
Transfer of Task Representation in Reinforcement
Learning using Policy-based Proto-value Functions ∗

(Short Paper)

Eliseo Ferrante
Dept. of Electronics and

Information,
Politecnico di Milano

piazza Leonardo Da Vinci, 32,
20133 Milan, Italy

eliseo.ferrante@mail.polimi.it

Alessandro Lazaric
Dept. of Electronics and

Information,
Politecnico di Milano

piazza Leonardo Da Vinci, 32,
20133 Milan, Italy

lazaric@elet.polimi.it

Marcello Restelli
Dept. of Electronics and

Information,
Politecnico di Milano

piazza Leonardo Da Vinci, 32,
20133 Milan, Italy

restelli@elet.polimi.it

ABSTRACT
Reinforcement Learning research is traditionally devoted to
solve single-task problems. Therefore, anytime a new task
is faced, learning must be restarted from scratch. Recently,
several studies have addressed the issue of reusing the knowl-
edge acquired in solving previous related tasks by transfer-
ring information about policies and value functions. In this
paper, we analyze the use of proto-value functions under
the transfer learning perspective. Proto-value functions are
effective basis functions for the approximation of value func-
tions defined over the graph obtained by a random walk on
the environment. The definition of this graph is a key as-
pect in transfer transfer problems in which both the reward
function and the dynamics change. Therefore, we introduce
policy-based proto-value functions, which can be obtained by
considering the graph generated by a random walk guided by
the optimal policy of one of the tasks at hand. We compare
the effectiveness of policy-based and standard proto-value
functions, on different transfer problems defined on a simple
grid-world environment.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Spectral graph theory

Keywords
Reinforcement Learning, Transfer Learning, Proto-value func-
tions

1. INTRODUCTION
Reinforcement Learning (RL) [9] is a very general learn-

ing paradigm. Nonetheless, for each new task, the learning

∗
Cite as: Transfer of Task Representation in Reinforcement Learn-
ing using Policy-based Proto-value Functions (Short Paper), Eliseo Fer-
rante, Alessandro Lazaric, Marcello Restelli,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp.1329-1332.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is restarted from scratch and this may lead to prohibitive
complexity (curse of dimensionality). The goal of transfer
learning is to design algorithms able to extract and reuse the
knowledge learned in one or more tasks to efficiently develop
an effective solution for a new task. Many works of transfer
in RL relied on the option framework [8, 4], by learning op-
tions that can be profitably reused in a wide range of tasks.
Another category of transfer approaches involves transfer of
value functions and policies across tasks defined over differ-
ent domains (i.e., with different state and action spaces).
The approach proposed in [10] uses a transfer functional to
map the value function of the source task to a corresponding
value function for the target task. Finally, in [11], the trans-
fer of policies via inter-task mappings across tasks defined
on arbitrary domains is considered.

In this paper, we focus on the problem of learning and
transferring the common representation underlying the op-
timal value functions of a set of related tasks. In particular,
we build on the proto-value functions (PVF) framework [6],
that provides a technique for the automatic extraction of a
set of basis functions based on spectral graph theory. Un-
like other works on transfer with PVFs [3], in which matrix
perturbation theory and Nyström methods are adopted for
domain transfer problems, we focus on the problem in which
both state and action spaces are shared across all the tasks
but both the dynamics and the reward function may vary.
The PVF method is defined under the assumption that the
function to be approximated can be effectively represented
on a graph. Therefore, in the context of transfer, it is impor-
tant to build a graph that captures both the dynamics and
the reward function. For this reason, we introduce policy-
based PVFs obtained from a graph built by considering the
optimal policy of one of the source tasks at hand.

The rest of the paper is organized as follows. In Section 2,
we review the proto-value functions framework. In Section 3,
we give the definition of the transfer problem and we intro-
duce the policy-based proto-value functions. In Section 4,
we compare original PVFs to policy-based PVFs in a grid
world transfer problem. Finally, in Section 5 we conclude
and we discuss some possible future directions.

