
Reasoning about agent execution strategies

(Short Paper)

Natasha Alechina
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

nza@cs.nott.ac.uk

Mehdi Dastani
Department of Information and Computing

Sciences
Universiteit Utrecht

3584CH Utrecht, The Netherlands
mehdi@cs.uu.nl

Brian Logan
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

bsl@cs.nott.ac.uk

John-Jules Ch. Meyer
Department of Information and Computing

Sciences
Universiteit Utrecht

3584CH Utrecht, The Netherlands
jj@cs.uu.nl

ABSTRACT
We present a logic for reasoning about properties of agent pro-
grams under different agent execution strategies. Using the agent
programming language SimpleAPL as an example, we show how
safety and liveness properties can be expressed by translating agent
programs into expressions of the logic. We give sound and com-
plete axiomatizations of two different program execution strategies
for SimpleAPL programs, and, for each of those strategies, prove a
correspondence between the operational semantics of SimpleAPL
and the models of the corresponding logic.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]; F.3 [Logics and Meanings of Pro-
grams]

Keywords
Formalisms and logics

1. INTRODUCTION
A key issue in the design and development of BDI agents is the

choice of execution strategy which governs the execution of the
agent’s program. The execution strategy determines which goals
the agent will pursue and when, and which plans are adopted and
how they are executed. It therefore plays a key role in determin-
ing the behaviour of the agent and hence whether the agent will
achieve its goals. For example, even if the agent’s program is capa-
ble in principle of achieving a particular goal in a given situation,
a particular execution strategy may mean that the relevant actions
never get executed, or are executed in such a way as not to achieve
the goal.

In current BDI-based agent programming languages [5], the ba-
sic execution strategy is either an integral part of the semantics,
Cite as: Reasoning about agent execution strategies (Short Paper),
Natasha Alechina, Mehdi Dastani, Brian Logan and John-Jules Ch. Meyer,
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

e.g., Jason [4], or is defined by the interpreter that comes with the
corresponding execution platform, e.g., 3APL [9], 2APL [7] and
Jadex [13]. However, most implementations provide customization
mechanisms which allow a developer to influence key aspects of
program execution, e.g., the number of goals that can be pursued
at the same time, or even to replace a default platform-specific ex-
ecution strategy with one of their own devising. Such features can
simplify program design by allowing developers to tailor the exe-
cution of their programs to the demands of a particular problem.

When verifying properties of agent programs it is therefore im-
portant that the effects of the execution strategy are taken into ac-
count. Of course, one could ignore the impact of any particular
execution strategy and consider only those properties of an agent
program that are valid under all strategies. However, we believe
that most interesting properties of agent programs depend on the
execution strategy adopted and programs should therefore be ver-
ified in the context of a particular strategy. To determine the cor-
rectness of agent programs, we therefore need to be able to reason
about execution strategies. While there has been considerable re-
search on reasoning about and verification of BDI agents, e.g., [11,
3, 6, 12, 14], to the best of our knowledge the question of execution
strategies has not been investigated before.

In this paper we present a logic for reasoning about execution
strategies. We consider execution strategies in the context of a
simple APL-like [8, 5] agent programming language, SimpleAPL.
We briefly describe the syntax and operational semantics of Sim-
pleAPL and define two alternative execution strategies for Sim-
pleAPL programs. We then introduce the syntax and semantics
of a logic to reason about safety and liveness properties of Sim-
pleAPL programs under these execution strategies. We show how
to translate agent programs written in SimpleAPL into expressions
of the logic. We provide sound and complete axiomatizations of
the logic for both execution strategies, and prove a correspondence
between the operational semantics of SimpleAPL and the models
of the logic.

The main contribution of the paper is to show how execution
strategies of BDI-based agent programming languages can be ax-
iomatized. Although we focus on a particular (simple) agent pro-
gramming language, our approach is general enough to accommo-
date any execution strategy that can formulated in terms of distinct

12-16., 2008, Estoril, Portugal, pp. 1455-1458.

phases of execution and the kinds of operations that can be per-
formed in each phase.

2. SimpleAPL
SimpleAPL is a fragment of the agent-oriented programming

language 3APL [8, 5]. SimpleAPL contains the core features of
3APL and allows the implementation of agents with beliefs, goals,
actions, plans, and planning rules. The main features of 3APL not
present in SimpleAPL are a first order language for beliefs and
goals, and rules for dropping goals and for revising plans. We have
omitted these features in order to simplify the presentation; they do
not present a significant technical challenge for our approach.

