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ABSTRACT
We investigate equilibrium strategies for bidding agents that partic-
ipate in multiple, simultaneous second-price auctions with perfect
substitutes. For this setting, previous research has shownthat it is a
best response for a bidder to participate in as many such auctions as
there are available, provided that other bidders only participate in
a single auction. In contrast, in this paper we consider equilibrium
behaviour where all bidders participate in multiple auctions. For
this new setting we consider mixed-strategy Nash equilibria where
bidders can bid high in one auction and low in all others. By dis-
cretising the bid space, we are able to use smooth fictitious play to
compute approximate solutions. Specifically, we find that the re-
sults do indeed converge toε-Nash mixed equilibria and, therefore,
we are able to locate equilibrium strategies in such complexgames
where no known solutions previously existed.

1. INTRODUCTION
The rapid increase of online auctions such as eBay, QXL, and Ya-
hoo! has spawned considerable research in the field of auctions
and automated bidding agents. In such auctions we increasingly
observe different sellers offering similar or even identical goods
and services at the same time. In eBay alone, for example, the
Nintendo Wii game console has nearly 2000 listings at the time
of writing, of which over 1500 are proper auctions. In addition
to the web, such auctions are also considered a key approach to
achieve effective allocation of tasks and resources withina number
of research areas of multi-agent systems, including Grid computing
and multi-robot coordination. Against this background, itis impor-
tant to develop intelligent agents that are able to bid effectively in
such auctions. In particular, this paper considers biddingstrategies
when multiple auctions selling substitutable goods are held simul-
taneously. Whereas most of the previous research in this domain
focuses on best-response or heuristic strategies, here we extend
this research by considering equilibrium outcomes when several
agents optimise their utility by participating in multipleauctions.
To this end, we compute the equilibrium usingfictitious play, a
game-theoretic learning algorithm that optimises behaviour based
on the opponents’ history of play. This algorithm has the property
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that, if the strategies converge, in the limit these strategies are a
Nash equilibrium solution [4, Ch 2, Prop 2.1]. Specifically,here
we apply an approach called smoothed or cautious fictitious play
which is able to converge to approximate, also calledε-Nash mixed,
equilibria. Formally, an equilibrium isε-Nash if any single agent
cannot gain more thanε by deviating from it.

To date, much of the existing research dealing with multiplesi-
multaneous auctions typically assumes that bidders chooseone of
them and then bid optimally in that auction. Previous research has
shown, however, that if all opponents follow this strategy and bid
in a single auction, and given that the auctions do not have reserve
prices, it is a best response to bid inall available auctions [5]. Here
we extend this work by investigating equilibrium strategies where
all the agents participate in multiple auctions. Finding anequi-
librium outcome in this setting is a challenging problem, however,
since no closed-form solution exists even for the best response case,
and finding the equilibrium by brute-force search is computation-
ally intractable (especially when considering mixed strategies). As
a result, this setting has received very little attention inthe literature
and the work that exists operates in very limited cases.

In this case, the seminal paper by Engelbrecht-Wiggans and We-
ber [2] provides one of the starting points for the game-theoretic
analysis of markets where buyers have substitutable goods.They
derive a mixed Nash equilibrium for the special case where the
number of buyers is large. Moreover, they assume that bidders
have the same valuations and not all bidders can bid in all auctions.
Our analysis, on the other hand, does not make these assumptions.
Following this, [6] studied the case of simultaneous auctions with
complementary goods. The setting provided in [6] is furtherex-
tended to the case of common values in [8]. However, neither of
these works extend easily to the case of substitutable goodswhich
we consider. This case is studied in [9], but the scenario consid-
ered is restricted to three sellers and two bidders and with each bid-
der having the same value (and thereby knowing the value of other
bidders). The space of symmetric mixed equilibrium strategies is
derived for this special case, but these results do not generalise to
settings with more bidders and sellers, and, most importantly, to
settings where bidders have different valuations.

In more detail, this work advances the state-of-the-art in the fol-
lowing ways. First, we derive equations for the bidder’s expected
utility in the case when all bidders use mixed strategies. Inthis
way we can compute the equilibrium using smooth fictitious play
without actually simulating the auctions. These equationscannot
be easily computed for very large inputs, however, and therefore
we limit the strategy space by assuming that bidders bid at most



two different values: high in one auction, and low or equal inthe
remaining ones. This assumption is based on empirical work de-
scribed in [5] showing this to be a best response in many settings.
We then show empirically that the learning algorithm converges to
ε-Nash equilibria.

