
Solving two-person zero-sum repeated games of
incomplete information

Andrew Gilpin
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

gilpin@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

sandholm@cs.cmu.edu

ABSTRACT
In repeated games with incomplete information, rational
agents must carefully weigh the tradeoffs of advantageously
exploiting their information to achieve a short-term gain ver-
sus carefully concealing their information so as not to give
up a long-term informed advantage. The theory of infinitely-
repeated two-player zero-sum games with incomplete infor-
mation has been carefully studied, beginning with the sem-
inal work of Aumann and Maschler. While this theoretical
work has produced a characterization of optimal strategies,
algorithms for solving for optimal strategies have not yet
been studied. For the case where one player is informed
about the true state of the world and the other player is un-
informed, we provide a non-convex mathematical program-
ming formulation for computing the value of the game, as
well as optimal strategies for the informed player. We then
describe an efficient algorithm for solving this difficult op-
timization problem to within arbitrary accuracy. We also
discuss how to efficiently compute optimal strategies for the
uninformed player using the output of our algorithm.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; F.2.1 [Analysis
of Algorithms and Problem Complexity]: [Numerical
Algorithms and Problems]

General Terms
Algorithms, Economics, Theory

Keywords
Computational game theory, equilibrium finding, two-person
zero-sum incomplete-information repeated games, non-convex
optimization

1. INTRODUCTION
An important topic in computational game theory is the

study of algorithms for computing equilibrium strategies for
games. Without such algorithms, the elegant game theory
solution concepts would have little to offer in the way of
guidance to designers and implementers of game-theoretic
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agents. On the contrary, equipping agents with these al-
gorithms would enable them to use strategies that are de-
termined by a game-theoretic analysis. In many games—
including all finite two-person zero-sum games—such strate-
gies are optimal for the agent regardless of the opponents’
actions.

Most work on algorithms for equilibrium-finding has fo-
cused on the non-repeated setting in which a game is played
only once. However, most agent interactions happen many
times. For example, participants in a market will likely en-
counter the same buyers and sellers repeatedly (hence the
importance of reputation). In this paper, we explicitly study
a setting that models repeated interactions.

In addition to encountering one another multiple times,
agents are typically endowed with some private information
about the state of the world, that is, which game is being
played. As does most prior work, we model this private
information by treating the game as one of incomplete in-
formation. However, this is the first work to address com-
putational considerations in repeated games of incomplete
information, in which the agents’ private information may
be revealed over time—possibly inadvertently—by their ac-
tions.

One stream of related research on algorithms for repeated
games falls under the category of multiagent learning (e.g., [8,
13, 3, 11]) which is usually applied either when the rules of
the game are unknown (e.g., when a player is initially com-
pletely uninformed about the payoffs of the game) or when
directly solving for good strategies is too difficult in a com-
putational sense [20]. In the setting we study in this paper,
both players know the rules of the game, and we demon-
strate that it is not computationally infeasible to compute
optimal strategies.

A closely related piece of work is due to Littman and
Stone [14] who designed an algorithm for finding Nash equi-
libria in repeated games. That work studied the setting
where both players know which stage game is being re-
peated. In our setting, the key difference is that only one of
the players knows that.

In this paper we study a model of repeated interaction
known as two-person zero-sum repeated games of incomplete
information. We first review the necessary theory (Sec-
tion 2) and present some illustrative examples (Section 3)
of this class of games. Following that, for the case where
one player is informed about the state of the world and the
other player is uninformed, we derive a non-convex mathe-
matical programming formulation for computing the value of
the game (Section 4.1). This is a complicated optimization
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problems for which standard optimization algorithms do not
apply. We describe and analyze a novel efficient algorithm
for solving this problem to within arbitrary accuracy in Sec-
tion 4.2. In Section 5.1 we demonstrate how the solution
to our optimization problem yields an optimal strategy for
the informed player. We also give an algorithm for the un-
informed player to play optimally, in Section 5.2. Finally, in
Section 6 we conclude and present some open problems.

2. PRELIMINARIES
In this section we review the definitions and concepts on

which we will build. We first review in Section 2.1 some ba-
sic game theory for two-person zero-sum games with com-
plete information (in which both players are fully informed
about which game is being played). In Section 2.2 we review
single-shot two-person zero-sum games with incomplete in-
formation (in which the players are only partially informed
about the game being played). We conclude this section
with the relevant theory of infinitely-repeated two-person
zero-sum games with incomplete information (Section 2.3).

