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ABSTRACT
Many important problems in multiagent systems involve the allo-
cation of multiple resources to multiple agents. If agents are self-
interested, they will lie about their valuations for the resources if
they perceive this to be in their interest. The well-known VCG
mechanism allocates the items efficiently, is incentive compatible
(agents have no incentive to lie), and never runs a deficit. Nev-
ertheless, the agents may have to make large payments to a party
outside the system of agents, leading to decreased utility for the
agents. Recent work has investigated the possibility of redistribut-
ing some of the payments back to the agents, without violating the
other desirable properties of the VCG mechanism.

We study multi-unit auctions with unit demand, for which previ-
ously a mechanism has been found that maximizes the worst-case
redistribution percentage. In contrast, we assume that a prior distri-
bution over the agents’ valuations is available, and try to maximize
the expected total redistribution. We analytically solve for a mech-
anism that is optimal amonglinear redistribution mechanisms. The
optimal linear mechanism is asymptotically optimal. We also pro-
posediscretizationredistribution mechanisms. We show how to au-
tomatically solve for the optimal discretization redistribution mech-
anism for a given discretization step size, and show that the result-
ing mechanisms converge to optimality as the step size goes to zero.
We also present experimental results showing that for auctions with
many bidders, the optimal linear redistribution mechanism redis-
tributes almost everything, whereas for auctions with few bidders,
we can solve for the optimal discretization redistribution mecha-
nism with a very small step size.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics; I.2.11 [Distributed Artificial Intelligence ]: Multia-
gent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Mechanism design, Vickrey-Clarke-Groves mechanism, payment
redistribution, prior distributions over preferences

Cite as: Optimal-in-Expectation Redistribution Mechanisms, Mingyu
Guo and Vincent Conitzer,Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,
Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.1047-
1054.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Many important problems in multiagent systems can be seen as

resource allocation problems. In such an allocation problem, there
are one or more items that must be allocated to the agents. We as-
sume that each agent has a privately heldvaluation function that
indicates how much she values the items. Moreover, we assume
that agents areself-interested: an agent will reveal her true val-
uation function only if doing so maximizes her utility. An allo-
cation mechanism (orauction) takes as input the agents’ reported
valuations, and as output produces an allocation of the items to
the agents, as well as payments to be made by or to the agents.
A mechanism isincentive compatibleif it is a dominant strategy
for the agents to report their true valuations—that is, regardless of
what the other agents do, an agent is best off reporting her true val-
uation. A mechanism isefficientif it always chooses an allocation
that maximizes the sum of the agents’ valuations.

The well-knownVCG (Vickrey-Clarke-Groves)mechanism [20,
4, 10] is both incentive compatible and efficient.1 In fact, in suffi-
ciently general settings, the wider but closely related class of Groves
mechanisms coincides exactly with the class of mechanisms that
satisfy both properties [9, 14]. The VCG mechanism has an addi-
tional nice property, which is that it satisfies thenon-deficitprop-
erty: the sum of the payments from the agents is nonnegative,
which means that the mechanism does not need to be subsidized by
an outside party. A stronger property than the non-deficit property
is that of(strong) budget balance, which requires that the sum of
the payments from the agents is zero—so that no value flows out of
the system of agents. To maximize social welfare (taking payments
into account), we would prefer a budget balanced mechanism to
one that merely achieves the non-deficit property (assuming both
are efficient). Unfortunately, it is impossible to achieve budget bal-
ance together with incentive compatibility and efficiency [15, 9,
17]. 2 Previous research has sacrificed either incentive compati-
bility or efficiency to achieve budget balance [8, 18, 7]. Another

1We use the term “VCG mechanism” to refer to the Clarke mech-
anism. Sometimes people refer to the wider class of Groves mech-
anisms as “VCG mechanisms,” but we will avoid this usage in this
paper. In fact, the mechanisms proposed in this paper fall within
the class of Groves mechanisms.
2The dAGVA mechanism [6] is efficient, (strongly) budget bal-
anced, andBayes-Nashincentive compatible, which means that if
each agent’s belief over the other agents’ valuations is the distri-
bution that results from conditioning the (common) prior distribu-
tion over valuations on the agent’s own valuation, and other agents
bid truthfully, then the agent is best off (in expectation) bidding
truthfully. In practice, it is somewhat unreasonable to assume that
agents’ beliefs are so consistent with each other and with the mech-
anism designer’s belief, so we use the much stronger and more
common notion of dominant-strategies incentive compatibility in
this paper.
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approach is to allocate the items according to the VCG mechanism,
and then to redistribute as much of the total VCG payment as pos-
sible back to the agents, in a way that does not affect the desirable
properties of the VCG mechanism. Several papers have pursued
this idea and proposed some natural redistribution mechanisms [1,
19, 2]. For example, in the Bailey mechanism [1], each agent re-
ceives a redistribution payment that equals1/n times the VCG rev-
enue that would result if this agent were removed from the auction.
In the Cavallo mechanism [2], each agent receives a redistribution
payment that equals1/n times the minimal VCG revenue that can
be obtained by changing this agent’s own bid. For revenue mono-
tonic settings, Bailey’s and Cavallo’s mechanisms coincide; in this
case we refer to this mechanism as the Bailey-Cavallo mechanism.
More recently, there has been some research on findingoptimalre-
distribution mechanisms. For the case of a multi-unit auction with
unit demand (that is, each agent wants at most one of the indistin-
guishable units), a mechanism that maximizes the worst-case redis-
tribution percentage has been characterized [11, 16]. In this paper,
we continue the search for optimal redistribution mechanisms. Un-
like the worst-case work, we assume that a prior distribution over
the agents’ valuations is available, and we aim to maximize theex-
pectedtotal redistribution. (There are two related papers [13, 3],
in which the authors propose mechanisms that maximize the sum
of the agents’ utilities (taking payments into account) in expecta-
tion. However, these papers operate under the constraint that every
agent’s total payment must be nonnegative, which results in very
different mechanisms.)

