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ABSTRACT
Solutions to complex tasks often require the cooperation
of multiple robots, however, developing multi-robot policies
can present many challenges. In this work, we introduce
teaching by demonstration in the context of multi-robot
tasks, enabling a single teacher to instruct multiple robots to
work together through a demonstration of the desired behav-
ior. Within this framework, we contribute two approaches
for teaching coordination based on different communication
and information sharing strategies. To enable the teacher
to divide attention between multiple robots, each robot uses
a confidence-based algorithm that allows it to regulate its
autonomy and determine the need for demonstration. Eval-
uation is performed using two Sony QRIO robots learning a
real-world collaborative ball sorting task.
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1. INTRODUCTION
Teaching by demonstration is a learning approach based

on human-robot interaction that provides an intuitive inter-
face for robot programming. Using this approach, a robot
learns to imitate the behavior of a teacher by observing a
demonstration of the task.

In the standard formalization of demonstration learning,
a single robot is taught by a single teacher [2, 4, 5]. How-
ever, solutions to complex tasks often require the coopera-
tion of multiple robots. In this work, we explore teaching by
demonstration in the context of multi-robot tasks, enabling
a single person to teach multiple robots to work together.

Multi-robot coordination has been extensively studied in
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robotics research and presents many challenges, such as
issues of action coordination, communication, and physical
interaction. In this paper, we focus on the teaching ele-
ment of the multi-robot demonstration problem and con-
tribute two approaches for teaching coordination. The first
approach, coordination through active communication, en-
ables the teacher to explicitly teach when information should
be shared through demonstration of communication actions.
The second approach, coordination through shared state, en-
ables the teacher to select state information to be shared
automatically between robots and to demonstrate only the
physical actions to be performed.

When instructing multiple robots, the teacher is unable
to interact with all robots at the same time and must shift
attention between them. Each individual robot must there-
fore possess a degree of autonomy that makes it robust to
intermittent periods of neglect from the teacher. To address
this problem, we build upon our single-robot demonstra-
tion learning algorithm, Confident Execution [1]; this algo-
rithm provides a decision-making mechanism that prevents
the robot from acting autonomously in unknown or uncer-
tain situations by actively selecting between autonomous ex-
ecution and requests for demonstration. Using this mecha-
nism, each robot no longer requires the teacher’s undivided
attention, allowing the teacher to work with multiple robots
at the same time. We evaluate the multi-robot learning al-
gorithm and coordination strategies by teaching two Sony
QRIO humanoid robots to perform a ball sorting task.

2. MULTI-ROBOT LEARNING AND
COORDINATION

One of the greatest challenges of extending demonstration
learning to multi-robot systems is the problem of limited
human attention, the fact that the teacher is not able to pay
attention to, and interact with, all robots at the same time.
Each individual robot must therefore possess a degree of
autonomy that makes it robust to periods of neglect from the
teacher. This challenge has prevented most existing single-
robot algorithms from generalizing to multi-robot domains.

To address the problem of limited teacher attention we uti-
lize the Confident Execution algorithm, a decision-making
process that enables a robot to regulate its autonomy and
request teacher demonstrations in unfamiliar states. Using
this approach, each robot controls learning by selecting its
own training data, requiring only intermittent teacher at-
tention. In the following sections, we present an overview of
Confident Execution in the context of multi-robot learning,
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Algorithm 1 Multi-Robot Confident Execution

1: for each robot do
2: s← GetState()
3: (ap, c)← ClassifyState(s)
4: if DemonstrationRequired(c) then
5: ad ← GetDemonstration()
6: UpdatePolicy(s, ad)
7: ExecuteAction(ad)
8: else
9: ExecuteAction(ap)

before presenting two approaches to teaching multi-robot
coordination through demonstration.

2.1 Confident Execution Algorithm
Algorithm 1 presents a pseudocode summary of the Confi-

dent Execution algorithm, using which an independent pol-
icy is learned for each robot. Confident Execution is an in-
teractive learning algorithm in which the robot must select
demonstration examples, in real time, as it interacts with
the environment. At each decision timestep, the algorithm
selects between demonstration and autonomy based on a
measure of action-selection confidence. Specifically, given
the current state of the robot, the algorithm queries a clas-
sifier representing the robot’s policy, and obtains a policy
action ap and its classification confidence c (line 3). The
classification confidence is then used to identify states in
which additional demonstration will provide useful informa-
tion and improve the robot’s policy, as described in [1].

When demonstration is required, the robot requests help
from the teacher and waits for a demonstration of the cor-
rect action. The demonstrated action, ad, is then used to
update the robot’s policy before being executed by the robot
(lines 6-7). If the robot is confident in its ability to select
the correct action, however, a demonstration is not required,
and the robot autonomously executes the policy-selected ac-
tion ap (line 9). The action selection process is repeated once
action execution is complete.