The material in this section is largely based on Aumann
and Maschler’s early work on the subject [1]. Myerson pro-
vides a textbook introduction [16] and Sorin provides a thor-
ough treatment of two-person zero-sum repeated games [22].

2.1 Complete information zero-sum games
A two-person zero-sum game with complete information

is given by A ∈ Qm×n with entries Aij . In this game, player
1 plays an action in {1, . . . , m} and player 2 simultaneously
plays an action in {1, . . . , n}. If player 1 chooses i and player
2 chooses j, player 2 pays player 1 the amount Aij . In
general, the players may employ mixed strategies which are
probability distributions over the available actions, denoted
∆m and ∆n, respectively, where

∆m =

{
p ∈ Rm :

m∑
i=1

pi = 1,p ≥ 0

}
and similarly for ∆n. If x ∈ ∆m and y ∈ ∆n, player 2 pays
player 1 the quantity xAy in expectation, where we take x
to be a row vector and y to be a column vector.

Player 1, wishing to maximize the quantity xAy, while
knowing that player 2 is a minimizer, faces the following
optimization problem:

max
x∈∆m

min
y∈∆n

xAy. (1)

Similarly, player 2 faces the problem

min
y∈∆n

max
x∈∆m

xAy. (2)

The celebrated minimax theorem states that the values of
these two problems are equal and can be simultaneously
solved [23]. Hence, we may consider the problem of solv-
ing the following equation:

max
x∈∆m

min
y∈∆n

xAy = min
y∈∆n

max
x∈∆m

xAy.

If (x̄, ȳ) are solutions to the above problem then we say that
(x̄, ȳ) are minimax solutions and we define the value of the
game v(A) = x̄Aȳ. (It is easy to see that (x̄, ȳ) also satisfy
the weaker solution concept of Nash equilibrium, although
in this paper we focus on the stronger minimax solution
concept.)

We can reformulate player 1’s problem (1) as the following
linear program:

max{z : z1− xA ≤ 0,x1 = 1,x ≥ 0} (3)

where 1 is the all-ones column vector of appropriate dimen-
sion. Similarly, player 2’s problem can be formulated as:

min{w : w1−Ay ≥ 0,1T y = 1,y ≥ 0}. (4)

Thus, we can find minimax solutions for both players in
polynomial time using linear programming.1

Later in this paper we also consider the average game
which is given by a set of K possible games Â = {A1, . . . , AK}
with Ai ∈ Qm×n, and a probability distribution p ∈ ∆K .
The possible games Â are common knowledge, but neither
player knows which game is actually being played. The ac-
tual game is chosen according to p. Without knowing the
actual game, but knowing the distribution, both players play
strategies x ∈ ∆m and y ∈ ∆n. When the game Ai is drawn,
player 2 pays player 1 xAiy. Hence, the expected payment
made in this game is

K∑
i=1

pixAiy =

K∑
i=1

x(piA
i)y = x

(
K∑

i=1

piA
i

)
y.

Thus the average game is equivalent to playing the matrix
game given by A =

∑K
i=1 piA

i and we can compute the value
of the average game using linear programming as applied to
the matrix game A. We define the value of the matrix game
as

v(p, Â) = v

(
K∑

i=1

piA
i

)
.

2.2 Incomplete information zero-sum games
A two-person zero-sum game with incomplete information

is given by matrices Akl ∈ Qm×n for each k ∈ {1, . . . , K}
and l ∈ {1, . . . , L}. In this game, k is drawn according
to some common-knowledge distribution p ∈ ∆K and the
value k is communicated to player 1 (but not player 2).
Similarly, l is drawn according to some common-knowledge
distribution q ∈ ∆L and is communicated to player 2 only.
Having learned their respective private values of k and l,
both players play mixed strategies xk and yl yielding the
expected payment xkAklyl from player 2 to player 1. Given
the probability distributions p and q and strategies X =
{x1, . . . ,xK} and Y = {y1, . . . ,yL}, the expected payment
made in the game is

m∑
i=1

n∑
j=1

K∑
k=1

L∑
l=1

pkqlA
kl
ij xk

i yl
j .

There is a linear programming formulation for finding min-
imax solutions for two-person zero-sum games with incom-
plete information [18], but we do not describe it here as we
do need it in this paper.

