
MB-AIM-FSI : A Model Based Framework for exploiting
gradient ascent MultiAgent Learners in Strategic

Interactions

Doran Chakraborty
chakrado@cs.utexas.edu

Computer Sciences Department
University of Texas, Austin

Austin, Texas, USA

Sandip Sen
sandip@utulsa.edu

Mathematical & Computer Sciences Department
University of Tulsa

Tulsa, Oklahoma, USA

ABSTRACT
Future agent applications will increasingly represent human
users autonomously or semi-autonomously in strategic in-
teractions with similar entities. Hence, there is a growing
need to develop algorithmic approaches that can learn to
recognize commonalities in opponent strategies and exploit
such commonalities to improve strategic response. Recently
a framework [9] has been proposed that aims for targeted op-
timality against a set of finite memory opponents. We pro-
pose an approach that aims for targeted optimality against
the set of all possible multiagent learning algorithms that
perform gradient search to select a single stage Nash Equi-
libria of a repeated game. Such opponents induce a Markov
Decision Process as the learning environment and appro-
priate responses to such environments are learned by as-
suming a generative model of the environment. In the ab-
sence of a generative model, we present a framework, MB-
AIM-FSI, that models the opponent online based on inter-
actions, solves the model off-line when sufficient information
has been gathered, stores the strategy in the repository and
finally uses it judiciously when playing against the same or
similar opponent at a later time.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Performance

Keywords
strategic interactions, multiagent learning

1. INTRODUCTION
Environments involving agents in strategic interactions

are becoming increasingly prevalent. The problem of decen-
tralized learning in strategic interactions occurs frequently
in practice including areas such as electronic commerce and

Cite as: MB-AIM-FSI : A Model Based Framework for exploiting gra-
dient ascent MultiAgent Learners in Strategic Interactions, D. Chakraborty
and S. Sen.,Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.371-378.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

information technology. Learning in decentralized domains
involving multiple agents is difficult because of the inher-
ent non-stationarity of the environment imposed by other
agents. Multiagent Learning (MAL) algorithms [1, 3, 4,
7, 10] can be used by agents to guarantee convergence to
a fixed point in the strategy space. Most existing MAL
algorithms aim at convergence in self-play [4] to the sin-
gle stage Nash equilibrium played repeatedly as the solu-
tion concept. These algorithms strongly rely on self-play
and therefore exhibit no guarantee against other opponents
and especially those that are adaptive or non-stationary [6].
Some new criterion for MAL algorithms was proposed re-
cently which emphasizes on auto-compatibility, targeted op-
timality and safety [9].

In this work we focus on targeted optimality against a set of
MAL algorithms as opponents which aim at convergence to
a single stage Nash Equilibrium in a repeated game (RG).
For most learners [1, 3, 10], the dynamics are Markovian
with the next step strategy depending completely on the
joint-strategy in the previous time step [2]. By modeling the
underlying MDP as an Adversary Induced MDP (AIM) and
solving the AIM, a learning agent can respond optimally to
all such opponents. We begin by assuming the presence of a
generative model for the underlying AIM but later propose
a more general framework (MB-AIM-FSI) for interaction
for more realistic setting that builds an opponent behavior
model from online interactions, solves it offline when it has
sufficient information about the model, and uses the corre-
sponding derived strategy during further interactions. We
validate the effectiveness of such targeted reuse of learned
knowledge using experiments over all 57 structurally distinct
2 × 2 games [5] against popular MAL algorithms that per-
form gradient ascent in their strategy space. Our approach
generates stable strategies and better average reward than
other relevant benchmark approaches under similar settings.

2. BACKGROUND AND DEFINITIONS
In this section we introduce the definitions and concepts

necessary for our work. We use bimatrix stage games for our
analysis and experiments. A bimatrix game can be repre-
sented by a pair of matrices {Mi, Mj} where each Mk|k∈{i,j}

is of size |Ai| × |Aj | and Mk : Ai ×Aj 7→ ℜ maps every pos-
sible joint-action to a payoff for agent k. Ai and Aj are
the corresponding set of actions available to agents i and j
respectively. A strategy πi of agent i is a probability distri-
bution over i’s action set, i.e., πi ∈ ∆Ai. The probability of

371

playing action j following the policy πi is given by πi(j). As
we consider two action per player bimatrix games, we use πi

to refer to the probability of playing the first action by i. A
pure strategy plays deterministically; any other strategy is
referred to as a mixed strategy.