The rest of this paper is layed out as follows. In Section 2, we
cover the necessary background. In Section 3, we define linear
redistribution mechanisms, and solve for the optimal linear redis-
tribution mechanism. In Section 4, we show how to automatically
(using linear programming) solve for mechanisms that are close to
optimal based on a discretization of the valuation space. In Sec-
tion 5, we compare the linear and discretization mechanisms ex-
perimentally.

2. BACKGROUND
We will focus on multi-unit auctions with unit demand in this pa-

per. In a multi-unit auction, multiple indistinguishable units of the
same good are for sale. In a multi-unit auction with unit demand,
each agent wishes to obtain at most one unit—that is, if the agent
receives more than one unit, her utility is the same as if she re-
ceives one unit. We note that an (unrestricted) single-item auction
is a special case of multi-unit auctions with unit demand.

In this setting, each agent has a privately held true value for re-
ceiving (at least) one unit. If an agent wins one unit, her utility
is her true value minus her payment; otherwise, her utility is the
negative of her payment. In a(sealed-bid) mechanism, every agent
reports her value (herbid), and the mechanism determines which
agents win a unit, as well as how much each agent pays, as a func-
tion of these bids. A mechanism is(dominant-strategies) incentive
compatibleif it is a dominant strategy for each agent to bid her true
valuation—that is, bidding truthfully is optimal regardless of what
the other agents bid. Since we only study incentive compatible
mechanisms in this paper, we do not need to make a clear distinc-
tion in our notation between the true values and the bids.

We assume that we know the number of agentsn and the num-
ber of indistinguishable unitsm. If m ≥ n, then we can give every
agent a unit without charging any payments. Thus, we only con-
sider the casem < n. Let the set of agents beI = {1, . . . , n},
where agenti has thei-th highest valuevi. Let constantsL andU
be the lower bound and upper bound of the possible values. Hence,
∞ > U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L ≥ 0. We also as-

sume that we have a prior joint probability distribution over the
agents’ valuesvi. We denote the probability density function of
this joint distribution byf(v1, . . . , vn). We emphasize that we re-
quire neither that the agents’ values are drawn from identical dis-
tributions, nor that they are independent. However, for the special
case where agents’ values are independently drawn from the same
distributiong(x) (U ≥ x ≥ L), we know from the theory of or-
der statistics thatf(v1, . . . , vn) = n!g(v1)g(v2) . . . g(vn) for all
U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L. If the agents’ values are not drawn
independently or are not drawn from the same distribution, then we
do not always have an elegant analytical form for the joint distri-
bution f . However, we will see later that optimal-in-expectation
linear redistribution mechanisms depend only on the expectations
of v1, . . . , vn, which can usually be obtained by sampling.

In a multi-unit auction with unit demand, the VCG mechanism
coincides with the(m + 1)-th price auction. In this auction, the
bidders with the highestm bids (bidders1, . . . , m) each win one
unit, and each pay at the price of the(m+1)-th bid (vm+1). (When
m = 1, this is the well-known second-price auction.) Because it is
a special case of the VCG mechanism, the(m+1)-th price auction
is incentive compatible, efficient, and never incurs a deficit.

A redistribution mechanism works as follows: after collecting
a vector of bidsv1 ≥ v2 ≥ . . . ≥ vn, we first run the VCG
mechanism ((m + 1)-th price auction). The resulting allocation is
efficient (agents1 . . . m each win a unit). However, because each
winner has to payvm+1, a total VCG payment ofmvm+1 leaves
the system of agents. In order to achieve higher social welfare (tak-
ing payments into account), we try to redistribute a large portion of
the total VCG payment back to the bidders, while maintaining the
desirable properties of the VCG mechanism. Letri be the redis-
tribution received by bidderi. To maintain incentive compatibility,
ri must be independent of bidderi’s own bidvi. (It is not difficult
to see that this is sufficient for maintaining incentive compatibil-
ity: if an agent cannot affect her own redistribution payment, then
she may as well ignore it when she determines her strategy; hence,
the incentives for bidding are the same as in the VCG mechanism,
which is incentive compatible. In general, because our allocation
is efficient, the requirement thatri does not depend onvi is also
necessary for incentive compatibility [9, 14].) Hence, we can write
i’s redistribution asri(v−i) (sometimes short forri), wherev−i is
the multiset of bids other thanvi; these functionsri determine the
redistribution mechanism. In this paper, unless otherwise specified,
we consider onlyanonymousredistribution mechanisms, for which
ri(·) = rj(·) = r(·) for all i, j. That is, the redistributionfunction
is the same for all agents. This may still result in different redistri-
bution payments for the agents, because the input to the function,
v−i, can be different for differenti.

Another property of the VCG mechanism that we want to main-
tain is thenon-deficitproperty: the payments collected by the mech-
anism are at least the payments redistributed by it. This is crucial if
no external subsidy for the mechanism is available.3 In our setting,
this means that

Pn
i=1 ri(v−i) ≤ mvm+1.

3. LINEAR REDISTRIBUTION
MECHANISMS

We first restrict our attention to the family oflinear redistribution
mechanisms. A linear redistribution mechanism is characterized by
a linear redistribution function of the following form:

ri(v−i) = c0 + c1v−i,1 + c2v−i,2 + . . . + cn−1v−i,n−1

3Without the non-deficit constraint, we can simply redistribute1/n
of the expected total VCG payment to every agent, which leaves no
waste in expectation.
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wherev−i,j is thej-th highest bid amongv−i (the set of bids other
thanvi). The coefficientscj completely characterize the redistri-
bution mechanism. All previously proposed redistribution mecha-
nisms for this setting [2, 1, 19, 11, 16] are in fact linear redistribu-
tion mechanisms.

3.1 Optimal-in-expectation linear redistribu-
tion mechanisms

We will prove the following result, which characterizes a linear
redistribution mechanism that maximizes the expected total redis-
tribution (among linear redistribution mechanisms). We call this
mechanism OEL (optimal-in-expectation, linear).

THEOREM 1. Givenm, n, and a prior distribution over agents’
valuations, the followingci define a redistribution mechanism that
maximizes expected redistribution, under the constraints that the
mechanism must be a linear redistribution mechanism, efficient, in-
centive compatible, and satisfy the non-deficit property.