1We note that (3) and (4) are duals of each other and hence
the strong duality theorem of linear programming can be
used to prove the minimax theorem. See [5, pp. 230–233] for
more details on the relationship between linear programming
and zero-sum games.
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2.3 Repeated incomplete information zero-sum
games

A repeated two-person zero-sum game with incomplete
information is defined by the same data as the single-shot
setting described above, but the game is played differently.
As before, k is drawn according to p ∈ ∆K and communi-
cated to player 1 only, and l is drawn according to q ∈ ∆L

and communicated to player 2 only. Now, however, the game
Akl is repeated. After each stage i, the players only observe
each other’s actions, si

1 and si
2. In particular, the payment

Akl
si
1si

2
in each round i is not observed. (If it were, the players

would quickly be able to “reverse engineer” the actual state
of the world.)

The class of games described in the previous paragraph
are two-person zero-sum repeated games with lack of infor-
mation on both sides, since both players 1 and 2 are unin-
formed about some aspect of the true state of the world.
In this paper, we limit ourselves to two-person zero-sum re-
peated games with lack of information on one side. In this
setting, player 1 (the informed player) is told the true state
of the world. Player 2, the uninformed player, is not told
anything, i.e., we assume |L| = 1. We must consider this
more specific class of games for several reasons.

• The first reason is that the notion of value in games
with lack of information on both sides is unclear. There
are two approaches to studying the repeated games in
this model. The first is to consider the n-stage game,
denoted Γn, and its value v(Γn) (which clearly exists
since Γn is finite), and then determine limn→∞ v(Γn),
if it exists. (Observe that Γ1 is the same as the game
described in Section 2.2.) The second approach is
to consider the infinitely-repeated game, denoted Γ∞,
and determine its value v(Γ∞) directly, if it exists. In
two-person zero-sum repeated games with lack of in-
formation on one side, both limn→∞ v(Γn) and v(Γ∞)
exist and are equal, so either approach is suitable [1].
However, there are games with lack of information on
both sides for which v(Γ∞) does not exist (although it
is known that limn→∞ v(Γn) exists [15]).

• The second reason involves the choice of modeling pay-
offs in repeated games with incomplete information.
As discussed above, the players do not observe the pay-
offs in each stage. How then does one even evaluate a
player’s strategy or consider the notion of value? It is
customary to consider the mean-payoff, so we say that
after the N -th stage, player 1 receives a payoff

1

N

N∑
i=1

Akl
si
1si

2

from player 2.

As an alternative to the mean-payoff model, one could
also study the seemingly more natural λ-discounted
game Γλ as λ → 0. This game is repeated infinitely
many times and player 1 receives the payoff

∞∑
i=1

λ(1− λ)i−1Akl
si
1si

2

from player 2. It can be shown that

v(Γ∞) = lim
n→∞

v(Γn) = lim
λ→0

v(Γλ)

where v(Γ∞) exists [22, Lemma 3.1]. Since, as dis-
cussed in the previous point, this condition holds for
games with lack of information on one side, we have
that the value of the game is the same regardless of
which payoff metric we choose.

Given this flexibility in choice of payoff measure, we
simply restrict ourselves to studying the mean-payoff
game for computational reasons.

• Finally, as we will elaborate in Section 4, our optimiza-
tion approach for computing optimal strategies in the
game depends heavily on a characterization of equilib-
rium strategies that unfortunately only holds for games
with lack of information on one side.

In summary, we limit ourselves to the one-sided lack of in-
formation setting for various conceptual and computational
reasons. Developing concepts and algorithms for the more
general two-sided setting is an important area of future re-
search which we discuss further in Section 6.

3. EXAMPLES
Before describing our algorithms for computing both the

value and optimal strategies for games in our model, we
discuss some classical examples that illustrate the richness
and complexity of our model.

In any repeated game with incomplete information, the
players must take into account to what extent their actions
reveal their private information, and to what extent this rev-
elation will affect their future payoffs. In the following three
subsections, we present three examples where the amount
of information revelation dictated by the optimal strategy
differs. The first two examples are due to Aumann and
Maschler [1] and the third is due to Zamir [25].

3.1 Completely unrevealing strategy
Our first example is given in Figure 1. There are two

possible states of the world, A and B, and each is chosen by
nature with probability 0.5. The true state of the world is
communicated to player 1.

State A
L R

U 1 0
D 0 0

State B
L R

U 0 0
D 0 1

Figure 1: The stage games for the unrevealing ex-
ample. If the state of the world is State A, then the
game on the left is played. Otherwise, the game on
the right is played.

