is a customer.

2.2 Agent preferences
In the auctioning process, the auctioneer asks the agents

to bid for one or more task slot allocations, each bidder then
uses its utility functions to evaluate and score the different
allocations being considered.

MADeM agents use non-negative 2-additive utility func-
tions of the form:

U(P ) =
∑
p∈P

u(p) +
∑

p1,p2∈P

u(p1, p2) (1)

where u(p) is a utility function for a unique slot assign-
ment and u(p1, p2) is the extra utility value given to the
situation in which both assignments are done. In order to
obtain the utility functions (U(P )) normalized in the range
[0, 1], the utility functions of all agents must be divided by
the same constant, which will depend on the particular prob-
lem.

Despite the fact that the types of resources being auc-
tioned are tasks, utility functions express benefit. There-
fore, agents would aim at maximizing their utility. Using
cost functions could also be possible but agents would aim
at minimizing their costs.

3. DECISION MAKING PROCEDURE
MADeM uses one-round sealed-bid combinatorial auctions

to choose among different solutions to a decision problem.

Figure 1: MADeM Procedure

As mentioned above, a solution is represented by an allo-
cation of one or many task slots. Auctioneer and bidder
roles are not played by fixed agents throughout the simu-
lation. Instead of that, every agent can dynamically adopt
each role depending on his/her needs or interests. For ex-
ample, an agent would be the auctioneer when he wanted to
pass a task to another agent following a social behavior. On
the other hand, agents receiving the auction would bid their
utility values provided that they were interested in the task
slots being auctioned. Our model allows more than one auc-
tion to be running at the same time. Similarly, agents can
participate in several auctions simultaneously. Thus, this
approach lies in between centralized and distributed market-
based allocation.

An overview of the multi-modal decision making proce-
dure followed by the agents to generate socially acceptable
decisions is shown in figure 1. This procedure is mainly
based on the following steps:

1. Auctioning phase: This phase is carried out by an
agent (a1) who wants to socially solve a decision prob-
lem (e.g. where to sit). This agent then constructs
the set of allocations representing all the possible so-
lutions for the problem (< P1, P2, ..., Pm >). These al-
locations have the form of task slots assignations such
as SitAt(Objm) ← table1. Next, he auctions them
to a particular group of agents, that we call the tar-
get agents. Each auction also includes a single type
of utility function that the agent is interested in eval-
uating from the others (auk(< P1, P2, ..., Pm >, Uk)).
As complex decisions require to take into consideration
more than one point of view, the auctioneer agent can
start different auctions for the same set of allocations
(au1 through auq).

The process to select the target agents for an auction
varies depending on the kinds of task slots being al-
located. When dealing with agent slots, the target
agents can be extracted from the type of the task slot
being auctioned. For example, in our bar environment,
the task slot Make Coffee(Age) should only be auc-
tioned to agents of the class Waiter. On the other
hand, when allocating object slots, the target agents
could be those agents that are somehow related to ob-
jects of the same type as the task slot being auctioned.
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For instance, the task slot SitAt(Objm), where Objm

corresponds with the table where to sit at, could be
auctioned to all the agents related to a table in the
environment. When there is no type system available,
the target agents would be the whole set of agents.

2. Bidding phase: Since the auctioneer informs about
both the task slot allocations and the utility func-
tions being considered, bidders simply have to compute
the requested utility functions and return the values
corresponding to each auction back to the auctioneer
(rak

i =< Uk
i (P1), ..., U

k
i (Pm) >).

3. Winner determination phase: In this phase, the auc-
tioneer selects a winner allocation for each launched
auction, that is, for each point of view being consid-
ered. To do this, he uses a classical winner determi-
nation problem, as explained in section 3.1. After-
wards, he chooses one final winner allocation among
these auction winners using a multi-modal decision
making process. The details of this calculation are
fully described in section 3.2. Thus, the final winner
allocation will represent an acceptable decision for the
society being simulated.

3.1 Winner Determination Problem
Once bidders have answered to an auction call (no answer-

ing means no preference, therefore, utility zero) the auction-
eer agent has the utility values (Ui(Pj)) given by each bidder
(i ∈ A) to every allocation being evaluated (Pj). Equation
2 groups these utility values in a set of vectors, one for each
allocation.

−−−→
U(Pj) =< U1(Pj), ..., Un(Pj) > ∀j ∈ [1..m] (2)

Remember that every agent had an associated vector of
weights representing its attitude towards the other individ-
uals (see equation 3). According to it, the auctioneer weighs
the utility vectors in equation 2 doing a component by com-
ponent multiplication with the attitude vector as shown in
equation 4.