Let theoi be defined as follows:

o0 = U − Ev1, oi = Evi − Evi+1, andon = Evn − L.

Theoi are determined by the given prior distribution.
Letk be any integer satisfying

k ∈ argmini{oim
`

n−1
m

´

/
`

n
i

´

|i − m odd, i = 0, . . . , n}

Let functionG andH be defined as follows:

G(n, m, i) =
`

n−i−1
n−m−1

´

/
`

m−1
i−1

´

(i ≤ m)

H(n, m, i) =
`

i−1
m−1

´

/
`

n−m−1
n−i−1

´

(i ≥ m)

• If 0 < k ≤ m, then

ci = (−1)m−iG(n, m, i) for i = k + 1, . . . , m,

ck = m/n −
Pm

i=k+1(−1)m−iG(n, m, i),

andci = 0 for otheri.

• If k = 0, then

ci = (−1)m−iG(n, m, i) for i = 1, . . . , m,

c0 = Um/n − U
Pm

i=1(−1)m−iG(n, m, i),

andci = 0 for otheri.

• If m + 1 ≤ k < n, then

ci = (−1)m−i−1H(n, m, i) for i = m + 1, . . . , k − 1,

ck = m/n −
Pk−1

i=m+1(−1)m−i−1H(n, m, i),

andci = 0 for otheri.

• If k = n, then

ci = (−1)m−i−1H(n, m, i) for i = m + 1, . . . , n − 1,

c0 = Lm/n − L
Pn−1

i=m+1(−1)m−i−1H(n, m, i),

andci = 0 for otheri.

In expectation, this mechanism fails to redistribute

okm
`

n−1
m

´

/
`

n
k

´

This mechanism is uniquely optimal among all linear redistribu-
tion mechanisms if and only if the choice ofk is unique and there
does not exist an eveni and an oddj such thatoi = oj = 0.

The mechanism is complicated, and is perhaps easier to under-
stand using the auxiliary variables that we define in the derivation
of this mechanism (in the next subsection).

The key property of the mechanisms in the theorem is that the
waste is always a multiple of: 1) the difference between two adja-
cent (in terms of size) bids, or 2) the difference between the upper
bound and the largest bid, or 3) the difference between the lowest
bid and the lower bound. Moreover, the multiplication coefficient is
determined bym andn. Then, the OEL mechanism simply chooses
the best of these options. In contrast, under the worst-case optimal
mechanism [11, 16], the waste is a linear combination of all of the
bids (except for the highestm).

The following special case and example should give some further
intuition.

The case wherek = m + 1 in Theorem 1 corresponds to the
redistribution mechanism in which each agent receives a redistri-
bution payment that is equal tom/n times the(m + 1)-th highest
bid from the other agents. This is exactly the Bailey-Cavallo mech-
anism in our setting (multi-unit auctions with unit demand).

Example 1.Consider the case wheren = 8 andm = 2, and the
bids are all drawn independently and uniformly from[0, 1]. In this
case,Evi = 9−i

9
for i = 1, . . . , 8. SoU = 1, L = 0, oi = 1

9
for i = 0, . . . , 8. (We recall thato0 = U − Ev1, on = Evn − L,
andoi = Evi −Evi+1 otherwise.)argmini{oim

`

n−1
m

´

/
`

n
i

´

|i−
m odd, i = 0, . . . , n} is then{3, 5}. The expected amount failed
to be redistributed iso3m

`

n−1
m

´

/
`

n
3

´

= 1
12

. (The expected total
VCG payment is4

3
.)

One optimal solution is given byc3 = 1
4
, andci = 0 for other

i. Hence this expectation optimal linear redistribution mechanism
is defined byri = 1

4
v−i,3, which is actually the Bailey-Cavallo

mechanism[1, 2]. The total redistribution is
Pn

i=0 ri = 5
4
v3+ 3

4
v4.

The expected amount failed to be redistributed isE(2v3 − 5
4
v3 −

3
4
v4) = 3

4
E(v3 − v4) = 1

12
.

The other optimal solution is given byc3 = 2
5
, c4 = − 3

10
, c5 =

3
20

, andci = 0 for otheri. Hence this expectation optimal linear
redistribution mechanism is defined byri = 2

5
v−i,3 − 3

10
v−i,4 +

3
20

v−i,5. The total redistribution is
Pn

i=0 ri = 2v3 − 3
4
v5 + 3

4
v6.

The expected amount failed to be redistributed isE( 3
4
(v5−v6)) =

3
4
E(v5 − v6) = 1

12
.

3.2 Deriving an optimal linear redistribution
mechanism

In this subsection, we derive the OEL mechanism and prove its
optimality. Our objective is to find an linear redistribution mecha-
nism that redistributes the most in expectation. To optimize among
the family of linear redistribution mechanisms, we must solve for
the optimal values of theci. We want the resulting redistribution
mechanism to be incentive compatible and efficient, and we want
it to satisfy the non-deficit property. The first two properties are
satisfied by all the mechanisms inside the linear family, so the only
constraint is the non-deficit property. The following optimization
model can be used to find the linear redistribution mechanism (the
ci) that redistributes the most in expectation, while satisfying the
non-deficit property.

Variables: c0, c1, . . . , cn−1

Maximize E(
Pn

i=1 ri)
Subject to:
For every bid vectorU ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
Pn

i=1 ri ≤ mvm+1

ri = c0 + c1v−i,1 + c2v−i,2 + . . . + cn−1v−i,n−1
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Given the prior distribution,E(mvm+1) is a constant, so we may
rewrite the objective of the above model as
Minimize E(mvm+1 −

Pn
i=1 ri)

Sinceri = c0 + c1v−i,1 + c2v−i,2 + . . .+ cn−1v−i,n−1, where
v−i,j is thej-th highest bid among bids other thani’s own bid, we
have the following:

r1 = c0 + c1v2 + c2v3 + c3v4 . . . + cn−2vn−1 + cn−1vn

r2 = c0 + c1v1 + c2v3 + c3v4 . . . + cn−2vn−1 + cn−1vn

r3 = c0 + c1v1 + c2v2 + c3v4 . . . + cn−2vn−1 + cn−1vn

. . .
rn−1 = c0 + c1v1 + c2v2 + c3v3 . . . + cn−2vn−2 + cn−1vn

rn = c0 + c1v1 + c2v2 + c3v3 . . . + cn−2vn−2 + cn−1vn−1

We can writemvm+1−
Pn

i=1 ri asq0+q1v1+q2v2+. . .+qnvn,
where the coefficientsqi are listed below:

q0 = −nc0

qi = −(i− 1)ci−1 − (n− i)ci for i = 1, 2, . . . , m, m + 2, . . . , n
qm+1 = m − mcm − (n − m − 1)cm+1