Consider what happens if player 1, after being informed
that the true state is A, plays U every time. (This is a
weakly dominant strategy for player 1 in the state A game.)
Eventually it will occur to player 2, who is observing player
1’s actions, that player 1 is playing U because the players are
in state A and player 1 is hoping to get the payoff of 1. Ob-
serving this, player 2 will switch to playing R, guaranteeing
a payoff of 0.

A similar line of reasoning in the case of state B appears
to demonstrate that player 1 can only achieve a long-term
payoff of 0 as player 2 will eventually figure out what ac-
tual game is being played. However, somewhat unintuitively,
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consider what happens if player 1 ignores her private signal.
Then no matter what strategy player 1 uses, player 2 will
not be able to infer the game being played. In fact, it as
if the players are playing the average game in Figure 2. In
this game, both players’ (unique) optimal strategy is to play
both of their actions with probability 0.5, for an expected
payoff of 0.25. Thus player 1 achieves an average expected
payoff of 0.25, compared to the payoff of 0 that she would
get if player 2 were able to infer the actual game from player
1’s action history. Note that player 1’s strategy is completely
non-revealing since player 2 will never be able to determine
the true state of the world based on player 1’s actions.

L R
U 1/2 0
D 0 1/2

Figure 2: The average game corresponding to the
case where player 1 ignores her private information
in the game in Figure 1.

Although we do not prove it here, the above strategy for
player 1 is optimal. Intuitively, if player 1 were to slightly
alter her strategy to take advantage of her private informa-
tion, player 2 would observe this and would then deviate
to the unique best response to player 1’s altered strategy.
Thus, any advantage player 1 could possibly get would be
short-term, and would not be nearly enough to compensate
for the long-term losses that player 2 would be able to inflict.

3.2 Completely revealing strategy
Our second example is given in Figure 3. Again, there

are two possible states of the world, A and B, and each is
chosen by nature with probability 0.5. The true state of the
world is communicated to player 1.

State A
L R

U -1 0
D 0 0

State B
L R

U 0 0
D 0 -1

Figure 3: The stage games for the revealing exam-
ple. If the state of the world is State A, then the
game on the left is played. Otherwise, the game on
the right is played.

Here, a payoff of 0 is clearly the best player 1 can hope
for, and this outcome can be achieved using the following
strategy: “Always play D if the state of the world is A;
otherwise always play U”. No matter what strategy player 2
uses, player 1 obtains a payoff of 0. Since this is the highest
possible payoff, this is clearly an optimal strategy. Note
that this strategy is completely revealing since player 2 will
be able to determine the true state of the world.

3.3 Partially revealing strategy
Our third example is given in Figure 4. Again, there are

two possible states of the world, A and B, and each is chosen
by nature with probability 0.5. The true state of the world
is communicated to player 1.

If, as in the first example, player 1 completely ignores her
private information, the game reduces to the one in Figure 5.
In this case, player 2 can always play R and thus guarantee
a payout of at most 0.

State A
L M R

U 4 0 2
D 4 0 -2

State B
L M R

U 0 4 -2
D 0 4 2

Figure 4: The stage games for the partially-revealing
example. If the state of the world is State A, then
the game on the left is played. Otherwise, the game
on the right is played.

State A
L M R

U 2 2 0
D 2 2 0

Figure 5: The average game corresponding to the
case where player 1 ignores her private information
in the game in Figure 4.

If, on the other hand, player 1 completely reveals her pri-
vate information, then player 2 will have the following op-
timal strategy: “Always play M if the inferred state is A;
otherwise always play L”. Again, player 2 is able to guaran-
tee a maximum payout of 0.

Suppose player 1 now employs the following strategy: “If
the state of the world is A, then with probability 0.75 always
play U , otherwise always play D; if the state of the world
is B, then with probability 0.25 always play U , otherwise
always play D”. Suppose further that player 2 knows this
strategy. If player 2 observes that player 1 is always playing
U , then player 2 can infer that

Pr[A|U ] =
Pr[U |A]Pr[A]

Pr[U ]

=
Pr[U |A]Pr[A]

Pr[U, A] + Pr[U, B]

=
0.75 · 0.5

0.5 · 0.75 + 0.5 · 0.25

=
3

4
.