Now we briefly review some definitions related to Markov
Decision Processes (MDP). An MDP M on a set of states
S and with action set A = {a1, . . . , ak, . . . , a|A|} is defined
by a transition function P and a reward function R. For each
state-action pair (s, a), a next-state distribution Ps,a(s′) gives
the probability of moving to state s′ when action a is taken
in state s. For each state-action pair (s, a), a reward dis-
tribution R(s, a) specifies the probability distribution on a
set of real numbers that can be achieved as reward given
action a is taken in state s. For our work, we assume that
M has a deterministic reward function. A policy π for M
is given by π : s 7→ ∆A. A value function for policy π in
the infinite horizon setting is given by V π : s 7→ ℜ where
V π(s) = E(

P∞
τ=1 γτ−1rτ |s, π) where rτ is the reward gen-

erated at the τ ’th time step, and 0 < γ < 1 is the discount
factor. An action-value function, which gives an estimate
of the utility of an action a at state s for a given policy π,
is given by Qπ(s, a) = R(s, a) + γ × Es′∼Ps,a(·)V

π(s′). An
optimal policy π∗ governing M , which yields the maximum
discounted return starting from any state s ∈ S, is given by
π∗ = arg maxπ V π. It can be shown that for any MDP there
exists a deterministic π∗. A generative model GM of M is a
randomized algorithm that, on input of a state action pair
(s, a), outputs R(s, a) and a state s′ where s′ is randomly
sampled according to the associated transition probability
function Ps,a(·). A generative model obviates the critical
issue of exploration in settings where experiences are irre-
versible. Generative models can be used as offline virtual
substitute of the real environment, allowing agents the op-
portunity to learn how to adapt in the virtual environment.

3. ADVERSARY INDUCED MARKOV DE-
CISION PROCESS (AIM)

For RGs, the dynamics of the system can often be modeled
as an MDP whose transition probabilities and reward func-
tions are determined by the model of the opponent. Hence
the name Adversary Induced MDP (AIM). Agent i’s action
set and strategy is given by Ai and πi respectively while
the opponent o’s action set and strategy is given by Ao and
πo. For a state st of the play, the next state st+1 and the
reward received by i can be determined by the current state
st, πo(st), and the action ai chosen by the agent i. We
aim at developing a universal approach that plays effectively
against opponents selected from a restricted class of popular
MAL algorithms. We focus on the class of MAL algorithms
which compute the strategy at a particular time step based
on the joint strategy played in the previous time step. If
the strategies of such players are observable, their play can
be modeled as an AIM. The assumption of agents observing
the opponent’s previous time step strategies is quite practi-
cal in such settings and the convergence guarantees of most
of these algorithms to Nash Equilibrium in self-play hinges
on this assumption [1, 3, 10].

We now formally present the AIM model (M) for the
above setting. The state space S of M is given by {0, 1} ×
∆Ao (Note, i plays deterministic strategies). The action
space A of M is Ai. The transition probability of M is

given by Ps,ai(·) where P<πt
i
,πt

o>,ai
(< πt+1

i , πt+1
o >) = 1 if

D(< πt
i , π

t
o >) = πt+1

o and πt+1
i (ai) = 1, or 0 otherwise. ai ∈

Ai is the action played by i , πt
i ∈ {0, 1}, πt

o, π
t+1
o ∈ ∆Ao

and D : {0, 1} × ∆Ao 7→ ∆Ao is the decision function used
by the opponent MAL algorithm in deciding the strategy at
step t + 1. The reward function is given by R(< πt

i , π
t
o >

, ai) = Eao∼D(<πt
i
,πt

o>)Mi(ai, ao). The reason why R is an

expectation over o’s strategy and not the true Mi(ai, ao)
obtained as reward at step t is explained in next section.

4. REINFORCEMENT LEARNING IN JOINT
STRATEGY STATE SPACE

The problem of computing the optimal policy governing
M boils down to a reinforcement learning problem of com-
puting the optimal policy in continuous joint-strategy state
space. We assume the availability of a generative model GM

governing M which the learner can use for computing effi-
cient policies against the opponent. We use a linear gradient-
descent version of Watkin’s Q(λ) with Radial Basis function
(RBF) approximation method [11] for encoding features to
compute Q-values over the continuous state space. An RBF
(representing a feature i) is represented by a Gaussian func-
tion gi with mean µi and standard deviation σi. So the value
of the feature at a particular point s ∈ S can be computed

using the following function gi(s) = e
−

||s−µi||
2

2σ2

i . We use the
Euclidean distance metric in computing the norm value in
the above equation. An important property of RBF encod-
ing of features is that the function generated is non-linear,
continuous and differentiable over the state space which is
always the case for Q-values. The Q-value of a state s for
action a at time t is computed as Qt(s, a) =