2. THE MODEL
The model consists ofm sellers, each of whom acts as an auction-
eer. Each seller auctions one item; these items are completesub-
stitutes (i.e., they are equal in terms of value and a bidder obtains
no additional benefit from winning more than one of them). Them

auctions are executed simultaneously; in particular, no information
about the outcome of any of the auctions becomes available until
the bids are placed (in real-life settings, when some of the auctions
close at almost the same time, there is insufficient time to obtain
the results of one auction before proceeding to bid in the next one).
We assume that all the auctions are identical (i.e., a bidderis indif-
ferent between them). Furthermore, bidders are committed to buy
the items they win and thus cannot withdraw their bids. However,
we also assume free disposal, meaning bidders do not incuraddi-
tional costs for disposing of unwanted items. Finally, we assume
that bidders maximise their expected profit.

2.1 The Auctions
This paper focuses on second-price sealed bid auctions, where the
highest bidder wins but pays the second-highest price, although we
briefly address the first-price variant when we compare the auc-
tioneer’s expected revenue in Section 4. The second-price for-
mat has several advantages for agent-based settings. First, it is
communication-efficient. Second, for the single-auction case (i.e.,
where a bidder places a bid in at most one auction), the optimal
strategy is to bid the true value and thus it requires no computa-
tion (once the valuation of the item is known). This strategyis
also weakly dominant (i.e., it is independent of the other bidders’
decisions), and therefore it requires no information aboutthe pref-
erences of other agents (such as the distribution of their valuations).
Also, the auction is strategically equivalent to online auctions such
as eBay by using proxy bidding.

2.2 Bidder Strategies and Expected Utility
In this section we formalise the bidding strategies and derive a bid-
der’s expected utility when bidding in one or more auctions.We
note that the equations are based on the continuous bids and valua-
tions, whereas the numerical results are based on a discretesetting.
However, the equations can be easily converted into discrete ones.

In what follows, the number of sellers (auctions) ism ≥ 2 and
the number of bidding agents (or simply bidders) isn ≥ 2. Let
M = {1, 2, . . . , m} andN = {1, 2, . . . , n} denote the set of auc-
tions and bidders respectively. Each agenti’s private valuationvi

is independently and randomly drawn from a probability distribu-
tion with supportV = [0, vmax]. Let F (x) =

∫ x

0
f(x)dx denote

the cumulative distribution function.F is assumed to be common
knowledge.

In general, a mixed strategy is defined as one which randomly
selects between pure, deterministic strategies with a certain prob-
ability. In this problem domain, we define a mixed strategy asa
mapping from a bidder’s valuation to a distribution over bidvec-
tors, where the bid vectors describe the bids for each auction. Let
b denote thejoint bids of all bidders for all auctions. That is,b
is a matrix in which each elementbi

j is bidderi’s bid in auctionj.
Furthermore, letbi denote bidderi′s vector of bids,b−i the bids
of all agents and auctions except those of bidderi, andb

−i
j all the

bids in auctionj excepti’s. Now, the utility of agentk, provided

that all the bids are known, is given by:

uk(v,b
k
,b

−k) = v

[

1 −
∏

j∈M

(

1 − P
w(bk

j ,b
−k
j )

)

]

−
∑

j∈M

C(bk
j ,b

−k
j ), (1)

whereP w is the probability of winning a particular auction given
the bids of all players placed in that auction (the left part of the
equation thus denotes the probability of winningat leastone item),
andC denotes the unconditional (expected) costs for that auction
given the bids. Note that this formulation of the utility is fairly
general and captures a wide range of simultaneous auctions for
complete substitutes, including first-price and second-price. Fur-
thermore, althoughP w generally reduces to a deterministic func-
tion (e.g., highest bidder always wins), tie breaking rulescan be
included, for example in the case of discrete bids, in which case the
probability of winning, and thus also the utility, are probabilistic.