Hence, player 2 is faced with the decision problem

L M R
U 3 1 1

and so can do by best by achieving a payout of 1. A simi-
lar computation shows the same is true if player 2 observes
player 1 to always be playing D. Therefore, player 1 achieves
a payoff of 1, which is better than she would have done had
she either completely revealed her private information or
completely ignored her private information. By partially re-
vealing this information, she has boosted her payoff.

4. OPTIMIZATION FORMULATION
In this section, we review Aumann and Maschler’s the-

orem for characterizing the value of two-person zero-sum
repeated games with lack of information on one side. Un-
fortunately, this theorem does not include an algorithm for
actually computing the value. Using this characterization we
derive a non-convex optimization problem for computing the
value of the game (Section 4.1). Non-convex optimization
problems are in general NP-complete [9] so there is little
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hope of employing a general-purpose algorithm for solving
non-convex optimization problems. Instead, we give a spe-
cialized algorithm that computes the value of the game to
within additive error ε for any given target accuracy ε > 0
(Section 4.2). For games with a constant number of world
states (but with a non-constant number of actions available
to the players) we can compute such a solution in time poly-
nomial in the number of actions and 1

ε
.

4.1 Optimization formulation derivation
Consider the two-person zero-sum game with incomplete

information given by matrices Ak ∈ Qm×n for k ∈ {1, . . . , K},
and let p∗ ∈ ∆K be the probability with which k is chosen
and communicated to player 1. (This is a game with lack
of information on one side only, so player 2 does not receive
any information about the true state of the world.) Denote
the infinitely-repeated version of this game as Γ∞. We are
interested in computing v(Γ∞).

Recall the average game which for some p ∈ ∆K has pay-
off matrix

A(p) =

K∑
i=1

piA
i.

As discussed in Section 2.1, the value of this game is v(p, A) =
v(A(p)) and can be computed using LP. In what follows we
omit A when it can be inferred from context, and instead
simply discuss the value function v(p).

Consider now the concavification of v(p) with respect to p,
that is, the point-wise smallest (with respect to v(·)) concave
function that is greater than v for all p ∈ ∆K . Letting v′ ≥ v
denote that v′(p) ≥ v(p) for all p ∈ ∆K , we can formally
write

cav v(p) = inf
v′

{
v′(p) : v′ concave, v′ ≥ v

}
.

Aumann and Maschler’s surprising and elegant result [1]
states that v(Γ∞) = cav v(p). Our goal of computing
v(Γ∞) can thus be achieved by computing cav v(p).

A basic result from convex analysis [4] shows that the
convex hull of an n-dimensional set S can be formed by
taking convex combinations of n + 1 points from S. Hence,
the K-dimensional point (p, cav v(p)) can be represented
as the convex combination of K + 1 points (pi, v(pi)), i ∈
{1, . . . , K + 1}. (Note that p is (K − 1)-dimensional, not
K-dimensional.) In particular, for any (p, cav v(p)), there
exists α ∈ ∆K+1 and points

{(
p1, v

(
p1)) , . . . ,

(
pK+1, v

(
pK+1

))}
such that

p =

K+1∑
i=1

αip
i

and

cav v(p) =

K+1∑
i=1

αiv(pi).

Hence, we can rewrite the problem of computing cav v(p)

as the following optimization problem:

max

K+1∑
i=1

αiv(pi)

(P1) such that

K+1∑
i=1

αip
i = p

pi ∈ ∆K for i ∈ {1, . . . , K + 1}
α ∈ ∆K+1

A solution to Problem (P1) therefore yields the value of
Γ∞. Unfortunately, this does not immediately suggest a
good algorithm for solving this optimization problem. First,
the optimization problem depends on the quantities v(pi)
for variables pi. As discussed in Section 2.1, the value v(pi)
is itself the solution to an optimization problem (namely
a linear program), and hence a closed-form expression is
not readily available. Second, the first constraint is non-
linear and non-convex. Continuous optimization technology
is much better suited for convex problems [17], and in fact
non-convex problems are NP-complete in general [9]. In the
following subsection, we present a numerical algorithm for
solving Problem (P1) with arbitrary accuracy ε.2

4.2 Solving the formulation
Our algorithm is closely related to uniform grid meth-

ods which are often used for solving extremely difficult op-
timization problems when no other direct algorithms are
available [17]. Roughly speaking, these methods discretize
the feasible space of the problem and evaluate the objective
function at each point. Our problem differs from the prob-
lems normally solved via this approach in two ways. The
first is that the feasible space of Problem (P1) has addi-
tional structure not normally encountered. Most uniform
grid methods have a hyper-rectangle as the feasible space.
In contrast, our feasible space is the product of several sim-
plices of different dimension, which are related to each other
via a non-convex equality constraint (the first constraint in
Problem (P1)). Second, evaluating the objective function of
Problem (P1) is not straightforward as it depends on sev-
eral values of v(pi) which are themselves the result of an
optimization problem.