Confident Execution guides the robot to incrementally ac-
quire datapoints representing the desired behavior. As more
datapoints are acquired over time, fewer novel states are en-
countered, and the autonomy of the robot increases. Task
learning is complete once the robot is able to repeatedly per-
form the task correctly without requesting demonstrations.
In the context of multi-robot systems, we take advantage of
the partial robot autonomy afforded by the Confident Exe-
cution algorithm to enable the teacher to instruct multiple
robots. Multi-robot coordination emerges from the interac-
tion between robots based on their independent policies.

2.2 Demonstration of Multi-Robot
Coordination

In addition to teaching multiple robots at the same time,
we are interested in teaching them to work together. Co-
ordination between individual robots relies on a common
understanding of the world based on communicated infor-
mation. In this paper, we contribute two techniques for
teaching coordination using communication.

The coordination through active communication ap-
proach enables the teacher to use demonstration to explic-
itly teach when information should be communicated. Each
robot’s abilities are extended to include communication ac-

Figure 1: QRIO robots performing ball sorting task.

tions which are used to share locally observed state with
the robot’s teammates. During demonstration, the teacher
selects among a set of both physical and communication
actions for the robot to perform. Based on these demon-
strations, communication actions are incorporated directly
into the robot’s action policy.

Coordination through shared state takes a different
approach by automating the inter-robot communication pro-
cess. This technique enables the teacher to select the locally
observed state features each robot shares with its team-
mates. The algorithm then tracks the status of these fea-
tures, and automatically communicates their values each
time they change. During learning, the teacher focuses on
demonstrating only the physical actions to be performed
based on the shared state information. Note that this ap-
proach is targeted at discrete valued features that do not
change rapidly over time. The evaluation of both teaching
methods is presented in Section 4.

3. EXPERIMENTAL SETUP
Experimental evaluation of the presented algorithms was

conducted using the Sony QRIO humanoid robots, Figure 1.
The QRIO robot is a fully autonomous system enabled with
38 degrees of freedom, onboard processing, stereo vision and
speech [3]. Wireless communication allows additional off-
board processing to be integrated seamlessly into the sys-
tem. The robot’s anthropomorphic design and ability to ex-
press emotions through human-like motion and speech make
it highly suitable for human-robot interaction.

3.1 Ball Sorting Domain
Evaluation of multi-robot learning and coordination was

performed in a ball sorting domain. Figure 1 shows the
robots operating in the domain, which consists of two sorting
stations connected by ramps. Each station has an individual
queue of colored balls (red, yellow or blue) that arrive via a
sloped ramp for sorting. The robots’ task is to sort the balls
by color into four bins.

For this task, the action set of each robot consists of the
following actions: wait, sort left, sort right and pass. The
sorting actions enable the robot to pick up the ball at the
head of its queue and place it into the left or right bin. Pass-
ing enables the robot to place the ball onto its teammate’s
ramp, where it rolls down to the tail end of the other robot’s
queue. The color and location of the balls is determined by
each robot using its onboard vision system. Using these
abilities, the robot are taught to perform the following task:
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Figure 2: Ball sorting task execution using coordination through active communication.

Ball Sorting Task: Each robot begins with multiple
balls of various colors in its queue. QRIO A sorts red and
yellow balls into the left and right bins, respectively, and
passes blue balls to QRIO B. QRIO B sorts blue and yellow
balls into the left and right bins, respectively, and passes red
balls to QRIO A. Additionally, we would like the number of
sorted balls to be distributed fairly between the robots. If
one robot runs out of balls, the other robot should pass ad-
ditional balls into its teammate’s queue. Only balls that
can be sorted by the other robot should be passed, however.
For example, QRIO A should pass only the blue and yellow
balls, and QRIO B should pass only the red and yellow balls.
If both queues are empty, the robots should wait.

3.2 Human-Robot Interaction
Learning from demonstration is an interactive process that

requires two-way communication between the robot and the
teacher. When requesting a demonstration, the QRIO robot
attempts to audibly attract the teacher’s attention by speak-
ing the phrase “What should I do now?”. Visually, uncer-
tainty is indicated by an open arm gesture and the lighting
of LEDs on the head.

The teacher interacts with each robot via a GUI interface,
which allows him or her to select the action to demonstrate
from among the available action primitives. The GUI addi-
tionally displays the robot’s current state vector.

4. EVALUATION
In this section we evaluate and compare the active com-

munication and shared state approaches to teaching multi-
robot coordination. Each robot’s locally observed state is
represented by the boolean state vector {red, yellow, blue},
in which each feature represents the absence or presence of
a ball of a particular color. Only the ball at the head of the
queue can be observed by the robot, resulting in a single
color value being set at any one time.