Below we briefly sketch the main features of SimpleAPL. A de-
tailed presentation of the syntax and operational semantics of the
language can be found in [2].

The state or configuration of a SimpleAPL agent is defined as
〈σ, γ,Π〉, where σ is a set of literals representing the agent’s be-
liefs, γ is a set of literals representing the agent’s goals, and Π is
a set of current active plans of the agent. The beliefs of an agent
represent its information about its environment, while its goals rep-
resent situations the agent wants to realize (not necessary all at
once). Basic actions specify the capabilities an agent can use to
achieve its goals. There are three types of basic actions: those that
update the agent’s beliefs and those which test its beliefs and goals.
A belief update action is specified in terms of its pre- and postcon-
ditions, and can be executed if its pre-condition is derivable from
the agent’s current beliefs. Executing the action adds its postcon-
dition to the agent’s beliefs. We assume that the agent’s beliefs are
always correct and that executing an action always achieves the ac-
tion’s postcondition, so we can specify preconditions and results of
actions in terms of the agent’s beliefs. Belief and goal queries are
boolean combinations of belief or goal literals, respectively.

In order to achieve its goals, an agent adopts plans. A plan con-
sists of basic actions composed by sequence ;, conditional choice
if...then...else and conditional iteration while...do operators.
Planning goal rules are used by the agent to select a plan based on
its current goals and beliefs. A planning goal rule consists of three
parts: an (optional) goal query κ, a belief query β, and the body of
the rule, a plan π. A rule κ ← β |π can be executed if κ follows
from the agent’s goals, β follows from the agent’s beliefs, and π in
its full or partially executed form is not in the current plan base Π.
The result of executing the rule is that π is added to Π. An agent’s
program is defined as a set of planning goal rules.

In this paper, we consider two execution strategies for SimpleAPL
programs: a fully-interleaved execution strategy (which we de-
note (i)) which is defined as: “either apply a planning goal rule,
or execute the first step in any of the current plans; repeat”; and
a non-interleaved (ni) execution strategy which executes a single
plan to completion before choosing another plan, i.e., “when in
a configuration with no plan, choose a planning goal rule non-
deterministically, apply it, execute the resulting plan; repeat”. The
non-interleaved strategy prohibits execution paths in which the ap-
plication of planning goal rules is interleaved with the execution of
plans. Note that, under both execution strategies, plan execution
halts if a basic action is not executable but the plan remains in the
plan base. We assume that the agent starts in a configuration with
an empty plan base.

3. LOGIC
The language of our logic is essentially the language of PDL

extended with belief and goal operators. Both the language and the
models are defined relative to an agent program (set of planning

goal rules) Λ with a given set of plans Π(Λ) and pre- and post
conditions for belief updates C(Λ).

Let Λ = {r1, . . . , rn} be the set of agent’s planning goal rules,
each of which is of the form ri = κi ← βi | πi. Let Π(Λ) =
{π1, . . . πn} be the set of agent’s plans occurring in the rules, and
Ac(Λ) the finite set of belief update actions occurring in those
plans. We will denote the elements of Ac(Λ) by α,α′, Fi-
nally, let Pb be the set of positive belief literals occurring in Λ
or in the pre- and postconditions of belief updates in Λ, and Pg

be the set of positive goal literals occurring in Λ. For each belief
update α, we have a set of pre- and postcondition pairs C(α) =
{(prec1(α), post1(α)),. . . , (preck(α), postk(α))}. Each precj(α)
is a set of propositional variables from Pb or their negations. We as-
sume that every such set is finite and that any two preconditions for
an action α, precj(α) and preci(α), are mutually exclusive (both
sets of propositional variables cannot be satisfied simultaneously).
For each set precj(α) there is a unique corresponding postcon-
dition postj(α), which is also a finite set of literals. We denote
the set of all pre- and postconditions for all belief updates in Λ by
C(Λ).

The alphabet of our logic consists of (1) a set of propositional
variables P = Pb ∪ Pg ∪ Pc, where Pc is a set of boolean flags
starti (for every i) for plan πi has started; (2) a set of atomic ac-
tions Ac(Λ) (3) for every rule ri ∈ Λ, an atomic action δri (for
apply ri); (4) for every i, an atomic action ei executed at the end
of each plan πi indicating that the end of the plan has been reached
and which re-enables firing planning goal rules.