2. PROTO-VALUE FUNCTIONS
RL problems are formally defined as a Markov Decision

Process (MDP), described as a tuple 〈S ,A, T ,R〉, where S is



the set of states, A is the set of actions, T a
ss′ is the transition

model that specifies the transition probability from state s

to state s′ when action a is taken, and Ra
s is the reward

function. The policy of the agent is defined as a function
π : S ×A → [0; 1] that prescribes the probability to take an
action in each state. The goal of the agent is to learn the
optimal policy π∗ that maximizes the reward received in the
long run. Furthermore, it is possible to compute the optimal
action-value function Q∗(s, a), that is, the expected sum of
discounted rewards in each state obtained by following π∗.
In many practical applications it is unfeasible to store the
value function with a distinct value for each state-action
(curse of dimensionality). The most common approach to
face this problem is to use linear function approximators for
the action value function:

bQ(s, a) =
kX

i=1

φi(s, a)θi,

where [θ1, . . . , θk] is the weights vector to be learned, [φ1 . . . φk]
are the basis functions, where φi : S ×A → R, i ∈ 1, . . . , k is
a basis function defined on the state-action space. Most
of the RL algorithms consider a set of hand-coded basis
functions (e.g., RBFs), while the learning process learns the
weights vector that minimizes the approximation error. On
the other hand, the PVF framework [6] provides an algo-
rithm for the automatic extraction of a set of basis func-
tions based on spectral graph theory [2]. The basic intuition
is that the value functions can be approximated by a set
of orthonormal basis computed from the Laplacian of the
graph obtained by a random walk on the environment at
hand. The Representation Policy Iteration (RPI) algorithm
consists in two phases: the representation learning phase
and the control learning phase. In the representation learn-
ing phase, PVFs are extracted. In particular, an undirected
or directed weighted graph G = 〈N, E,W 〉 that reflects the
topology of the task is built, where N is the set of nodes
(i.e. either states or state-action pairs), E the set of edges
and W the matrix containing the weights wuv between each
pair of nodes u, v ∈ N . Subsequently, spectral analysis of
the graph is performed, extracting the eigenvectors of some
graph operator, that is the PVFs. The most used graph op-
erator is the graph Laplacian, that in turns can be defined
in many ways, with the most common being the normalized
Laplacian definition:

L = I − D
−1/2

WD
−1/2,

where I is the identity matrix and D is a diagonal matrix
called the valency matrix, whose entries duu contain the de-
gree of a node duu =

P
v∈N wuv. Finally, in the control

learning phase, LSPI [5] is used to learn the weights vector.
One of the most critical part in the previous algorithm

is the construction of the graph used to extract the PVFs.
The agent explores the environment using a sampling policy
πσ and a set of sample transitions 〈s, a, s′, r〉 is collected. In
general, the sampling policy is the random policy πσ = πR.
Subsequently, a graph can be constructed alternatively by
taking into account the estimated transition model of the
problem, i.e. by considering the random walk P (containing
the probability of going from state s to s′) computed as:

W ≡ P
s′

s =
X

a∈A

π
σ(s, a)T a

ss′ ,

or by defining a suitable distance function d(si, sj), si, sj ∈

S and using an exponential weighting e−d(su,sv)2 to assign
weights to each edge on the graph (u, v) ∈ E. In this paper,
we focus on graphs defined over the state-action space [7].

3. POLICY-BASED PVFS FOR TRANSFER
We consider the following transfer learning problem. Let

〈S ,A, T, R〉 with T = {T1, . . . , Tn} and R = {R1, . . . ,Rn}
be a family of MDPs sharing the same state space S and
action space A but with different transition models and re-
ward functions. We define two probability distributions:
QT : T → [0, 1] and QR : R → [0, 1], used to select the tran-
sition model and reward function respectively. In particular,
we consider the scenario with one source task, from which
the representation knowledge is extracted, and one or more
target tasks, where learning exploiting transfer occurs. Both
source and target tasks are drawn according to QT and QR.
In the following, we distinguish between goal transfer and
dynamics transfer. In goal transfer we assume that the goal
changes between the source and the target task, whereas the
transition model remains unchanged. In dynamics transfer
the two tasks share the same goal, whereas the dynamics is
different.