As above we consider a game given by K matrices Ak, but
now for simplicity we require the rational entries Ak

ij to be
in the unit interval [0, 1]. This is without loss of generality
since player utilities are invariant with respect to positive
affine transformations and so the necessary rescaling does
not affect their strategies.

2Unfortunately, our algorithm cannot solve Problem (P1)
exactly, but rather only to within additive error ε. However,
this appears unavoidable since there are games for which the
(unique) optimal play of player 1 involves probabilities that
are irrational numbers. An example of such a game is due
to Aumann and Maschler [1, p. 79–81]. This immediately
implies that there does not exist a linear program whose
coefficients are arithmetically computed from the problem
data whose solution yields an optimal strategy to Problem
(P1) since every linear program with rational coefficients has
a rational solution. Furthermore, any numerical algorithm
will not be able to compute an exact solution for similar
reasons. Note that this is very different from the case of
two-person zero-sum games in which optimal strategies con-
sisting of rational numbers as probabilities always exist.
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Our algorithm for solving Problem (P1) within additive
error ε proceeds as follows.

Procedure SolveP1

1. Let C = d 1
ε
e.

2. Let Z(C) =
{(

d1
C

, . . . , dK
C

)
: di ∈ N,

∑K
i=1 di = C

}
. De-

note the points of Z(C) as p1, . . . ,p|Z(C)|.

3. For each point pi ∈ Z(C), compute and store v(pi)
using linear program (3).

4. Solve linear program (P2):

max

|Z(C)|∑
i=1

αiv(pi)

(P2) such that

|Z(C)|∑
i=1

αip
i ≤ p

α ∈ ∆|Z(C)|

5. Output the value of linear program (P2) as an approx-
imation of the value of the game.

We now analyze the above algorithm. We first recall the
following classic fact about the value function v(P).

Lemma 1. v(p) is Lipschitz with constant 1, that is,

|v(p)− v(p′)| ≤ ‖p− p′‖∞.

Proof. This is immediate in our case since we assume
that all entries of A are in the range [0, 1].

Before presenting our main theorem, we present a tech-
nical lemma which shows that our discretization (i.e., our
design of Z(C), is sufficiently refined. The proof is immedi-
ate from the definition of Z(C) and is omitted.

Lemma 2. Let p ∈ ∆K , ε > 0, and C = dK
ε
e. There

exists q ∈ Z(C) such that

‖p− q‖∞ ≤ 1

C
.

Theorem 1. Let v(Γ∞) be the value of the infinitely-repeated
game and let v∗ be the value output by the above algorithm
with input ε > 0. Then

v(Γ∞)− v∗ ≤ ε.

Proof. We only need to show that there exists a feasi-
ble solution to the linear program (P2) whose objective value
satisfies the inequality (the optimal answer to the linear pro-
gram could be even better). Let ᾱ, p̄1, . . . , p̄K+1 be optimal
solutions to (P1). We construct a feasible solution α to lin-
ear program (P2) as follows. For each i ∈ {1, . . . , K + 1},
choose pj ∈ Z(C) such that ‖p̄i−pj‖∞ is minimized (break-
ing ties arbitrarily) and set αj = ᾱi. Assign η(i) = j. Leave
all other entries of α zero. Let N = {i : αi > 0} be the
index set for the positive entries of α and let

v =

|Z(C)|∑
i=1

αiv(pi).

Clearly, this is a lower bound on the objective value of linear
program (P2). Now we can write:

v(Γ∞)− v =

K+1∑
i=1

ᾱiv
(
p̄i
)
−
|Z(C)|∑

i=1

αiv
(
pi
)

=

K+1∑
i=1

ᾱiv
(
p̄i
)
−
∑
i∈N

αiv
(
pi
)

=

K+1∑
i=1

ᾱiv
(
p̄i
)
−

K+1∑
i=1

αη(i)v
(
pη(i)

)
=

K+1∑
i=1

ᾱiv
(
p̄i
)
−

K+1∑
i=1

ᾱη(i)v
(
pη(i)

)
=

K+1∑
i=1

ᾱi

[
v
(
p̄i
)
− v

(
pη(i)

)]
≤

K+1∑
i=1

ᾱi

∥∥∥p̄i − pη(i)
∥∥∥
∞

≤
K+1∑
i=1

ᾱi
1

C
=

1

C
≤ ε

The first inequality is by Lemma 1, the second inequality is
by Lemma 2, and the third inequality is by the definition of
C.