(We note that we introduced a dummy variablecn in the above
equations—since there are onlyn − 1 other bids,cn will always
be multiplied by0, but adding this variable makes the definition
of the qi more elegant.) Givenn andm, q0, . . . , qn (n + 1 val-
ues) are determined byc0, . . . , cn−1 (n values). Conversely, if
q0, . . . , qn−1 are fixed, then we can completely solve for the val-
ues ofc0, . . . , cn−1 (and hence also forqn). This results in the
following relation among theqi:

q1 −
n−1
1!

q2 + (n−1)(n−2)
2!

q3 −
(n−1)(n−2)(n−3)

3!
q4 + . . . +

(−1)n−1 (n−1)(n−2)...2·1
(n−1)!

qn = (−1)mm (n−1)(n−2)...(n−m)
m!

After simplification we obtain:
Pn

i=1(−1)i−1
`

n−1
i−1

´

qi = (−1)mm
`

n−1
m

´

Now, we can use theqi as the variables of the optimization model,
since from them we will be able to infer theci. Becausemvm+1 −
Pn

i=1 ri = q0 +q1v1 +q2v2 + . . .+qnvn, we can rewrite the non-
deficit constraint by requiring that the latter summation is nonneg-
ative. Also, theqi must satisfy the previous inequality (otherwise
there will be no correspondingci).

Variables: q0, q1, . . . , qn

Minimize E(q0 + q1v1 + q2v2 + . . . + qnvn)
Subject to:
For every bid vectorU ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
q0 + q1v1 + q2v2 + . . . + qnvn ≥ 0
Pn

i=1(−1)i−1
`

n−1
i−1

´

qi = (−1)mm
`

n−1
m

´

In what follows, we will cast the above model into a linear pro-
gram. We begin with the following lemma[11]:

LEMMA 1. The following are equivalent:
(1) q0 + q1v1 + q2v2 + . . . + qnvn ≥ 0 for all U ≥ v1 ≥ v2 ≥
. . . ≥ vn ≥ L
(2) q0 + L

Pn
i=1 qi + (U − L)

Pk
i=1 qi ≥ 0 for k = 0, . . . , n

PROOF. (1)⇒(2): (2) can be obtained from (1) by settingv1 =
v2 = . . . = vk = U andvk+1 = vk+2 = . . . = vn = L.

(2)⇒(1): Let us rewriteT = q0 + q1v1 + q2v2 + . . . + qnvn

asq0 + L
Pn

i=1 qi + (v1 − v2)
P1

i=1 qi + (v2 − v3)
P2

i=1 qi +

. . . + (vn−1 − vn)
Pn−1

i=1 qi + (vn −L)
Pn

i=1 qi. If
Pk

i=1 qi ≥ 0
for everyk = 1, . . . , n, thenT ≥ q0 + L

Pn
i=1 qi ≥ 0 (because

v1−v2, v2−v3, . . . , vn−L are all nonnegative). Otherwise, letk′

be the index so that
Pk′

i=1 qi is minimal (hence negative). To make

T minimal, we wantvk′ − vk′+1 (which is multiplied by
Pk′

i=1 qi)
to be maximal. So the minimal value forT is q0 + L

Pn
i=1 qi +

(U − L)
Pk′

i=1 qi ≥ 0, which is attained whenv1 = v2 = . . . =
vk′ = U andvk′+1 = vk′+2 = . . . = vn = L. HenceT is always
nonnegative.

Let xk = (q0 + L
Pn

i=1 qi)/(U − L) +
Pk

i=1 qi for k =
0, . . . , n. Thexi correspond (one to one) to theqi, so we can use
the xi as the variables in the optimization model. The first con-
straint of the optimization model now becomesxk ≥ 0 for every
k. Sincexk − xk−1 = qk for k = 1, . . . , n, the second constraint
becomes

Pn
i=1(−1)i−1

`

n−1
i−1

´

(xi − xi−1) = (−1)mm
`

n−1
m

´

After simplification we get:
Pn

i=0(−1)i
`

n
i

´

xi = (−1)m−1m
`

n−1
m

´

Let o0 = U − Ev1, oi = Evi − Evi+1 (i = 1, . . . , n − 1)
andon = Evn − L. Theoi are all nonnegative constants that we
know from the prior distribution. The objective of the optimization
model can be rewritten as follows:
E(q0 + q1v1 + q2v2 + . . . + qnvn)
= q0 + q1Ev1 + q2Ev2 + . . . + qnEvn

= x0(U −L)+q1(Ev1−L)+q2(Ev2−L)+ . . .+qn(Evn−L)
= x0((U − L)− (Ev1 − L)) + (x0 + q1)((Ev1 − L)− (Ev2 −
L)) + (x0 + q1 + q2)((Ev2 − L) − (Ev3 − L)) + . . . + (x0 +
q1 + . . . + qn)(Evn − L)
= o0x0 + o1x1 + . . . + onxn

We finally obtain the following linear program:

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + . . . + onxn

Subject to:
xi ≥ 0
Pn

i=0(−1)i
`

n
i

´

xi = (−1)m−1m
`

n−1
m

´

At this point, for any givenn andm, for any prior distribution,
it is possible to solve this linear program using any LP solver; then,
using the above, the resultingxi can be transformed back toci to
obtain an optimal-in-expectation linear redistribution mechanism.
However, this will not be necessary. The following claim gives an
analytical solution of this linear program.

CLAIM 1. Letk be any integer satisfying
k ∈ argmini{oim

`

n−1
m

´

/
`

n
i

´

|i − m odd, i = 0, . . . , n}.