The above equation assumes that all bids are known. We can
extend the equation to express uncertainty about the bids ofother
bidders as follows. LetBi denote the space of bids for bidderi, and
B = B

1×B
2× . . .×B

n denote the space of all possible joint bids.
Given that optimal bids are no more than a bidder’s true valuation
in first and second-price auctions (clearly this also applies in the
case of multiple auctions), without loss of generality we assume
thatBi = V m. Now, the expected utilityUk becomes:

Uk(v) =

∫

B

P (bk|v)P (b−k)uk(v,b
k
,b

−k)db (2)

whereP k(bk|v) denotes the probability of bid vectorbk occurring
given the valuationv. Note that this is essentially bidderk’s mixed
bidding policysince it specifies the probabilistic strategy as a func-
tion of his valuation. Furthermore,P (b−k) is the probability of
the joint bids of the opponents. We can express this probability in
terms of the bidders’ valuation density functionf as follows:

P (b−k) =
∏

i∈N\{k}

(
∫

V

P
i(bi|v′)f(v′)dv

′

)

. (3)

Again, P i(bi|v′) refers to bidderi’s policy. Note that the above
equations can be easily applied to the discrete case by replacing
integrals with summations.

3. SMOOTH FICTITIOUS PLAY
The fictitious play concept was introduced into game theory by
George W. Brown in 1951 [1]. He describes fictitious play as
an iterative process formed by “two statisticians ... playing many
plays” of the same game. Each statistician assumes that the oppo-
nent maintains a constant, though potentially probabilistic (mixed)
strategy of game, and estimates the adversaries’ strategies by the
frequency of actions in the history of play, also interpreted as a
player’s beliefsabout the other players’ actions. The statistician
then selects a best response given these beliefs.

Brown set this intuition into a formalfictitious playalgorithm,
and successfully applied it to recover a pure Nash equilibrium of
several simple game instances. It has been later shown that if all
the agents in the system adopt the algorithm and the game is played
repeatedly, then in some types of games fictitious play converges to
a pure Nash equilibrium (see e.g. [7]).

Unfortunately, a pure Nash equilibrium does not always exist in
a game, and in such games fictitious play is not guaranteed to con-
verge. Furthermore, in our problem domain the actual strategies
are mappings from valuations to (distributions of) bids, but only



the actual bids are observed. Therefore, even if thebeliefscon-
verge, it is not possible to reproduce the actual strategiesfrom the
beliefs since many different mappings result in the same setof be-
liefs. However, there exists a class of fictitious play modifications,
calledsmooth fictitious play, which can resolve the aforementioned
complications, and explicitly concentrates on mixed-strategy pro-
files. This algorithm class is discussed next.

Assume that the interaction between the agents in the systemis
described by a multi-dimensional utility function,u :

∏n

i=1 Bi →
Rn, mapping actions independently selected by the agents intoa
vector of payoffs. Given that each agent selects actionbi ∈ Bi, the
utility becomes(u1, ..., un) = u = u(b1, ..., bn) ∈ Rn, and agent
i receives utilityui

1. Furthermore, letpi(bi) denote therelative
observed frequencyof actionbi by agenti, where

∑

bi∈Bi
p(bi) =

1. The valuespi(·) are the beliefs about agenti’s mixed strategy.
Now, given these beliefs, theexpected utilitybecomes:

(E(u1), ..., E(un)) = E(u) =
∑

b∈
∏

Bi

u(b)
∏

pi(bi)

Now, standard fictitious play selects the pure best responseaction
that maximises expected utility. In this case, however, infinitesimal
variation in the beliefs about adversary strategies may cause a rad-
ical change in the best response action. Allowing best response
strategies to varysmoothlyforms the core of thesmooth fictitious
play algorithm class [3]. The main idea is that, instead of takinga
pure best response, the agents select their action with a probability
proportional to the expected utility of that action. Although there
are many variations, in this paper we applyk-exponential cautious
fictitious play[3]. This method is commonly used since it has a
natural interpretation; it is equivalent to adding an entropy compo-
nent to the utility function, and this component thus promotes the
usage of mixed strategies in a principled way.

In more detail, letσi(b) denote the probability that (pure) action
b is played. Furthermore, letE(u(b)) denote the expected utility
from playing this action. Then thek-exponential fictitious play
response is given by specifying a set of fixed weights0 < wb∈Bi

and setting the probability of applying actionb to:

σi(b) =
wbe

1

τ
E(u(b))

∑

b

wbe
1

τ
E(u(b))

, (4)

whereτ is termed thetemperature of exploration. Note that as
τ → 0 the probability of playing the exact best response action ap-
proaches1, while for higher temperature values alternative actions
may be selected with higher probability.