We now analyze the time complexity of our algorithm. We
first prove a simple lemma.

Lemma 3. For C = d 1
ε
e the set

Z(C) =

{(
d1

C
, . . . ,

dK

C

)
: di ∈ N,

K∑
i=1

di = C

}
defined in step 2 of the above algorithm satisfies

|Z(C)| =

(
C + K − 1

K − 1

)
≤ (C + 1)K .

Proof. The equality is a simple exercise in combinatorics
and the inequality is standard.

We analyze our algorithm in terms of the number of linear
programs it solves. Note that each linear program is solvable
in polynomial-time, e.g., by the ellipsoid method [12] or by
interior-point methods [24]. Step 3 of the algorithm clearly
makes |Z(C)| calls to a linear program solver. By Lemma 3,
we have |Z(C)| ≤ (C + 1)K . Each of these linear program
has m+1 variables and n+1 constraints, where m and n are
the numbers of actions each player has in each stage game.

Similarly, the linear program solved in step 4 of the algo-
rithm also has at most |Z(C)| ≤ (C + 1)K variables. Hence
we have:

Theorem 2. The above algorithm solves (C +1)K linear
program that are of size polynomial in the size of the input
data, and solves one linear program with (C +1)K variables.

Therefore, for a fixed number of possible states K, our
algorithm runs in time polynomial in the number of actions
available to each player and in 1

ε
.
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5. FINDING THE PLAYERS’ STRATEGIES
In this section, we demonstrate how we can use the out-

put of our algorithm to construct the player’s strategies.
The strategy of player 1 (the informed player) can be con-
structed explicitly from the values of the variables in the
linear program (P2) solved in our algorithm. Player 2 (the
uninformed player) does not have such an explicitly repre-
sented strategy. However, we can use existing approaches (in
conjunction with the output from our algorithm) to describe
a simple algorithmic procedure for player 2’s strategy.

5.1 The informed player’s strategy
As alluded to in the examples, player 1’s optimal strategy

is of the following form. Based on the revealed choice of
nature, player 1 performs a type-dependent lottery to select
some distribution q ∈ ∆K . Then she always plays as if the
stage game were the average game induced by a distribution
that does not reveal the true state of the world to player 2.

Let α,p1, . . . ,pK+1 be solutions to Problem (P1). The
following strategy is optimal for player 1 [1].

Let k ∈ {1, . . . , K} be the state revealed (by na-
ture) to player 1. Choose i ∈ {1, . . . , K +1} with
probability

αip
i
k

pk

where p = {p1, . . . , pk} is the probability that
natures chooses state k. Play the mixed equilib-
rium strategy corresponding to the average game
given by distribution pi in every stage.

Thus the informed player is using her private information
once and for all at the very beginning of the infinitely-
repeated game, and then playing always as if the game were
actually the average game induced by the distribution pi.
The strength of this strategy lies in the fact that player 2,
after observing player 1’s strategy, is unable to determine
the actual state of nature even after learning which number
i player 1 observed in her type-dependent lottery.

This surprisingly and conceptually simple strategy imme-
diately suggests a similar strategy for player 1 based on the
output of our algorithm. Let α be a solution to linear pro-
gram (P2) solved during the execution of our algorithm, let

{p1, . . . ,p|Z(C)|} = Z(C), and let k be the actual state of na-
ture. The strategy is as follows: “Choose i ∈ {1, . . . , |Z(C)|}
with probability

αip
i
k

pk
.

Play a mixed equilibrium strategy to the average game cor-
responding to the distribution pi in every stage thereafter”.
Using reasoning completely analogous to the reasoning of
Aumann and Maschler [1], this strategy guarantees player
1 a payoff of at least v(Γ∞) − ε. (If we were able to solve
problem (P1) optimally then we would have ε = 0.)

5.2 The uninformed player’s strategy
We now describe how player 2’s strategy can be con-

structed from the solution to our algorithm. Unlike in the
case of player 1, there is no concise, explicit representation
of the strategy. Rather the prescription is in the form of an
algorithm.