The above linear program has the following optimal solution:
xk = m

`

n−1
m

´

/
`

n
k

´

, andxi = 0 for i 6= k.

The optimal objective value isokm
`

n−1
m

´

/
`

n
k

´

.

This solution is the unique optimal solution if and only if the
choice ofk is unique and there does not exist an eveni and an odd
j such thatoi = oj = 0.

PROOF. We can rewrite the second constraint as
Pn

i=0((−1)i−m+1
`

n
i

´

)/(m
`

n−1
m

´

)xi = 1

This results in the program

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + . . . + onxn

Subject to:
xi ≥ 0

P

i=0...n;i−m odd

`

n
i

´

/(m
`

n−1
m

´

)xi =

P

i=0...n;i−m even

`

n
i

´

/(m
`

n−1
m

´

)xi + 1
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Theoi are nonnegative. To minimize the objective, we want all
thexi to be as small as possible. It is not hard to see that it does not
hurt to set thexi for which i − m is even to zero: in fact, setting
them to a larger value will only force thexi for which i−m is odd
to take on larger values, by the last constraint. (It should be noted
that if there exists an eveni and an oddj such thatoi = oj = 0,
then we can increase the correspondingxi andxj at no cost to the
objective without breaking the constraint, hence the solution is not
unique in that case.) This results in the following linear program:

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + . . . + onxn

Subject to:
xi ≥ 0

P

i=0...n;i−m odd

`

n
i

´

/(m
`

n−1
m

´

)xi = 1

We want thexi to be as small as possible. However, the second
constraint makes it impossible to set all thexi to 0. For eachxi

with i − m odd, if we increase it byδ, the left side of the second
constraint is increased by

`

n
i

´

/(m
`

n−1
m

´

)δ and the objective value
is increased byoiδ. We need the left side of the second constraint
to increase to1 (starting from0), while minimizing the increase
in the objective value. To do so, we want to find thexi (with
i − m odd) that has the minimal cost-gain ratio (where the cost
is oiδ, and the gain is

`

n
i

´

/(m
`

n−1
m

´

)δ). It follows that for any in-
tegerk satisfyingk ∈ argmini{oim

`

n−1
m

´

/
`

n
i

´

|i − m odd, i =
0, . . . , n}, the linear program has the following optimal solution:
xk = m

`

n−1
m

´

/
`

n
i

´

andxi = 0 for i 6= k. The resulting optimal
objective value isokm

`

n−1
m

´

/
`

n
k

´

.
In the above argument, there were only two conditions under

which we made a choice that is not necessarily uniquely optimal: if
(and only if) there exists an eveni and an oddj such thatoi = oj =
0, then, as we explained, there exist optimal solutions where some
xi with m− i even is set to a positive value (in fact, it can be set to
any value in this case); and if (and only if)argmini{oim

`

n−1
m

´

/
`

n
i

´

|i − m odd, i = 0, . . . , n} is not a singleton set, then there exists
another optimal solution with anotherxk set to a positive value (in
fact, in this case, multiplexk may simultaneously be set to a posi-
tive value).

By transforming thexi from Claim 1 to the correspondingci, we
obtain the OEL mechanism from Theorem 1.

3.3 Properties of the OEL mechanism
In the remainder of this section, we prove some properties of the

OEL mechanism. First we have that there cannot be another re-
distribution mechanism that always redistributes at least as much
to every agent as OEL. That is, the OEL mechanism isundomi-
nated[12]. (This does not immediately follow from Theorem 1,
because that theorem only proved optimality among linear redistri-
bution mechanisms, whereas this claim applies to all redistribution
mechanisms.)

CLAIM 2. For anym, n and anyL, U , there does not exist any
redistribution mechanism (other than OEL) that, for every multiset
of bids, redistributes at least as much to every agent as OEL.

PROOF. Omitted due to space constraints. Undominated redis-
tribution mechanisms are characterized in [12].

It should be noted that Claim 2 only applies to the OEL mech-
anism, as defined in Theorem 1. Under certain circumstances (as
detailed in Theorem 1), this mechanism is not uniquely optimal;
and the other optimal mechanisms do not always have the property
of Claim 2.

One property of mechanisms that we have not discussed so far
is individual rationality: participating in the mechanism should not
make agents worse off. The next claim shows that, if the prior
distribution does not distinguish among agents, OEL isex-interim
individually rational—that is, in expectation, agents benefit from
participating in the mechanism (they receive nonnegative expected
utilities).

CLAIM 3. If the prior distribution is symmetric across agents
(for example, the agents’ values are independent and identically
distributed), then the OEL redistribution mechanism is ex-interim
individually rational.

PROOF. Omitted due to space constraints.

As an aside, if the prior is not symmetric across agents, then we
can explicitly add the ex-interim individual rationality constraint
(or the strongerex-postindividual rationality constraint4) into our
optimization model. This still results in a linear program. While
it is possible to give a special-purpose algorithm for solving this
linear program, it does not admit an elegant analytical solution.

In Theorem 1, we gave an expression for the expected amount
that OEL fails to redistribute, which depended on the prior. In the
next claim, we give an upper bound on this that does not depend on
the prior.

CLAIM 4. For any prior, the OEL mechanism fails to redis-
tribute at most

(U − L)m
`

n−1
m

´

/
P

i=0,1,...,n;i−m odd

`

n
i

´

in expectation. This bound is tight.

PROOF. Given a prior distribution (and therefore, given theoi),
the expected amount failed to be redistributed isokm

`

n−1
m

´

/
`

n
k

´

for anyk ∈ argmini{oim
`

n−1
m

´

/
`

n
i

´

|i − m odd, i = 0, . . . , n}.
If oi = (U −L)

`

n
i

´

/
P

i=0,...,n;i−m odd

`

n
i

´

for all i with i−m odd,

andoi = 0 for all other i (this is in fact a feasible setting of the
oi), thenargmini{oim

`

n−1
m

´

/
`

n
i

´

|i − m odd, i = 0, . . . , n} =
{i|0 ≤ i ≤ n, i − m odd}. Sok can be anyi as long asi − m is
odd. In this case, the expected amount not redistributed is exactly
(U − L)m

`

n−1
m

´

/
P

i=0,...,n;i−m odd

`

n
i

´

.