PDL program expressions ρ are built out of atomic actions by
using sequential composition ‘;’, test on formulas ‘?’, union ‘∪’,
finite iteration ‘∗’ and interleaving ‖ [1]. Note that every formula
with the interleaving operator can be rewritten without the inter-
leaving operator, but the resulting formula might be doubly expo-
nentially larger [1]. The formulas on which we can test are any
formulas of the language L defined below. The language L for
talking about the agent’s beliefs, goals and plans is the language of
PDL extended with a belief operator B and a goal operator G. A
formula of L is defined as follows: if p ∈ P , then B(−)p and G(−)p
are formulas; if p ∈ Pc, then p is a formula; if ρ is a program ex-
pression and φ a formula, then 〈ρ〉φ is a formula; and L is closed
under the usual boolean connectives. We define [ρ]φ as ¬〈ρ〉¬φ
and 〈[ρ]〉φ as 〈ρ〉φ ∧ [ρ]φ.

3.1 Verifying agent programs in PDL
We distinguish two types of properties of agent programs: safety

properties and liveness properties. Let φ ∈ L denote the initial be-
liefs and goals of an agent and ψ ∈ L denote states in which certain
beliefs and goals hold (i.e., φ, ψ are formulas of L containing only
B(−)p and G(−)q atoms). The general form of safety and liveness
properties is then: φ→ [ξ(Λ)]ψ and φ→ 〈ξ(Λ)〉ψ, respectively
(where ξ(Λ) describes the execution of the agent’s program Λ).

The beliefs, goals and plans of agent programs can be trans-
lated into PDL expressions as follows. Belief formulas of Sim-
pleAPL are mapped to formulas of L by a function fb. For p ∈ P ,
fb((−)p) = B(−)p; fb(φ andψ) = fb(φ)∧fb(ψ) and fb(φ orψ) =
fb(φ) ∨ fb(ψ).

Translation of goal formulas is analogous to beliefs, with φ, ψ
replaced by goal query expressions, B replaced by G and fb re-
placed by fg .

Translation of plan expressions: let α be a belief update action,
φ and ψ be belief and goal query expressions, and π, π1, π2 be plan
expressions of SimpleAPL:
fp(α) = α
fp(φ?) = fb(φ)?

fp(ψ!) = fg(ψ)?
fp(π1;π2) = fp(π1); fp(π2)
fp(if φ then π1 else π2) = (fb(φ)?; fp(π1))∪(¬fb(φ)?; fp(π2))
fp(while φ do π) = (fb(φ)?; fp(π))∗;¬fb(φ)?.

Using this translation, we translate the agent’s program Λ as fol-
lows:

ξ(Λ) = (
[

Λ′⊆Λ,Λ′ �=∅
‖ri∈Λ′ (δri; fp(πi); ei))

∗

Our intention is to verify properties of the agent in PDL by saying
‘in all states (or in some state) reachable by a path described by
ξ(Λ), property φ holds’.

In order to do this, we must ensure that there is a correspondence
between paths in the operational semantics plus an execution strat-
egy, and paths in the PDL models satisfying the axioms for this
strategy: if a path exists in the operational semantics, then there is
a corresponding path in the PDL model. The converse is not true;
for example in the PDL model from any state there is a transition
by a belief update action, and in the operational semantics this only
holds if the belief update is the first action of some plan which is
in the plan base in that state. However, we can show that if a there
is a path in the PDL model which is described by ξ(Λ), then there
is a corresponding path in the operational semantics between two
configurations with empty plan bases.

3.2 General conditions on models
A model M = (W, {Rα : α ∈ Ac}, Rδri

, Rei , V) where

• W is a non-empty set of states;

• V = (Vb, Vg, Vc) is the evaluation function consisting of
belief and goal valuation functions Vb and Vg and control
valuation function Vc such that for every s ∈ W , Vb(s) =
{(−)p1, . . . , (−)pm : pi ∈ Pb} is a set of agent’s beliefs in
s, Vg(s) = {(−)u1, . . . , (−)un : ui ∈ Pg} is a set of agent’s
goals in s, and Vc(s) ⊆ Pc is a set of control variables true
in s.

• Rα, Rδri
and Rei are binary relations on W such that Rα

satisfies pre- and postconditions for α and Rδri
satisfies pre-

conditions for firing planning goal rules and only changes the
values of control variables.