The driving force behind this technique is Blackwell’s ap-
proachability theory [2] which applies to games with vector
payoffs.3 The basic idea is that player 2, instead of attempt-
ing to evaluate her expected payoff, instead considers her
vector payoff, and then attempts to force this vector payoff
to approach some set.

Because cav v(p) is concave, there exists z ∈ RK such
that

K∑
i=1

pizi = cav v(p)

and

K∑
i=1

qizi ≥ cav v(q), ∀q ∈ ∆K .

Let S =
{
s ∈ RK |s ≤ z

}
. Blackwell’s approachability theo-

rem states that there exists a strategy for player 2 such that
for any strategy of player 1, player 2 can receive a vector pay-
off arbitrarily close (in a precise sense) to the set S. Since S
can be interpreted as the set of affine functions majorizing
v(p) (and, hence, majorizing cav v(p)), then player 2 can
force a payout arbitrarily close to the payoff that player 1
guarantees.

Following from the above discussion, we can state the fol-
lowing optimal strategy for player 2. For each stage n and
each i ∈ K, let ui

n be player 2’s payout to player 1 (given
that the state of the world is actually i). Now define

wi
n =

∑n
j=1 ui

j

n

to be player 2’s average payoff vector to player 1. In stage
1 and in any stage n where wn = (w1

n, . . . , wK
n ) ∈ S, let

player 2 play an arbitrary action (this is acceptable since so
far player 2 is doing at least as well as possible). At stage n
where wn 6∈ S, let player 2 choose her move according to a
distribution y satisfying

min
y∈∆n

max
x∈∆m

K∑
i=1

(
wi

n−1 − εi(wn−1)
)
xAiy (5)

where ε(wn−1) is the (unique) point in S that is closest to
wn−1. Blackwell’s approachability theorem [2] states that
player 2’s vector payoff converges to S regardless of player
1’s strategy.

The above discussion thus shows how player 2, using the
information output by our algorithm, can be used to gener-
ate a strategy achieving the optimal payoff. In each stage,
at most all that is required is solving an instance of Equa-
tion 5, which can be solved in polynomial time using linear
programming.

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper we studied computational approaches for
finding optimal strategies in repeated games with incomplete
information. In such games, an agent must carefully weigh
the tradeoff between exploiting its information to achieve

3We do not include a full description of this theory here.
Complete descriptions are provided by Myerson [16, pp.
357–360], Sorin [22, Appendix B], or Blackwell’s original pa-
per [2].
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a short-term gain versus carefully concealing its informa-
tion so as not to give up a long-term informed advantage.
Although the theoretical aspects of these games have been
studied, this is the first work to develop algorithms for solv-
ing for optimal strategies. For the case where one player is
informed about the true state of the world and the other
player is uninformed, we derived a non-convex mathemati-
cal programming formulation for computing the value of the
game, as well as optimal strategies for the informed player.
We then described an algorithm for solving this difficult op-
timization problem to within arbitrary accuracy. We also
described a method for finding the optimal strategy for the
uninformed player based on the output of the algorithm.

Directions for future research are plentiful. This paper has
only analyzed the case of one-sided information. Developing
algorithms for the case of lack of information on both sides
would be an interesting topic. However, this appears diffi-
cult. For one, the notion of the value of the game is less well
understood in these games. Furthermore, there is no obvious
optimization formulation that models the equilibrium prob-
lem (analogous to Problem (P1)). Other possible directions
include extending this to non-zero-sum games [10] as well
as to games with many players. Again, these tasks appear
difficult as the characterizations of equilibrium strategies be-
come increasingly complex.

Yet another possible algorithmic approach would be to
tackle the problem via Fenchel duality (Rockafellar [19] is a
standard reference for this topic). Fenchel duality has been
employed as an alternative method of proving various prop-
erties about repeated games [6, 7]. In particular, the Fenchel
biconjugate of v(p) yields cav v(p). Given the close rela-
tionship between Fenchel duality and optimization theory,
an intriguing possibility would be to use Fenchel duality to
derive an improved optimization algorithm for the problem
studied in this paper.

The class of games we study is a special case of the more
general class of stochastic games [21]. That class of games
allows for a much richer signaling structure (rather than the
limited signaling structure we consider in which only the
players’ actions are observable), as well as transitioning to
different stage games based on the choices of the players
and possible chance moves. Developing a solid algorithmic
understanding of the issues in those richer games is another
important area of future research.
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