Now suppose that there is another distribution under which the
mechanism fails to redistribute strictly more in expectation. Then,
the new set ofo′i must satisfyo′im

`

n−1
m

´

/
`

n
k

´

>

m
`

n−1
m

´

/
P

i=0,...,n;i−m odd

`

n
i

´

= oim
`

n−1
m

´

/
`

n
k

´

for any i with

i − m odd. It follows thato′i > oi for anyi with i − m odd. Since
P

i=0,...,n;i−m odd

oi = U −L ando′i ≥ 0 for anyi with i−m even,

we have
P

i=0,...,n

o′i > U − L, which is a contradiction.

We note that asn goes to infinity (for fixedm), the expected
amount that fails to be redistributed goes to0; hence OEL is asymp-
totically optimal. For Example 1, Claim 4 gives an upper bound on
the expected amount failed to be redistributed of0.3281 (we recall
that the actual amount is1/12, so the bound is not very close in
this case).

So far, we have only considered anonymous redistribution mech-
anisms (that is, mechanisms with the same redistribution function

4A mechanism is ex-post individually rational if every agent re-
ceives nonnegative utility foranybids.
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r(·) for each agent).5 If we allow the redistribution mechanism to
be nonanonymous, then we can use differentci for different bid-
ders. Moreover, even for the same bidder, we can use different
ci depending on the order of the other bidders (in terms of their
bids), and there are(n − 1)! such orders. Thus, it is clear that
to optimize among the class of nonanonymous linear redistribution
mechanisms, we need significantly more variables, and analytical
solution of the linear program no longer seems tractable. How-
ever, we do have the following claim, which shows that the OEL
mechanism remains optimal even among nonanonymous linear re-
distribution mechanisms, if the prior is symmetric.

CLAIM 5. If the prior distribution is symmetric across agents
(for example, the agents’ values are independent and identically
distributed), then no nonanonymous linear redistribution mecha-
nism can redistribute strictly more than the OEL mechanism (which
is anonymous) in expectation.

PROOF. Let us define the average of two (not necessarily anony-
mous) redistribution mechanisms as follows: for any multiset of
bids, for any agenti, if one redistribution mechanism redistributes
x to agenti, and the other redistribution mechanism redistributesy
to i, then the average mechanism redistributes(x + y)/2 to i. It is
not difficult to see that if two redistribution mechanisms both never
incur a deficit, then the average of these two mechanisms also sat-
isfies the non-deficit property. This averaging operation is easily
generalized to averaging over three or more mechanisms.

Now let us assume thatr is a nonanonymous linear redistribu-
tion mechanism, and thatr redistributes strictly more than the OEL
mechanism in expectation when the prior distribution is symmet-
ric across agents. Letπ be any permutation ofn elements. We
permute the wayr treats the agents according toπ, and denote the
new mechanism byrπ. That is,rπ treats agentπ(i) the wayr
treatsi. Since we assumed that the prior distribution is symmetric
across agents, the expected total amount redistributed byrπ should
be the same as that redistributed byr. Now, if we take the average
of therπ over all permutationsπ, we obtain an anonymous linear
redistribution mechanism that redistributes as much in expectation
as r (and hence more than the OEL mechanism). But this con-
tradicts the optimality of the OEL mechanism among anonymous
linear redistribution mechanisms.

4. DISCRETIZATION REDISTRIBUTION
MECHANISMS

In the previous section, we only considered linear redistribution
mechanisms. This restriction allowed us to find the optimal linear
redistribution mechanism by analytically solving a linear program.
In this section, we consider a larger domain of eligible mechanisms,
and proposediscretization redistribution mechanisms, which can
be automatically designed [5] and can outperform the OEL mech-
anism. (In this section, for simplicity and to be able to compare
to the previous section, we only consider anonymous mechanisms,
and we do not impose an individual rationality constraint. How-
ever, all of the below can be generalized to allow for nonanony-
mous mechanisms and an individual rationality constraint.)

We study the following problem: given a prior distributionf (the
joint pdf of v1, v2, . . . , vn), we try to find a redistribution mecha-
nism that redistributes the most in expectation among all redistribu-
tion mechanisms that can be characterized by continuous functions.

5An exception is Claim 2, which shows that there is not even
a nonanonymous mechanism that always redistributes at least as
much as OEL to every agent (besides OEL itself).

For simplicity, we will assume thatf is continuous. The optimiza-
tion model is the following:

Variable function: r : Rn−1 → R, r continuous
Maximize

R

U≥v1≥...≥vn≥L

Pn
i=1 r(v−i)f(v1, v2, . . . , vn)dv1dv2 . . . dvn

Subject to:
For every bid vectorU ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
Pn

i=1 r(v−i) ≤ mvm+1

Let R∗ be the optimal objective value for this model. (To be
precise, we have not proved that an optimal solution exists for this
model: it could be that the set of feasible solution values does not
include its least upper bound. In this case, simply letR∗ be the
least upper bound.) Since we are not able to solve this model ana-
lytically, we try to solve it numerically.

We divide the interval[L, U ] (within which the bids lie) intoN
equal parts, with step sizeh = (U − L)/N . Let k denote the
subinterval:I(k) = [L + kh, L + kh + h] (k = 0, 1, . . . , N − 1).
Definerh : Rn−1 → R as follows: for allU ≥ x1 ≥ x2 ≥ . . . ≥
xn−1 ≥ L, rh(x1, x2, . . . , xn−1) = zh[k1, k2, . . . , kn−1] where
ki = ⌊(xi − L)/h⌋ (except thatki = N − 1 if xi = U ). Here,
thezh[k1, k2, . . . , kn−1] are variables. We call such a mechanism
a discretization redistribution mechanism of step sizeh.

CLAIM 6. A discretization redistribution mechanism satisfies
the non-deficit constraint if and only if

Pn
i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤ m(L + km+1h)

for everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0.

PROOF. Omitted due to space constraints.