−→w =< w1, ..., wn > (3)

−−−−→
Uw(Pj) =

−−−→
U(Pj) ∗ −→w ∀j ∈ [1..m] (4)

Attitude weights are used to model the social behavior
of the auctioneer agent. For example, egoism is modelled
giving weight 1 to himself and 0 to all other agents. In fact,
a whole range of behaviors between egoism and altruism
can be modelled using the vector of equation (5), where
p = 0 represents the previous behavior, p = 1 represents
total altruism and p = 0.5 represents an egalitarian behavior
or indifference between oneself and the rest of the agents.

Egoism − Altruism : −→w =< p, ..., p, 1 − p, p, ..., p >
wi = 1 − p, wj �=i = p, i = Myself

(5)
It is also possible to model reciprocal attitudes by means

of the vector −→w . A simple example is shown in equation 6,
where weights are based on the interchange of favors between
agents.

Reciprocity : wi =
Favors from(i)

Favors to(i)
(6)

In order to behave socially, the auctioneer agent attends
to the social welfare value when selecting the winner allo-
cation of an auction. Therefore, the winner determination
problem chooses the allocation that maximizes the welfare
of the society (see equation 7).

Winner = Pw ←→ sw(Pw) = max
j∈[1..m]

sw(Pj) (7)

To compute the social welfare of an allocation, the auc-
tioneer uses Collective Utility Functions (CUFs) and the
weighted utilities defined in equation 4 (as shown in equa-
tion 8). MADeM allows to select among different CUFs
when evaluating the social welfare of an allocation. At the
moment, four CUFs have been integrated in MADeM, each
one related to a kind of society: utilitarian, egalitarian, eli-
tist and nash .

sw(P ) = cuf(
−−−−→
Uw(P )) (8)

cufutilitarian = Σuw(i)

cufegalitarian = min{uw(i)}
cufelitist = max{uw(i)}
cufnash = Πuw(i) (9)

3.2 Multi-modal decision making
An agent can ask other agents about different points of

view (e.g. efficiency, tiredness, etc). In order to do this, he
performs several auctions with different types of utility func-
tions (see parameter Uk in figure 1). Once all these auctions
have been resolved, the auctioneer has the winner allocation
for each point of view and the social welfare obtained pro-
vided that allocation is adopted (see equation 10).

auction1({P1, P2, ..., Pm}, U1) −→ (Pw1, sw(Pw1))

...

auctionk({P1, P2, ..., Pm}, Uk) −→ (Pwk, sw(Pwk))

(10)

The final winner allocation is then chosen using the vector
of utility weights −→wu. MADeM allows two different ways to
decide the final winner:

• The first possibility is to take the values in −→wu as
weights assigned to each utility function. Hence, the fi-
nal winner allocation is that which maximizes the wel-
fare of the society after having multiplied it by the
corresponding utility weight (see equation 11),

Pw = Pwi ←→ sw(Pwi) = max
i∈[1..k]

wu(i) ∗ sw(Pwi)

(11)

• The second possibility is to consider the values in −→wu

as the probabilities for the auctioneer to choose the
corresponding point of view. In this case, the final
winner allocation is chosen probabilistically.
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Figure 2: Multi-agent simulation framework.

4. APPLICATION EXAMPLE
In this section we show how we have integrated MADeM

into a multi-agent framework oriented to simulate socially
intelligent characters in 3D virtual environments. This frame-
work is developed over Jason [3], which allows the definition
of BDI agents using an extended version of AgentSpeak(L)
[14]. Figure 2 depicts the architecture of the system, which
can be basically divided into two parts:

• The Semantic Virtual Environment uses ontologies to
define the world knowledge base (i.e. the object tax-
onomy and the object interrelations) as well as the set
of all possible relations among the agents within an
artificial society. The environment is handled by the
Semantic Layer, which acts as an interface between
the agent and the world, thus sensing and executing
the actions requested by the agents. The animation
system – virtual characters, motion tables, etc. – is
located at the 3D Engine that can extract graphical
information from the World Model database thus per-
forming visualization.

• Socially intelligent agents receive sensorial information
from the Semantic Layer and calculate the appropri-
ate sequence of actions in order to achieve their goals.
The agent’s finite state machine is defined in the Agent
Specification File. It calls the following libraries to en-
rich agent behavior: the Task Library contains the op-
erators that sequence the actions needed to animate
a task; the MADeM Library provides the agents with
the mechanisms to make social decisions; finally, the
Conversational Library contains the set of plans that
handle the animation of the interactions between char-
acters (e.g. ask someone a favor, planned meetings,
chats between friends...).