3.1 Policy-based Proto-value Functions
The basic assumption underlying the original PVF frame-

work (whose PVFs will be denoted as dynamics-based PVFs)
is that the optimal value function V ∗ can be represented on
the graph G obtained through a random walk following a
fully random policy πR on the task. In goal transfer, we
assume that all the optimal value functions can be well ap-
proximated by the basis of the dynamics-based graph, i.e.,
the one that captures the dynamics of the environment but
completely ignores the reward functions. However, in the
more general case, both the transition model and the re-
ward function may vary. Hence, PVFs should be extracted
taking into account both of them. Unfortunately, it is not
possible to use the reward function in the construction of
graphs directly. Nonetheless, it is possible to bias the ex-
ploration of the environment towards the optimal policy of
the source task, thus indirectly taking its reward function
into account. This yields to a new sampling policy which is
different from the random policy πσ 6= πR. As a result, we
can compute a new kind of graph based on the new sampling
policy. Such graph will be denoted as policy-based graph.

We consider a task with a completely connected but stochas-
tic dynamics consisting of 5 states and with the goal in the
center, denoted with X. A dynamics-based graph would be
the one in Figure 1-(top). On the other hand, a policy-based
graph should take the goal into account. To strengthen the
policy contribution, we compute its t-th power to get the
distribution after t steps and we obtain the graph in Fig-
ure 1-(center). This graph captures information about the
goal, since only the weights on the edges directed towards
the goal are very high. However, dynamics information is
completely lost. Hence, we introduce averaged graphs (Fig-
ure 1-(bottom)). This new graph keeps information about
both the goal and the dynamics.

Following these observations, we propose the state-action
graph construction method. The method takes policy bias
factor δ as input parameter used to adjust the bias towards
the optimal policy π∗ of the source task in the construction
of the graph. In particular, we set the sampling policy πσ



Figure 1: An example of dynamics-based graph
(top), policy-based graph (center) and averaged-
graph (bottom)

to πR with probability 1 − δ and to π∗ with probability δ.
When δ = 0, the optimal policy is not used and dynamics-
based PVFs are extracted. On the other hand, when δ is
close to 1, the policy contribution is very strong and the
walk (and hence the graph) is strongly leaned towards the
goal. The sampling policy πσ is used to compute the initial
weight matrix for the state-action graph [7] by setting each
entry to

W ((si, ak), (sj , al)) = T ak
sisj

π
σ(al|sj),

∀si, sj ∈ S , ak, al ∈ A. Subsequently, the graph averaging is
done. Here, we use the time-averaged transition probability
matrix [1] with discounting, thus leading to the graph

Wet =
tX

i=1

W i(1 − γ)γi−1

1 − γt
.

Finally, the graph needs to be symmetrized, especially when
using the Laplacian as defined on undirected graphs. With
our method, the amount of biasing towards the policy is
controlled by the δ parameter.

4. EXPERIMENTAL RESULTS
In order to compare the learning performance of dynamics-

and policy-based PVFs in transfer problems, we consider the
three-rooms grid-world domain used in [6]. This consists
in a stochastic environment, where each action is success-
ful with probability 0.9, whereas with probability 0.1 the
agent stands still. In all experiments we use state-action
graphs and 15,000 samples during both the representation
and learning phase. LSPI parameters are: discount fac-
tor γ = 0.9, the maximum number of iterations is 16 and
ǫ = 0, 001.