To perform the ball sorting task, each robot must commu-
nicate a single bit of information to its teammate – whether
its queue is empty or full. This information is stored in the
boolean state feature Empty, which is set to 0 if a ball is
present in the queue. Finally, for each robot, the feature
teammateEmpty represents its teammate’s queue status.

4.1 Coordination through Active
Communication

Communicating the values of Empty between robots at
every timestep is typically impractical due to possible com-
munication costs and network traffic congestion. Instead,
we would like to use demonstration to teach the robot when
communication should take place. To enable the teacher
to explicitly demonstrate communication, we introduce a
communication action, UpdateQueueStatus, which commu-
nicates the current status of a robot’s queue. Our goal is
for the robot to learn to perform this action each time the
value of the Empty feature changes.

While most physical actions have an observable effect that
changes the robot’s state (i.e. moving an object changes the
state of the environment), the immediate effect of communi-
cation can not be observed. For example, the robot can not
sense that following the execution of UpdateQueueStatus the
value of its teammate’s teammateEmpty feature changes. To
prevent the robot from remaining in the same state follow-
ing a communication action, the state feature SentEmpty
is added to represent the last communicated value of the
Empty feature. The execution of UpdateQueueStatus causes
both the local SentEmpty value and the teammate’s state
feature to be updated. A mismatch in the values of Empty
and SentEmpty is an indication that an update is required.

In summary, the complete task setup is described by:

Robot State: S = observed ∪ sent ∪ received
observed = {red, yellow, blue}
sent = {Empty, SentEmpty}
received = {teammateEmpty}

Robot Actions: A = physical ∪ communication
physical = {sort left, sort right, pass ramp, wait}
communication = {UpdateQueueStatus}

Figure 2 presents side-by-side timelines of the robots learn-
ing to perform the ball sorting task using active communi-
cation. Robot state at each decision point is represented by
a vector of boolean values composed of the observed, sent
and received features.

The initial robot configuration, in which QRIO B has
seven balls and QRIO A has one, is shown on the left side
of the figure. Both robots begin with no initial knowledge
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Figure 3: Ball sorting task execution using coordination through shared state.

about the task, and request a demonstration upon encoun-
tering the first state. The teacher instructs each robot to
place its ball, red and yellow, into the left and right bin,
respectively. Upon receiving their individual instructions,
each robot executes the specified action.

At each following timestep, the robots evaluate their state,
compare it to previously encountered demonstrations, and
select between autonomous execution and demonstration.
The boolean features used to represent the robot’s state
allow the classifier to learn quickly, requiring only a sin-
gle demonstration per unique state. After sorting the red
ball and emptying the queue, QRIO A asks for a second
demonstration from the teacher. The teacher selects the
UpdateQueueStatus action, which notifies QRIO B that its
teammate ran out of balls.

As task execution continues, both robots begin to en-
counter repeated states and perform an increasing number
of actions autonomously. The final configuration, in which
QRIO A has gained two yellow balls, is shown on the right.
Note that this example does not cover all possible robot
states; teaching the entire task consisting of all possible com-
binations of balls and messages requires 32 demonstrations,
16 per robot.

4.2 Coordination through Shared State
Coordination based on communicated information relies

on that information being up to date. Each time an im-
portant local change occurs, the robot must communicate
its updated state to its teammates. Coordination through
shared state automates this common communication case.

In the place of explicit communication actions used in the
previous section, this approach utilizes a set of shared state
features. For the ball sorting task, we select to share the
state feature Empty, resulting in the following task configu-
ration:

Robot State: S = observed ∪ shared ∪ received
shared = {Empty}
received = {teammateQueueEmpty}

Robot Actions: A = physical

Figure 3 presents a timeline of Task 2 being taught us-
ing shared state. Note that communication of the Empty

feature, represented by dotted arrows, occurs automatically
without the need for teacher demonstration. Using this ap-
proach, the same final state is reached by the robot, although
the action order differs slightly due to fewer demonstration
delays. The complete task requires 16 demonstrations, 8 per
robot, to learn.

5. CONCLUSION
In this paper we presented an algorithm for teaching dis-

tributed multi-robot tasks through demonstration. Based on
this algorithm, we additionally contributed two techniques
for using demonstration to teach multi-robot coordination.
The coordination through shared state approach focuses on
automating the most common communication case in which
shared information is always maintained up to date. Co-
ordination through active communication presents a more
general approach in which the teacher is able to encode any
condition for communication into the robot’s policy. Eval-
uation in a robotic ball sorting domain showed that both
techniques can be successfully used to teach robots to coor-
dinate. A promising direction for future work is to examine
how these techniques can be combined to provide the most
general solution to teaching multi-robot coordination.
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