In order to test MADeM, we have created a virtual uni-
versity bar where waiters take orders placed by customers
(see figure 3). The typical objects in a bar, such as a juice
machine, behave like dispensers that have an associated time
of use to supply their products (e.g. 2 minutes to make an
orange juice) and they can only be occupied by one agent
at a time. Therefore, waiters should coordinate to avoid
conflicts. Agents can be socially linked using the concepts
defined in the ontology. For example, waiters and customers
create social relationships with their friends and this defined
social network is used when deciding whether to do favors,
to promote social meetings, etc.

Both waiters and customers carry out tasks in the virtual
bar and they use MADeM to decide among different task

Figure 3: 2D virtual university bar environment

Tasks/Slots Age Objm Agd

Use Waiter ProductDispenser -
Give Waiter Product Customer
SitAt Customer SeatingPlace -

Table 1: Tasks and slots being considered.

slot assignments. Table 1 summarizes the tasks and the
slots being considered for each task. Waiters perform tasks
Use and Give and they try to allocate them to the best can-
didate. Hence, the slot being auctioned will be the executor
of the task (Age) for both of them. However, since the deci-
sion problem of the customers is to choose among different
SeatingPlaces to consume, they auction the slot Objm of the
action SitAt that corresponds to the place where to sit. The
classes of objects used to describe task slots are extracted
from object taxonomy defined in the ontology. Therefore,
objects such as a table or the bar would be implemented as
instances of the class SeatingPlace and they could be con-
sidered as places to sit at.

Waiters serve orders basically in two steps: first, using
the corresponding dispenser (e.g. the grill to produce a
sandwich); and second, giving the product to the customer.
Tasks are always auctioned using MADeM before their ex-
ecution in order to find good social allocations. The set of
allocations among which to decide is represented in equa-
tion 12. That is, for each task, a waiter evaluates whether
to carry out the task against the chance to pass it to another
waiter and perform his next task.

{
P0 = {t(Age) ← Myself}
Pi = {t(Age) ← ai, tnext(Age) ← Myself} ∀ai ∈ A

(12)
Waiters take into account three points of view when call-

ing MADeM: performance, chatting and tiredness. Equa-
tions 13 and 14 define the utility values returned by the
performance utility function for the tasks Use and Give.
This function aims at maximizing the number of tasks be-
ing performed at the same time and represents the waiters’
willingness to serve orders as fast as possible. Social be-
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haviors defined for a waiter are oriented to animate chats
among his friends at work. Therefore, waiters implement
the social utility function detailed in equations 15 and 16,
where Near computes the distance between the agents while
they are executing a pair of tasks. These functions evaluate
social interest as the chance to meet a friend in the near fu-
ture, thus performing a planned meeting. Finally, equation
17 defines the tiredness utility function for a waiter. This
later function implements the basic principle of minimum
energy, widely applied by humans at work. The type of so-
ciety being simulated for waiters is elitist, thus, waiters will
choose those allocations that maximize the utility functions
previously defined.

Uperf (Use(Age) ← a) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if a �= Myself
1 if (a = Myself)∧

IsUsing(Myself, Objm)∧
not(IsComplete(Objm))]

1
ttobefree+tqueue

Otherwise

(13)

Uperf (Give(Age) ← a) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if a �= Myself
1 if (a = Myself)∧

CurrentTask = ’Give’∧
not(HandsBusy(Myself) < 2)]

1
ttobefree

Otherwise

(14)

Usoc(t1(Age) ← a1, t2(Age) ← a2) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a1 �= Myself ∨ a2 �= Auctioneer
1 if (a1 = Myself) ∧ a2 = Auctioneer∧

IsFriend(a1, a2) ∧ Near(Pos(t1), Pos(t2))∧
ExecT ime(t2) > RemainT ime(CurrentTask)

0 Otherwise
(15)

Usoc(t(Age) ← a) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a �= Auctioneer
1 if a = Auctioneer ∧ IsFriend(a, Myself)

∧Near(Pos(CurrentTask), Pos(t))∧
∧TimeToStart(t, a) = Now∧

0 Otherwise

(16)

U tir(t(Age) ← a) =

{
1 − tasks done

total tasks
if a = Myself

0 Otherwise
(17)

On the other hand, customers place orders and consume
them when served. Now, we are interested in animating in-
teractions between customers that are consuming with their
friends. Therefore, customers call MADeM to solve the
problem of where to sit. The set of allocations among which
to decide is defined in equation 18. In this case, the task slot
being auctioned is the place where to sit and the candidates
being evaluated are all the tables in the environment as well
as the bar.