The conditions onRα,Rδri
andRei depend on the execution strat-

egy and are defined below.
Given the relations corresponding to basic actions in M , we can

define sets of paths in the model corresponding to any PDL pro-
gram expression ρ in M . A set of paths τ (ρ) ⊆ (W × W)∗ is
defined inductively:

• τ (α) = {(s, s′) : Rα(s, s′)}
• τ (φ?) = {(s, s) : M, s |= φ}
• τ (ρ1 ∪ ρ2) = {z : z ∈ τ (ρ1) ∪ τ (ρ2)}
• τ (ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ (ρ1), z2 ∈ τ (ρ2)}, where ◦

is concatenation of paths, such that z1 ◦ z2 is only defined if
z1 ends in the state where z2 starts

• τ (ρ∗) is the set of all paths consisting of zero or finitely many
concatenations of paths in τ (ρ)

• τ (ρ1 ‖ ρ2) is the set of all paths obtained by interleaving
atomic actions and tests from τ (ρ1) and τ (ρ2).

The relation |= of a formula being true in a state of a model is
defined inductively as follows:

• M, s |= B(−)p iff (−)p ∈ Vb(s), where p ∈ Pb

• M, s |= G(−)p iff (−)p ∈ Vg(s), where p ∈ Pg

• M, s |= p iff p ∈ Vc(s), where p ∈ Pc

• M, s |= ¬φ iff M, s �|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= 〈ρ〉φ iff there is a path in τ (ρ) starting in s which
ends in a state s′ such that M, s′ |= φ.

Models for all execution strategies satisfy the following condi-
tion:

Beliefs and goals Vb(s) ∩ Vg(s) = ∅ and Vb(s) is consistent, i.e.,
for no p ∈ Pb both p and−p ∈ Vb(s).

In addition, different strategies require different conditions on ap-
plicability of actions and rules.

3.3 Interleaved execution strategy
A model for Λ in conjunction with the interleaved execution

strategy in addition conforms to the following constraints.
We use the notation {φ1, . . . , φn}Ru{l1, . . . , lm} as a short-

hand for saying that in a state s satisfying φi there is always a
transition by Ru to some state t, and all such states t reachable
from s by Ru satisfy belief or control literals {l1, . . . , lm}. If
a belief or control literal l is not mentioned in the condition on
t, then l is true in t iff it is true in s. This explicitly specifies
Vb(t) and Vc(t). For the goal literals, Vg(t) = Vg(s) \ S where
S = {l : l ∈ Vb(t) \ Vb(s)} is the set of belief literals made true
as the result of transition. If a state s does not satisfy any of the ex-
plicitly stated preconditions for the existence of an Ru transition,
then there is no Ru transition out of s.

Rules-i {¬starti, κi ∈ Vg(s), βi ∈ Vb(s)}Rδri
{starti}

Actions {precj(α) ⊆ Vb(s)}Rα{postj(α)}.
End {}ei{¬starti}
Let the class of transition systems defined above be denoted M(Λ, i).

Note that for every pre- and postcondition pair (preci, posti)
we can describe states satisfying preci and states satisfying posti

by formulas of L using the translation fb defined above.

THEOREM 1. The following axiom system Ax(Λ, i) is sound
and (weakly) complete for the class of models M(Λ, i).

CL classical propositional logic

PDL axioms of PDL (see, e.g., [10]) excluding interleaving since
it is redundant)

A1 ¬(Bp ∧ B−p)
A2 B(−)p→ ¬G(−)p
R-i-1 ¬starti ∧Gκi ∧Bβi ∧ φ→ 〈[δri]〉(starti ∧ φ), where φ

does not contain starti

R-i-2 starti ∨ ¬(Gκi ∧Bβi)→ [δri]⊥
Ac fb(precj(α))∧ φ→ 〈[α]〉(fb(postj(α))∧ φ), where φ does

not contain variables from postj(α)

E φ → 〈[ei]〉(φ ∧ ¬starti) for any formula φ not containing
starti.

We can prove correspondence between paths in the transition
system S(Λ) generated by the operational semantics with the inter-
leaved executions strategy, and paths described by ξ(Λ) in M(Λ, i).

THEOREM 2. Let Λ be the program of an agent using the in-
terleaving execution strategy. Let S(Λ) be the transition system
generated by the operational semantics for this agent. Let M ∈
M(Λ, i) be a model generated by the initial state of S.

Then there exists a path in S between two configurations with
empty plan bases 〈σ, γ, {}〉 and 〈σ′, γ′, {}〉 iff there is a path inM
between any two states s and s′ such that Vb(s) = σ and Vg(s) =
γ, Vb(s

′) = σ′ and Vg(s′) = γ′ with the labels of the path spelling
a word w which is in the language of ξ(Λ).

3.4 Non-interleaved execution strategy
The models for non-interleaved execution strategy satisfy Ac-

tions and End as before, and the following condition:

Rules-ni {∀j¬startj , κi ∈ Vg(s), βi ∈ Vb(s)}Rδri
{starti}

Let the class of transition systems defined above be denoted M(Λ,ni).