PF

i=1 wt
igi(s),

where F is the number of features, wt
i is the weight associ-

ated with feature i at iteration t. We use six features with
µ values respectively being (0, 0.25), (0, 0.50), (0, 0.75),
(1, 0.25), (1, 0.50) and (1, 0.75) with σ = 0.3. The reason
for considering features at the boundaries of i’s strategies
(πi ∈ {1, 0}) is because i always plays a deterministic strat-
egy since there always exists a deterministic π∗

i governing
GM. The learner will also maintain eligibility traces et

i for
each feature i [11]. Eligibility traces give a measure of the
impact that the current update would have on the feature
weights. The wi and ei updates at each iteration is based
on gradient descent on the Temporal Difference (TD) error
seen by the learner [11]. The TD error (δt) at a particular
iteration is given by

δt = rt+1 + γmaxa′∈AQt(st+1, a
′) − Qt(st, a) (1)

Weight vector, ~wt, and eligibility traces, ~et, are updated as
follows:

~wt+1 = ~wt + αδt ~et (2)

~et+1 = γλ~et +
∂Qt+1(st+1, a)

∂ ~wt+1
= γλ~et + ~g(st+1). (3)

Note that Equations 1, 2 and 3 require that the learner
knows its current state st+1 to make an update at t + 1.
However, the learner knows about st+1 at time t+2 when o
reveals its t +1 step strategy. Thus the updates are delayed
by one time step and the learner can use the expected re-
ward over the true reward in Equation 1 to compute the TD
error. We use ǫ-greedy exploration where the player takes a

372

Q1
Q2

 0
 0.2

 0.4
 0.6

 0.8
 1

Player strategy
 0 0.2 0.4 0.6 0.8 1 Learner strategy

 0

 20

 40

 60

 80

 100

Q Value

Figure 1: Converged Q-values for IGA in the game
given by Table 1(a).

random action with probability ǫ and takes the greedy ac-
tion, determined by the current Q-values, with probability
1− ǫ. Off-policy (Q(λ)) bootstrapping combined with linear
function approximation in continuous state spaces can lead
to divergence [11]. We use decaying ǫ and α with time leads
to asymptotic convergence of wis (Q-values) in the limit.

We focus on Gradient Ascent learning [1, 3, 4, 10, 12]
opponents. For most learners like the IGA, WoLF-IGA and
ReDVaLeR [1], the dynamics are completely Markovian with
the next step strategy depending completely on the previ-
ous time step joint-strategy and hence they can be exactly
modeled and learned using AIM. For others like PHC and
WoLF-PHC, however, there are extra factors which makes
the process non-Markovian. Now we show how they can be
modeled or approximated as Markovian learners.

4.1 Incremental Gradient Ascent Learner (IGA)
IGA [10] converges to Nash equilibrium in self-play for a

restricted class of two-action two-player games and for the
other games, converges to an average payoff that can be
sustained by some Nash equilibrium of the repeated game.
For a bimatrix game given by

G =

„

r11, c11 r12, c12

r21, c21 r22, c22

«

(4)

the decision function D of an IGA player 1 can be formu-
lated as D(< πt

i , π
t
o >) = πt+1

o = πt
o +η× (πt

iu
′− (c22−c12))

where u′ = (c11 + c22) − (c12 + c21), η is the learning rate.
u is defined as (r11 + r22) − (r12 + r21). It is evident that
the learner’s next time step strategy πt+1

o is completely de-
termined by the current step joint strategy (πt

i , π
t
o). Hence

the learner is Markovian and can be modeled using an AIM
in the continuous state space S.

Table 1(a) presents a game where u′ = 0. For the player 2,
action A1 strictly dominates action A2. The player learns
in episodes spanning 1000 iterations. We initialize ǫ to 0.8
and decay it exponentially over successive iterations. The ǫ
value is not refreshed for each episode as the intention for
each episode is to learn from the knowledge gathered from

1Gradient ascent learner is the column player in all cases.
2Hereafter we refer to the AIM learner as player and the
opponent learning algorithm as learner.

(a) Game with u′ =
0

A1 A2
A1 (4,0) (4,0)
A2 (0,0) (0,0)

(b) PD

A1 A2
A1 (3,3) (1,4)
A2 (4,1) (1,1)

Table 1: Payoff matrices of two games.