Whenwb = 1 for all b ∈ Bi, k-exponential fictitious play cor-
responds to computing the best (mixed) response with a modified
utility function: U(σ(·)) = E[u(a)] + τH(σ) whereH(σ) =
−

∑

b∈Bi
σ(b) log σ(b) is the entropy of the mixed strategy. In

addition to this, Fudenberg and Levine [3] have shown thatk-
exponential fictitious play converges to aε-Nash mixed equilib-
rium2, and we build on this convergence property to obtain the ex-
perimental results of this paper.

We now apply the above approach to our domain of bidding in
simultaneous auctions. The standard description of smoothed ficti-
tious play relies on sampling the actions from the mixed strategies.
Furthermore, since the policies depend on an agent’s type, i.e., the

1Notice that the utility is based on a single instance of the game,
and does not imply, nor depend on, the fact that the game will be
repeated.
2More specifically, they show that for anyε > 0, there exists a tem-
peratureτ such that the results converge. Furthermore, the closerε
comes to zero, the longer convergence may take.

Initialise:
1: Set iteration count tot = 0
2: for v ∈ V,b ∈ B do
3: Initialise beliefsP (b|v)
4: end for{ Players symmetry impliesB = V m.}

Main:
5: loop
6: for all v ∈ V do
7: for all b ∈ B do
8: Computeσ∗(b|v) w.r.t. expected utility,U(v,b), given

that the opponents use mixed-strategyP (·), and by using
Equation 4.

9: end for
10: end for
11: for all v ∈ V do
12: for all b ∈ B do
13: UpdateP (b|v) = 1

n+1
(n ∗ P (b|v) + σ(b|v))

14: end for
15: end for
16: end loop

Figure 1: The Smooth Fictitious Play Algorithm.

value it assigns to the auctioned item, we would need to sample
from that as well. However, using the equations from Section2.2,
we can immediately compute the (mixed) best response strategies
for each type without the need to actually play the auction game,
making the update based exclusively on theoretical computations.
This has the advantage of considerably reducing the computational
costs. Furthermore, we can take advantage of the fact that all oppo-
nents are assumed to be symmetric (since we consider symmetric
equilibria), which means that the beliefs and best responses need
to be calculated only once for a single agent in each iteration (and
computational complexity is independent on the number of bid-
ders). In this case the smooth fictitious play is given by Figure 1.

4. EMPIRICAL RESULTS
The results in this section are based on the following settings. The
bidder valuations (types) and bid values are discrete, and we use
integer values ranging from1 to 500. Each valuation occurs with
equal probability, equivalent to a uniform valuation distribution in
the continuous case. To allow for tractable results whenm > 2, for
each type the pure-strategy bid space is reduced to two bid values:
a high bid in one of the auctions and a low bid in all others. We
use a tie-breaking rule such that if more than one bidder bidsthe
same, none of them win the item. However, given the number of
possible bid values, the effect of this rule is negligibly small. For
the temperature parameter we use a schedule which starts with τ =
1 (i.e., almost completely random), and decreases logarithmically
until it ends withτ = 2−4 (a logarithmic schedule is standard in
smooth fictitious play). The algorithm runs for1000 iterations.

We now evaluate the learning algorithm by showing that the
smoothed fictitious play converges to anε-Nash mixed equilibrium.
To this end, Figure 2 depicts a typical result comparing regular and
smooth fictitious play for second-price auctions. This shows that
the latter has considerably better convergence properties.

A typical example of the equilibrium strategies that the agents
converge to is visualised in Figure 3. Whereas the mixed strategy is
in fact a3-dimensional matrix (where the dimensions are valuation,
low bid, and high bid), this figure shows a projected view of the
strategies onto a2-dimensional surface. The converged strategies
are surprisingly more complex than was initially expected.Pre-
vious research showed that, by iteratively calculating thebest re-
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Figure 2: Convergence of the regular or best response fictitious
play (BRFP) and the smoothed variant (SFP) for various set-
tings. This is measured by first averaging the bidding strategies
over a period of20 iterations, and then taking the standard de-
viation. A low standard deviation means that little change has
occurred.

Figure 3: Projected view of a mixed strategy after100 itera-
tions for m = 4, n = 6, depicting the probabilities of each of
the high bids (left) and low bids (right) given the bidder’s valu-
ation, where darker corresponds to a higher probability. Note
that the grey planes indicate those parts of the strategy which
are not used, since bidders have no incentives to not bid above
their valuations.

sponse strategy (this is similar to best response fictitiousplay but
without any history), the strategies cycled between two states: one
in which bidders bid uniformly, and another where a single bifur-
cation occurs: bidders with relatively low valuations bid uniformly,
whereas bidders with high valuations bid close to the true value in
one auction, and low in all others [5]. Although a similar behaviour
is observed in the initial iterations of the smooth fictitious play al-
gorithm, the converged strategies are more complex.