THEOREM 3. The following axiom system Ax(Λ,ni) is sound
and (weakly) complete for the class of models M(Λ,ni):

CL, PDL, A1, A2, Ac, E as before;

R-ni-1
V

j ¬startj∧Gκi∧Bβi∧φ→ 〈[δri]〉(starti∧φ), where
φ does not contain starti

R-ni-2
W

j startj ∨ ¬(Gκi ∧Bβi)→ [δri]⊥
Similarly to the case of the interleaved execution strategy, we can
prove correspondence between paths in the transition system S(Λ)
generated by the operational semantics with the non-interleaved ex-
ecutions strategy, and paths described by ξ(Λ) in M(Λ,ni).

Note that on models corresponding to the non-interleaved exe-
cution strategy, there are no paths described by ξ(Λ) which contain
an application of a rule (a step with a δri label) followed by steps of
the corresponding plan (fp(πi); ei) interleaved with an application
of another rule δrj , since after the δri transition, starti is set to
true, so the preconditions for δrj are false until (fp(πi); ei) is exe-
cuted and starti is set to false again. Hence on M(Λ,ni) models,
ξ(Λ) is equivalent to (∪i(δri; fp(πi); ei))

∗.

4. CONCLUSION
In this paper, we analysed the implications of an agent’s execu-

tion strategy in determining the behavior of BDI-based agent pro-
grams. In order to illustrate the problem, we presented a simple
agent programming language, SimpleAPL, and explored two of its
possible execution strategies. We proposed a logic to reason about
these execution strategies and explained how it can be used to ver-
ify the correctness of agent programs. Although we investigated
only a small number of execution strategies, our approach is gen-
eral enough to accommodate any execution strategy that can be
formulated in terms of distinct phases of execution and the kinds
of operations that can be performed in each phase.

In future work we plan to investigate other execution strategies.
For example, by adding more control variables we can formalise
strategies which alternate between executing a number of steps
from each current plan. It would also be interesting to investi-
gate strategies which prioritize particular goals and the plans that
achieve them. Another direction for future work is extending the
programming language, e.g., to introduce variables in the language
of beliefs, goals, plans and planning goal rules, and to extend the
setting to include additional phases in the agent’s cycle, such as
events or sensing, and actions performed in an external environ-
ment.

Acknowledgements
Natasha Alechina and Brian Logan were supported by EPSRC grant
no. EP/E031226.

5. REFERENCES
[1] K. R. Abrahamson. Decidability and expressiveness of logics

of processes. PhD thesis, Department of Computer Science,
University of Washington, 1980.

[2] N. Alechina, M. Dastani, B. Logan, and J.-J. C. Meyer. A
logic of agent programs. In Proc. AAAI 2007, pages
795–800. AAAI Press, 2007.

[3] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model
checking multiagent systems. J. Log. Comput.,
8(3):401–423, 1998.

[4] R. Bordini, J. Hübner, and R. Vieira. Multi-Agent
Programming - Languages, Platforms and Applications,
chapter Jason and the Golden Fleece of agent-oriented
programming. Springer, 2005.

[5] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, Berlin, 2005.

[6] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifying multi-agent programs by model checking.
Autonomous Agents and Multi-Agent Systems,
12(2):239–256, 2006.

[7] M. Dastani and J. Meyer. A Practical Agent Programming
Language. In Proc. of PROMAS, 2007.

[8] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. C.
Meyer. A programming language for cognitive agents: Goal
directed 3APL. In Proc. ProMAS 2003, volume 3067 of
LNCS, pages 111–130. Springer, 2004.

[9] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Multi-Agent Programming - Languages, Platforms and
Applications, chapter Programming multi-agent systems in
3APL. Springer, 2005.

[10] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT
Press, 2000.

[11] K. Hindriks and J.-J. C. Meyer. Agent logics as program
logics: Grounding KARO. In Proc. KI 2006, volume 4314 of
LNAI. Springer, 2007.

[12] A. Lomuscio and F. Raimondi. Mcmas: A model checker for
multi-agent systems. In Proc. TACAS 2006, pages 450–454,
2006.

[13] A. Pokahr, L. Braubach, and W. Lamersdorf. Multi-Agent
Programming - Languages, Platforms and Applications,
chapter Jadex: A BDI Reasoning Engine. Springer, 2005.

[14] S. Shapiro, Y. Lespérance, and H. J. Levesque. The cognitive
agents specification language and verification environment
for multiagent systems. In Proc. AAMAS 2002, pages 19–26.
ACM Press, 2002.