The following linear program finds the optimal discretization re-
distribution mechanism for step sizeh. The variables are
zh[k1, k2, . . . , kn−1] for all integerski satisfyingN − 1 ≥ k1 ≥
k2 ≥ . . . ≥ kn−1 ≥ 0. The objective is the expected total
redistribution, wherep[k1, k2, . . . , kn] = P (v1 ∈ I(k1), v2 ∈
I(k2), . . . , vn ∈ I(kn)) (we note that thep[k1, k2, . . . , kn] are
constants).

Variables: zh[. . .]
Maximize

P

N−1≥k1≥k2≥...≥kn≥0

p[k1, k2, . . . , kn]
Pn

i=1 z[k1, k2, . . . , ki−1, ki+1, . . . , kn]
Subject to:
For everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0
Pn

i=1 z[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤ m(L + km+1h)

Let z∗h[. . .] denote the optimal solution of the above linear pro-
gram, and letr∗h denote the corresponding optimal discretization
redistribution mechanism. LetR∗h denote the optimal objective
value. The next claim shows that discretization redistribution mech-
anisms cannot outperform the best continuous redistribution mech-
anisms.

CLAIM 7. R∗h ≤ R∗.

PROOF. For anyǫ > 0, we will show how to construct a contin-
uous functionr′ǫ so thatr′ǫ ≤ r∗h everywhere, and the measure of
the set{r∗h 6= r′ǫ} is less thanǫ.

Let B be the greatest lower bound ofr∗h (r∗h is bounded be-
low because it is a piecewise constant function with finitely many
pieces). For givenU ≥ x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ L, let
d(x1, . . . , xn−1) be the minimal distance from anyxi − L to the
nearest multiple ofh. For anyδ > 0, let rδ(x1, . . . , xn−1) =
r∗h(x1, . . . , xn−1) if d(x1, . . . , xn−1) > δ, andrδ(x1, . . . , xn−1)

1052



= r∗h(x1, . . . , xn−1)−(δ−d(x1, . . . , xn−1))(r
∗h(x1, . . . , xn−1)

− B)/δ otherwise.
It is easy to see that the functionrδ is continuous at any point

whered(x1, . . . , xn−1) > δ, because at these points,r∗h is con-
tinuous. Furthermore, the function is continuous at any point where
δ > d(x1, . . . , xn−1) > 0, becauser∗h andd are both continuous
at these points. Moreover, it is also continuous at any point where
d(x1, . . . , xn−1) = δ, because at such a pointr∗h(x1, . . . , xn−1)−
(δ−d(x1, . . . , xn−1))(r

∗h(x1, . . . , xn−1)−B)/δ = r∗h(x1, . . . ,
xn−1). Finally, at any point whered(x1, . . . , xn−1) = 0, the func-
tion is continuous because on any pointx′

1, . . . , x
′
n−1 at distance

at mostγ > 0 from x1, . . . , xn−1, the function will take value at
mostγ(H−B)/δ, whereH is an upper bound onr∗h (H is finite).

As δ goes to0, so does the measure of the set{r∗h 6= rδ}.
Moreover,rδ ≤ r∗h everywhere. Hence we can obtainr′ǫ with the
desired property by letting it equalrδ for sufficiently smallδ.

Now,r′ǫ is a feasible redistribution mechanism, because it always
redistributes less thanr∗h. Moreover, becausef is a continuous pdf
on a compact domain, asǫ → 0, the difference in expected value
betweenr′ǫ andr∗h goes to0. Hence, we can create continuous
redistribution functions that come arbitrarily close toR∗h in terms
of expected redistribution, and henceR∗ (the least upper bound of
the expected redistributions that can be obtained with continuous
functions) is at leastR∗h.

The next claim shows that if we make the discretization finer, we
will do no worse.

CLAIM 8. R∗h ≤ R∗h/2.

PROOF. Omitted due to space constraints.

The next claim shows that as we make the discretization finer and
finer, we converge to the optimal value for continuous redistribution
mechanisms.

CLAIM 9. limh→0 R∗h = R∗.

PROOF. For anyγ > 0, there exists a continuous redistribu-
tion mechanismr∗ such that its expected redistribution is at least
R∗ − γ. r∗ is continuous on a closed and bounded domain, so
r∗ is uniformly continuous. Hence for anyǫ > 0, there exists
δ > 0 so that|r∗(x1, x2, . . . , xn−1)− r∗(x′

1, x
′
2, . . . , x

′
n−1)| ≤ ǫ

as long asmaxi{|xi − x′
i|} ≤ δ. Chooseh ≤ δ, and define

zh[k1, k2, . . . , kn−1] by r∗(L + k1h, L + k2h, . . . , L + kn−1h)
for all N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. zh[. . .] cor-
responds to a feasible discretization mechanismrh. In addition,
rh ≥ r∗ − ǫ. Hence, the expected redistribution of the opti-
mal discretization mechanism with step size (at most)h is R∗h ≥
Rh ≥ R∗ − γ − nǫ. Sinceγ and ǫ are both arbitrarily small,
limh→0 R∗h ≥ R∗. By Claim 7,limh→0 R∗h ≤ R∗.

We note that a discretization redistribution mechanismrh is de-
fined by a finite number of real-valued variables: namely, one vari-
ablezh[k1, k2, . . . , kn−1] for everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥
kn−1 ≥ 0. Because of this, we can use a standard LP solver to
solve for the optimal discretization redistribution mechanismrh

(for givenm, n, h and prior). At least for small problem instances,
we can seth to very small values, and by Claim 9, we expect the
resulting mechanism to be close to optimal.

But how do we know how far from optimal we are? As it turns
out, the discretization method can also be used to find upper bounds
on R∗. Here, we will assume that agents’ values are independent
and identically distributed. The following linear program gives an
upper bound onR∗.

Variables: zh[. . .]
Maximize

P

N−1≥k1≥k2≥...≥kn≥0

p[k1, k2, . . . , kn]
Pn

i=1 z[k1, k2, . . . , ki−1, ki+1, . . . , kn]
Subject to:
For everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0
Pn

i=1 z[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤
mE(vm+1|v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn))

The intuition behind this linear program is the following. In
the previous linear program, the non-deficit constraints were effec-
tively set for thelowestvalues within each discretized block, which
guaranteed that they would hold for every value in the block. In this
linear program, however, we set the non-deficit constraints by tak-
ing theexpectationover the values in each block. Generally, this
will result in deficits for values inside the block, so this program
does not produce feasible mechanisms.