{
P0 = {SitAt(Objm) ← bar}
Pj = {SitAt(Objm) ← table} ∀table ∈ Tables

(18)
Customers consider two points of view when calling MA-

DeM: sociability and laziness. Equations 19 and 20 corre-
spond to the social utility function defined for customers.

This function assigns a maximum value to a table provided
that there is a friend sitting on it. To consume standing up
at the bar is not considered of social interest at all, hence,
its utility value is defined as zero. The laziness utility func-
tion is represented by equations 21 and 22. In this function,
tables are evaluated according to their distance to the cus-
tomer and, opposite to sociability, standing at the bar is
now considered the best option. The type of society being
simulated for customers is utilitarian, therefore, customers
will choose those allocations that maximize the addition of
the utility values previously defined.

Usoc(SitAt(Objm) ← table) =⎧⎪⎪⎨
⎪⎪⎩

1 if AtTable(Myself, table)∧
IsFriend(Myself, Auctioneer)∧
AvailableP lace(table)

0 Otherwise

(19)

Usoc(SitAt(Objm) ← bar) = 0 (20)

U laz(SitAt(Objm) ← table) =⎧⎨
⎩

mintbl∈T ables{DistanceTo(tbl)}
DistanceTo(table)

if Auctioneer = Myself∧
AvailableP lace(table)

0 Otherwise
(21)

U laz(SitAt(Objm) ← bar) =⎧⎨
⎩

1 if Auctioneer = Myself∧
AvailableP lace(bar)

0 Otherwise

(22)

As a final discussion, we would like to point out some im-
plementation details that we have adopted in order to lower
the complexity of the winner determination problem. MA-
DeM considers the vector of utility weights wu as the prob-
ability of each point of view, thus, it probabilistically selects
which utility function will be finally taken into account and
only performs one auction with this utility function. More-
over, the utility functions have been defined so that agents
only express a preference different to zero under certain con-
ditions of the allocations. Since a zero utility is similar to
not voting, these utilities are not sent back to the auctioneer
and the maximum number of responses a bidder gives to any
auction is two (e.g. when waiters evaluate the social utility
function for the two situations in which either the auctioneer
or themselves perform the task). In fact, no auction at all is
necessary when customers decide to behave following their
laziness utility function, as it equals to zero for all bidders
except for the auctioneer.

5. RESULTS
In order to verify the social outcomes obtained with MA-

DeM agents, we have simulated different types of waiters
serving customers (see figure 4 for an snapshot of the run-
ning 3D virtual environment). The results shown in this
section correspond to simulations where 10 waiters attend
100 customers.

As we have previously mentioned, we have modelled an
elitist society of waiters within which agents attend to three
points of view (i.e. performance, sociability and tiredness),
each of them represented by its own utility function. In
this context, utility weights can be adjusted to create dif-
ferent types of social waiters. For example, a coordinated
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Figure 4: 3D virtual university bar environment.

Agent σNTasks NChats Tasks/s
Coordinated 6.73 5 0,91
Social 4.37 29.4 0.65
Egalitarian 2.74 6.6 0.62
Self-interested - - 0.17

Table 2: Results for different types of waiters.

waiter could be an agent that chooses its decisions follow-
ing performance 75% of the times and following sociabil-
ity or tiredness in the rest of the situations. The vector
of utility weights for a coordinated waiter would then be−→wu =< 0.75, 0.125, 0.125 >, where each component rep-
resents the importance given to each utility function be-
ing evaluated. Similarly, we have defined social waiters as
agents with the following vector of utility weights −→wu =<
0.125, 0.75, 0.125 > and egalitarian waiters as agents with−→wu =< 0.125, 0.125, 0.75 >. Table 2 summarizes some re-
sults obtained with coordinated, social and egalitarian wait-
ers against self-interested waiters with no social mechanism
included. Coordinated waiters perform better (see column
Tasks/s) since the majority of conflicts caused by the use
of the same dispenser (e.g. the coffee machine) are resolved
with specialization, that is, by passing the task to another
waiter already using the dispenser. On the other hand, so-
cial waiters take more time to serve customers but animate a
greater number of chats among friends (see the mean number
of chats being animated in column NChats). Egalitarian
waiters look at the tiredness utility function and try to allo-
cate the task to the least tired waiter, therefore, the standard
deviation in the number of tasks performed by each agent
tends to zero (see column σNTasks). Finally, self-interested
waiters demonstrate to perform worse than any kind of so-
cial waiter. As this agents are unable to do task passing nor
chatting, columns σNTasks and NChats are not considered.