Q values for the two actions of Player

Q1
Q2

 0
 0.2

 0.4
 0.6

 0.8
 1

Player strategy 0

 0.2

 0.4

 0.6

 0.8

 1

Opponent strategy

 0
 5

 10
 15
 20
 25
 30
 35
 40

Q Value

Figure 2: Converged Q-values of IGA in Prisoner’s
Dilemma

previous episodes. We use η=0.01 for the IGA opponent.
We observe that the TD error 3 falls sharply and reaches
zero in the third episode of play. The reason for such fast
convergence of TD error is because the learner is stationary.
As u′ = 0 and c22 = c12 = 0, πt+1

o = πt
o, ∀t. The converged

Q-values for the two actions of player is shown in Figure 1.
It is evident that the player prefers playing A1 over A2 as
the Q-value of A1 dominates the Q-value for A2 over the
entire state space S. Hence the player has learned to play
optimally against the learner.

We next consider the game of PD (Table 1(b)). IGA con-
verges in self-play to the single stage Nash Equilibrium of
playing (A2, A2) repeatedly. For this game, action A2 dom-
inates action A1. As u′ = 0, c22 = 2, c12 = 1, D for the
learner is given by D(< πt

i , π
t
o >) = πt+1

o = πt
o − η. So

the update to the learner’s strategy is independent of the
player’s strategy and the probability of playing A2 increases
with each iteration until it converges to 1. The TD error
never converges to 0, but oscillates steadily about 0.5 which
is enough to ensure that the Q-value of playing A2 dom-
inates that of playing A1 over the entire S (Figure 2 for
the converged Q-values in the case of PD). Hereafter we use
the term AIM-play to refer to the play after the player has
learned the AIM.

As our third game of interest, we refer to the popular
Chicken game (Table 2(a)). The game has three Nash equi-
libria: two in pure strategies, sustaining the outcomes (4,2)
and (2,4), and one in mixed strategies where the players
play each of their actions with equal probability with the
corresponding expected payoff of 2.5 for each agent. The
two pure strategy Nash equilibriums generate pareto-optimal

3TD error refers to the on-policy TD error, i.e, the TD error
over states visited by the ensuing policy.

373

outcomes while the outcome generated by the mixed strat-
egy Nash equilibria is pareto dominated by the (3,3) out-
come. Note that an outcome is pareto-optimal if for all
other outcomes one player is better off and the other player
worse off compared to this outcome. >From Table 2(a)

Q values for the two actions of Player

Q1
Q2

 0
 0.2

 0.4
 0.6

 0.8
 1

Player strategy 0

 0.2

 0.4

 0.6

 0.8

 1

Opponent strategy

 0

 10

 20

 30

 40

 50

 60

Q Value

Figure 3: Converged Q-values of IGA in Chicken
Game

u′ = −2, c22 = 1, c12 = 2, D for the learner is given by
D(< πt

i , π
t
o >) = πt+1

o = πt
o + η(−2πt

i + 1). The probability
of the learner playing A1 increases for πt

i < 0.5 and vice
versa. Of all the Nash outcomes, the outcome (4,2) is most
acceptable to the player. The objective behind AIM learning
would be to derive a strategy that would force the learner to
play A1 so that the player can keep playing A2 from there
onwards, producing a Nash equilibria with an outcome of
(4,2). The optimal strategy for the player in this case would
be to continually play A2, which will lead the learner to
climb the policy space towards playing A1 and thereafter
keep repeating that action. Figure 3 shows the converged
Q-values for the player. For most of S, A2 is the dominant
strategy showing that the player has learned to play the op-
timal strategy. For a small part of S (πt

o < 0.2), A1 is the
dominant action. If the play starts in this part of the state
space, it converges to the other Nash equilibrium of (2,4)
which is more beneficial to the learner. The loss of opti-
mality in this situation can be attributed to the error in the
convergence of wi’s over the episodes.

4.2 WoLFIGA
Bowling and Veloso further extended the convergence prop-

erties of IGA using the WoLF principle [3]. They showed
that the use of a variable learning rate does in fact guarantee
convergence to a unique Nash equilibrium strategy profile in
all 2 × 2 general sum games. The proof follows the conver-
gence proof presented by Singh and colleagues but differs in
one special case [3]. Each player selects a Nash equilibrium
(no requirement is made that the players select the same
Nash equilibrium). If αe and βe are the respective halves of
the Nash equilibrium that the players select, then the two
learning rates used by the learner is given by,

lto = lmin if Vo(π
t
i , π

t
o) > Vo(π

t
i , βe)

= lmax otherwise.