4.1 Goal Transfer Experiment
We first perform goal transfer experiments, in which all

the tasks share the same dynamics but have different reward
functions. We extract a total of 24 state-action dynamics-
based PVFs. We would expect dynamics-based PVFs to
perform well, since they effectively capture the dynamics of
the task. In the first experiment we consider one source task

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LSPI iteration

Le
ar

ni
ng

 p
er

fo
rm

an
ce

Learning Performances with domain−based PVFs
on Symmetric Goal Transfer

 

 

Performance with domain−based PVFs
Optimal performances

Figure 2: Learning performance in goal transfer ob-
tained by moving the goal in a symmetric position

0
10

20
30

0

5

10

15
0

2

4

6

8

Exact Value Function

Figure 3: A value function with nonlinearities due
to the reward function and not the transition model.

with the goal in the upper right angle of the grid-world, and
one target task with the goal in the upper left corner. The
exact value function of the source task presents some non-
linearities in the regions that are close to the walls. In [6] it
is shown that dynamics-based PVFs can effectively capture
those nonlinearities. Learning performance are reported in
Figure 2. In this case, the two tasks are completely unrelated
in terms of their goal and their optimal policy, whereas their
dynamics is the same. Results show that dynamics-based
PVFs can effectively achieve goal transfer in this case.

We now consider a goal transfer problem in which the re-
ward functions are obtained by perturbation of the reward
function of a source task. In the target task the goal is
placed at (8, 27), close to the upper-right corner and the
corresponding optimal value function is reported in Figure
3. It is interesting to notice that, in this case, the value
function has many nonlinearities that are not related to the
dynamics of the environment but that are generated by the
reward function. Thus, the dynamics-based PVFs are likely
to fail to approximate the optimal value functions of target
tasks that share these characteristics with the source task.
On the other hand, the policy-based PVFs generated from
the graph obtained by biasing the exploration towards the
optimal policy of the source task, better capture the partic-
ular shape of the value functions to approximate.

We consider 9 target tasks where the goal is moved around
the goal of the source task (including itself). We plot the
average learning performances of dynamics-based PVFs and
policy-based PVFs obtained with policy bias factor δ =
0.75, and we compare them with the average optimal perfor-
mance. As it can be noticed in Figure 4-(left), policy-based
PVFs performs better than dynamics-based PVFs. This is
because policy-based PVFs help to capture and transfer the
information about the nonlinearities close to the goal.



2 4 6 8 10 12 14 16 18
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

LSPI iteration

Le
ar

ni
ng

 p
er

fo
rm

an
ce

Learning Performance comparing domain−based PVFs
with policy−based PVFs in goal transfer in multiple target tasks

 

 

Performance with domain−based PVFs
Performance with Policy−based PVFs
Average optimal performance

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LSPI iteration

L
e
a
rn

in
g
 p

e
rf

o
rm

a
n
c
e

Learning performance comparing domain−based PVFs
with policy−based PVFs in domain transfer

 

 

Performance with domain−based PVFs

Performance with policy−based PVFs

Optimal performance

2 4 6 8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

LSPI iteration

Le
ar

ni
ng

 p
er

fo
rm

an
ce

Learning performance comparing domain−based PVFs
with policy−based PVFs in goal and domain transfer

 

 

Performance with policy−based PVFs
Performance with domain−based PVFs
Optimal performance

Figure 4: Learning performance in goal (left), dynamics (center), and goal-dynamics (right) transfer

4.2 Dynamics Transfer Experiment
We consider a dynamics transfer experiment in which tasks

are strictly related in terms of their optimal policy but with
different dynamics. Furthermore, we assume that the shared
representation can be compactly extracted by using a low
number of PVFs (6 in the experiment). The goal is placed
in the upper-right corner in both tasks. The source task
has a dynamics which is “tilted” in the opposite direction
of the goal. This means that the probability of success of
actions that aims in the opposite direction of the goal are
higher than the one aiming towards the goal. In the target
task, the dynamics is unchanged, with actions having the
same probability of success. Figure 4-(center) compares the
learning performance of dynamics-based PVFs with those of
policy-based PVFs obtained with δ = 0.75. As it can be no-
ticed, policy-based PVFs outperform dynamics-based PVFs
in this transfer experiment. This is because the two tasks
share the representation about their optimal policy, and this
can be better captured using policy-based PVFs.