This is shown in the example of Figure 3 where the strategy con-
sists of4 distinct parts. For low valuations the strategy is to close
to the true value in one auction, and for the remaining auctions the
bidders are indifferent between a large number of strategies (as in-
dicated by the grey area). Here, the low bids differ significantly
from the best response strategies observed in [5], where it is opti-
mal to bid uniformly and close to the true value in all auctions when
valuations are low. The discrepancy occurs because the probability
of winning is very low in this case, and even a small disturbance in
the utility function (e.g., by adding the entropy) can causea large
deviation in the best response strategy. For bidders with slightly
higher valuations, however, a type of bifurcation is observed simi-

lar to that of the best response strategy, and bidders bid high in one
auction, and low in all others. However, a bidder randomisesbe-
tween various high-bid strategies. A closer examination ofthis part
of the strategy shows that a higher value for the high bid is coupled
with a slightly lower value for the other bids and visa versa.That
is, the bidders are indifferent between a number of pure strategies
where the values for the high and low bids are negatively correlated.
In the third part of the strategy, bidders bid mostly uniformly, but
also randomise with a bifurcated strategy. This is consistent with
the iterative best response process, which shows an alternation be-
tween uniform and bifurcated bidding. Finally, bidders with very
high valuations have a strategy where they bid truthfully inone auc-
tion, and a low value in all others, which is again consistentwith
the best response strategy. A similar pattern is observed inother
settings. To conclude, although parts of the strategy are consistent
with best response dynamics, the emerging mixed strategiesshow
some interesting and unexpected patterns which suggest that the
equilibrium strategy is in fact more complex than a mixture of the
pure strategies found by performing iterative best response.

5. CONCLUSIONS
In this paper we analyse equilibrium bidding strategies when intel-
ligent bidding agents participate in multiple, simultaneous second-
price auctions. We show empirically that, using best-response fic-
titious play, the strategies do not converge to a pure Nash equilib-
rium. As a result, we turn our attention to mixed Nash equilibria.
Since finding such equilibria is computationally intractable, we use
a learning approach called smooth fictitious play to numerically
approximate the equilibrium. By combining the learning algorithm
with equations about the expected utility, we can relatively quickly
compute the mixed strategies without the need to simulate the auc-
tions. The empirical results show that the strategies converge to
ε-Nash mixed strategies.

In future work we intend to formally analyse the (non)-existence
of symmetric pure Nash equilibria. Also, we would like to verify
our conjecture that the equilibrium strategies consist of at most two
different bid values: a low bid and a high bid, and in so doing
show that the incentive to deviate from such a reduced strategy, if
it exists, is very small.

6. REFERENCES
[1] G. W. Brown. Iterative solutions of games by fictitious play. In T. C.

Koopmans, editor,Activity Analysis of Production and Allocation,
pages 374–376. Wiley, 1951.

[2] R. Engelbrecht-Wiggans and R. Weber. An example of a multiobject
auction game.Management Science, 25:1272–1277, 1979.

[3] D. Fudenberg and D. K. Levine. Consistency and cautious fictitious
play.Journal of Economic Dynamics and Control, 19:1065–1089,
1995.

[4] D. Fudenberg and D. K. Levine.The Theory of Learning in Games.
MIT Press, 1999.

[5] E. H. Gerding, R. K. Dash, D. C. K. Yuen, and N. R. Jennings.
Bidding optimally in concurrent second-price auctions of perfectly
substitutable goods. InProc. 6th Int. J. Conference on Autonomous
Agents and Multi-Agent Systems, Hawaii, USA, pages 267–274, 2007.

[6] V. Krishna and R. Rosenthal. Simultaneous auctions withsynergies.
Games and Economic Behaviour, 17:1–31, 1996.

[7] D. Monderer and L. S. Shapley. Fictitious play property for games
with identical interests.Journal of Economic Theory, 68(1):258–265,
1996.

[8] R. Rosenthal and R. Wang. Simultaneous auctions with synergies and
common values.Games and Economic Behaviour, 17:32–55, 1996.

[9] B. Szentes and R. Rosenthal. Three-object two-bidder simultaneous
auctions: Chopsticks and tetrahedra.Games and Economic Behaviour,
44:114–133, 2003.