Let ẑh[. . .] denote the optimal solution of the above linear pro-
gram, and let̂rh denote the (not necessarily feasible) corresponding
optimal discretization redistribution mechanism. LetR̂h denote the
optimal objective value. We have the following claims:

CLAIM 10. If the bids are independent and identically distributed,
thenR̂h ≥ R∗.

PROOF. Omitted due to space constraints.

CLAIM 11. If the bids are independent and identically distributed,
thenR̂h ≤ R∗h + mh.

PROOF. Omitted due to space constraints.

Hence, by solving the linear program for determiningR∗h, we
get a lower bound onR∗ and a discretization redistribution mech-
anism that comes close to it. If we also have that the bids are inde-
pendent and identically distributed, by solving the linear program
for determiningR̂h, we get an upper bound onR∗ that is close to
R∗h.

5. EXPERIMENTAL RESULTS
We now have two different types of redistribution mechanisms

with which we can try to maximize the expected total redistributed.
The OEL mechanism has the advantage that Theorem 1 gives a
simple expression for it, so it is easy to scale to large auctions. In
addition, it is optimal among all linear redistribution mechanisms,
although nonlinear redistribution mechanisms may perform even
better. On the other hand, the discretization mechanisms have the
advantage that, as we decrease the step sizeh, we will converge
to the maximum amount that can be redistributed by any continu-
ous redistribution mechanism. The disadvantage of this approach
is that it does not scale to large auctions. Fortunately, we will see
that, as the auctions get larger, OEL redistributes almost the entire
total VCG payment, so OEL is certainly very close to optimal. On
the other hand, for smaller auctions, OEL is not that close to op-
timal, but for these auctions we are able to solve for the optimal
discretization redistribution mechanism with very small step size,
which we show is very close to optimal using the upper bound-
ing technique. Thus, we can redistribute almost optimally for both
small and large auctions.

In the following table, for differentn (number of agents) and
m (number of units), we list the expected amount of redistribution
by both the OEL mechanism and the optimal discretization mech-
anism (for specific step sizes). The bids are independently drawn
from the uniform[0, 1] distribution.
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n,m VCG OEL R∗h R̂h

3,1 0.5000 0.3333 0.4218 (N=100) 0.4269
4,1 0.6000 0.5000 0.5498 (N=40) 0.5625
5,1 0.6667 0.6000 0.6248 (N=25) 0.6452
6,1 0.7143 0.6667 0.6701 (N=15) 0.7040
3,2 0.5000 0.3333 0.4169 (N=100) 0.4269
4,2 0.8000 0.5000 0.6848 (N=40) 0.7103
5,2 1.0000 0.8000 0.8944 (N=25) 0.9355
6,2 1.1429 1.0000 1.0280 (N=15) 1.0978

In the above table, the column “VCG” gives the expected total
VCG payment; the column “OEL” gives the expected redistribution
by the OEL mechanism; the column “R∗h” gives the expected re-
distribution by the optimal discretization redistribution mechanism
(step size1/N ); the column “̂Rh” gives the upper bound on the ex-
pected redistribution by any continuous redistribution mechanism
(same step size as that ofR∗h).

Finally, when the number of agents is large, the OEL mechanism
is very close to optimal, as shown below:

n,m VCG OEL % n,m VCG OEL %
10,1 0.8182 0.8143 99.5 20,1 0.9048 0.9048 100.0
10,3 1.9091 1.8000 94.3 20,5 3.5714 3.5564 99.6
10,5 2.2727 2.0000 88.0 20,10 4.7619 4.5000 94.5
10,7 1.9091 1.8000 94.3 20,15 3.5714 3.5564 99.6
10,9 0.8182 0.8143 99.5 20,19 0.9048 0.9048 100.0

The fourth and eighth columns give the percentages of the VCG
payment that are redistributed by the OEL mechanisms (rounding
to the nearest tenth).

6. CONCLUSION
The well-known VCG mechanism allocates the items efficiently,

is incentive compatible (agents have no incentive to lie), and never
runs a deficit. Nevertheless, the agents may have to make large pay-
ments to a party outside the system of agents, leading to decreased
utility for the agents. Recent work has investigated the possibility
of redistributing some of the payments back to the agents, without
violating the other desirable properties of the VCG mechanism. We
studied multi-unit auctions with unit demand, for which previously
a mechanism had been found that maximizes the worst-case redis-
tribution percentage. In contrast, in this paper, we assumed that a
prior distribution over the agents’ valuations is available, and tried
to maximize the expected total redistribution.

We first consideredlinear redistribution mechanisms. We gave
an analytical solution for a redistribution mechanism that, among
linear redistribution mechanisms, maximizes the expected redis-
tribution, and gave conditions under which it is unique. We also
proved some other desirable properties of this mechanism—it is
asymptotically optimal and undominated. We then proposeddis-
cretizationredistribution mechanisms, which discretize the space
of possible valuations, and determine redistributions solely based
on the discretized values (however, the incentive compatibility and
non-deficit constraints still hold over the non-discretized space).
Given a discretization step size, we showed how to solve for the
optimal discretization redistribution mechanism using a linear pro-
gram. We also showed that as the step size goes to0, the mecha-
nism converges to the optimal value for all continuous mechanisms
(and we proved a bound on how close to optimal we are). We pre-
sented experimental results showing that for auctions with many
bidders, the optimal linear redistribution mechanism redistributes
almost everything, whereas for auctions with few bidders, we can
solve for the optimal discretization redistribution mechanism with
a very small step size.

Future research on optimal-in-expectation redistribution mecha-
nisms can take a number of directions. One can try to solve for an
optimal-in-expectation redistribution mechanism that is not neces-
sarily linear. One can also try to extend the results of this paper to
more general settings, for example, settings without unit demand,
or even combinatorial auctions. Finally, it would be interesting to
see whether agents’ expected welfare can be improved even further
by allocating units inefficiently, and if so, by how much.
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