4.3 Goal-Dynamics Transfer Experiment
In the final experiment we consider a source task whose

dynamics is tilted towards the bottom-left direction and a
goal at (8, 27). We consider three target tasks: (i) stan-
dard untilted dynamics and the goal at (8, 28), (ii) dynam-
ics tilted towards north and the goal at (9, 27), and (iii)
dynamics tilted towards south and the goal at (9, 26). We
consider 6 PVFs and δ = 0.5. Figure 4-(right) compares the
learning performance of dynamics-based PVFs with those
of policy-based PVFs. Optimal performances are reported
as well. Also in this case, policy-based PVFs outperform
dynamics-based PVFs. By transferring information about
the optimal policy, we are able both to counter-balance the
effect of the nonlinearity close to the goal and the change in
the dynamics.

5. CONCLUSIONS
In this paper, we focused on the problem of transfer in

terms of the extraction of a set of basis functions that can
be profitably used for the approximation of the optimal value
functions of a set of related tasks. In particular, building on
the PVF framework, we showed that, in the transfer prob-
lem, the graph construction method should take into consid-
eration both the transition model and the reward function.
Hence, we proposed policy-based PVFs, extracted using an
averaged discounted graph obtained through an exploration
biased towards the optimal policy of the source task. In
case of goal transfer, dynamics-based PVFs achieve effective
transfer whenever the optimal value functions has nonlinear-

ities directly related with the intrinsic structure of the envi-
ronment. On the other hand, when optimal value functions
present some nonlinearities caused by the reward function,
the use of the optimal policy of the source target leads to
policy-based PVFs that can better approximate the target
functions. Furthermore, the dynamics transfer experiments
showed that the policy-based PVFs can improve transfer ca-
pabilities in cases where the source and the target task share
a similar optimal policy, but the dynamics are different.

A direction for future work is to define a method to in-
crementally adapt the initial set of PVFs according to the
target tasks at hand, thus improving their approximation
capabilities on the tasks that must be actually solved.

6. REFERENCES
[1] A. T. Bharucha-Reid. Elements of the Theory of

Markov Processes and Their Applications. Dover
Publications, 1997.

[2] F. R. Chung. Spectral Graph Theory. Amer
Mathematical Society, 1997.

[3] K. Ferguson and S. Mahadevan. Proto-transfer
learning in markov decision processes using spectral
methods. In ICML Workshop on Transfer Learning,
2006.

[4] G. Konidaris and A. G. Barto. Building portable
options: Skill transfer in reinforcement learning. In
IJCAI, pages 895–900, 2007.

[5] M. G. Lagoudakis and R. Parr. Least-squares policy
iteration. JMLR, 4:1107–1149, 2003.

[6] S. Mahadevan and M. Maggioni. Proto-value
functions: A laplacian framework for learning
representation and control in markov decision
processes. JMLR, 8:2169–2231, 2007.

[7] S. Osentoski and S. Mahadevan. Learning state-action
basis functions for hierarchical mdps. In ICML ’07,
pages 705–712, 2007.

[8] T. J. Perkins and D. Precup. Using options for
knowledge transfer in reinforcement learning.
Technical report, University of Massachusetts,
Amherst, MA, USA, 1999.

[9] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[10] M. E. Taylor, P. Stone, and Y. Liu. Value functions
for RL-based behavior transfer: A comparative study.
In AAAI, pages 880–885, July 2005.

[11] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning
via inter-task mappings for temporal difference
learning. JMLR, 8:2125–2167, 2007.