Besides the possibility to define the importance of each
point of view through the vector of utility weights −→wu, MA-
DeM allows for the definition of a vector of personal weights−→w that models the attitude of an agent towards the other
individuals. Table 3 shows the results obtained for the pre-
viously defined waiters using the models of attitude intro-

Coordinated σFavours Favours
Indifference 7.57 6.9
Reciprocity 1.15 8.8
Altruism 5.94 17
Egoism 1.41 0.7

Social σFavours Favours
Indifference 3.52 8.7
Reciprocity 1.76 7.8
Altruism 6.66 12.7
Egoism 0.81 0.4

Egalitarian σFavours Favours
Indifference 7.58 13.6
Reciprocity 2.4 15.5
Altruism 4.44 17.9
Egoism 0.47 0.1

Table 3: Results for different personal weights.

duced in section 3.1. Agents using indifference do not apply
any modification over the utilities received, therefore, we
consider the results of this attitude as the base values to
compare with for each type of waiter. Reciprocity weights
utilities attending to the ratio of favors already done be-
tween the agents. This attitude produces equilibrium in the
number of favors exchanged as it can be seen in column
σFavours. Altruism has been implemented in such a way
that the weight given to oneself utilities is 0.25 whereas the
weights for the rest of the agents is 0.75. As expected, altru-
ist agents do more favors, since the importance given to the
other’s opinions is three times the importance given to their
own opinion (see high values for the mean number of favors
exchanged Favours). On the other hand, egoism weights are
0.75 to oneself and 0.25 to the others, thus, agents rarely do
favors (see low values in column Favours).

Agent’s preferences can sometimes go against personal at-
titudes. For example, whereas reciprocity tries to balance
the number of favors, tiredness tends to assign tasks to the
least tired waiter (see the greater σFavours for egalitarian
waiters). Another example is egoism applied to egalitarian
waiters, in this case no task at all is passed among the agents
(σFavours = 0.1). However, agent’s preferences can also em-
power personal attitudes. For instance, altruism applied to
coordinated waiters produces a high level of specialization.
This type of agents produces big values for σFavours as the
agents already using a dispenser (e.g. a juice machine) keep
on getting products from the dispenser following both an
altruist and a coordinated behavior that reduces collisions
for the use of an exclusive resource. Despite that, personal
weights have demonstrated to produce similar effects on the
agents regardless of the kind of waiter being considered (i.e.
coordinated, social or egalitarian).

Unlike waiters, customers make decisions within an util-
itarian society where they consider two points of view: so-
ciability and laziness. Figure 5 shows the behavior obtained
with different types of customers. We compare two met-
rics: the mean number of social meetings performed among
the customers and mean distance covered to consume. Lazy
customers, with low utility weights for sociability, most of
the time choose to consume at the bar or to sit at a nearby
table (see point −→wu =< 0.3, 0.7 >). Therefore, the mean
distance to the consuming place is short but only a few so-
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Figure 5: Lazy vs social customers

cial meetings are animated. On the other hand, social cus-
tomers, with higher utility weights for sociability, perform
more social meetings but they also need to move longer dis-
tances to find their friends. Points −→wu =< 0.6, 0.4 > and−→wu =< 0.7, 0.3 > in figure 5 correspond to some examples
of social customers.

6. CONCLUSIONS
The decision making approach followed in this paper aims

at incorporating human style social reasoning for character
animation. According to this, we have presented MADeM as
a market based multi-modal agent decision making for social
MAS that is able to obtain different kind of coordinated
behaviors for the agents involved.

On the one hand, MADeM decisions allow the agents to
manage several points of view related to its actions. This
social feedback is modelled via utility functions that express
the different preferences of each agent for the allocations re-
ceived for each solution being considered. As an example,
two groups of socially intelligent agents have been created
that consider different points of view in their decision mak-
ing: first, a team of waiters using performance, sociability
and tiredness; and second, a model of customer that evalu-
ates sociability and laziness.

On the other hand, and besides the possibility of weighting
the points of view considered, MADeM provides the agents
with the possibility of modelling specific attitude towards
the others. The attitudes modelled include indifference (do
not modify the other’s utility), reciprocity (use the ratio
of favors between the agents involved), altruism (the more
work for the others the better) or egoism (the more work for
me the better).
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