(a) Chicken game
(uu′ > 0)

A1 A2
A1 (3,3) (2,4)
A2 (4,2) (1,1)

(b) Matching Pennies
game (uu′ < 0)

A1 A2
A1 (1,-1) (-1,1)
A2 (-1,1) (1,-1)

Table 2: Payoff matrices of two games

The decision function for he learner can be stated as D(<
πt

i , π
t
o >) = πt+1

o = πt
o + lto × (πt

iu
′ − (c22 − c12)) where

lto ∈ {lmin, lmax}. As the value of lto is completely depen-
dent on πt

i , πt
o and the fixed constant βe, WoLF-IGA is also

completely Markovian and can be modeled as an AIM in
S. The behavior of WoLF-IGA is similar to IGA in all the
cases discussed above except one. Hence we focus on only
this special case when uu′ < 0 and illustrate this with the
game of Matching Pennies (Table 2(b)).

Q values for the two actions of Player

Q1
Q2

 0
 0.2

 0.4
 0.6

 0.8
 1

Player strategy 0

 0.2

 0.4

 0.6

 0.8

 1

Opponent strategy

-10

-5

 0

 5

 10

Q Value

Figure 4: Converged Q-values of WoLF-IGA in
Matching Pennies

Figure 4 shows the converged Q-values in this case. The
learner has D(< πt

i , π
t
o >) = πt+1

o = πt
o + lto(−4πt

i + 2). Let
the first random action chosen by the player be A1 and the
initial strategy chosen by the opponent be π1

o > 0.5. The
D function of the opponent prompts the opponent to move
towards playing action A2 . However as soon as πt

o < 0.5,
the player switches to playing A2 . The opponent then starts
moving towards playing A1 . Hence the opponent’s play con-
verges asymptotically to πt

o = 0.5 while the player switches
between action A1 and A2 in successive iterations. The ex-
pected reward for the player thus remains 0. This is also the
reward value sustained by the Nash equilibrium which is also
the optimal outcome achievable by the player under these
conditions. For this special case and against both IGA and
WoLF-IGA, the AIM-play does not converge to the Nash
equilibrium but maintains an average reward sustained by
the Nash equilibrium. It is important to note that the pur-
pose of AIM play is not to converge to an equilibrium but
to obtain the optimal outcome for the player. Hence such a
result is consistent with the goal of the AIM learner.

We now present another interesting result corroborating
the usefulness of using an AIM learner. Figure 5 shows the
expected reward achieved in AIM-play and self-play for all

374

 0

 1

 2

 3

 4

 5

 6

Cuban M
issile Crisis

Iron Hostage Crisis
Total Conflict

Polish Crisis
Ham

let Claudius conflict

Prisoners Dilem
m

a
Vietnam

 Bom
bing

Pursuit of Israelites
Revelation

Sam
son and Dililah

Chicken

re
w

ar
d

Games

Rewards Generated

AIM play
self play

Figure 5: Result of AIM-play and self-play of WoLF-
IGA for all 57 structurally distinct 2 × 2 games.

57 structurally distinct 2× 2 games with ordinal payoffs [5].
There are 78 structurally distinct 2×2 strict ordinal games in
which the two players can strictly rank the four states from
best to worst. Of the 78 games, 21 are no-conflict games
where the players mutually agree on the best outcome. We
use the other 57 games for evaluation of our approach as
these are the more interesting games where the players dis-
agree over the most preferred outcome. Each point has been
generated from 100 different instantiations of the starting
state (joint strategy). It is evident from the plot, that AIM-
play does better than self-play in most occasions as it targets
the optimal outcome and not an equilibrium. In particular,
AIM-play especially outperforms self-play in the rightmost
end of the game spectrum. The reason for this is that the
last four games in the spectrum have multiple Nash equilib-
ria. While WoLF-IGA can converge to any Nash equilibrium
depending on the starting strategy pair, AIM-play always
searches for the best outcome (possibly the most favorable
Nash equilibrium to the player). For example, in the case of
the Chicken game, self-play has an average payoff close to 2,
while in AIM-play, the expected reward is close to 4, which
suggests that the player was successful in guiding the play to
the pareto dominant (4,2) outcome in almost all occasions.
The results for IGA are similar in nature and omitted due
to space constraints.

4.3 ReDVaLeR
ReDVaLeR[1] was the first algorithm in MAL literature

which converges to the Nash equilibrium policy of the one-
shot game in repeated self-play and achieves no-regret pay-
off against any opponent. It uses Replicator rule for pol-
icy update with a WoLF-like modification and is named
ReDVaLeR (Replicator Dynamics with a Variable Learning
Rate). Like WoLF, ReDVaLeR too uses a variable learning
rate which depends on the mutual Nash equilibrium profile
chosen by the players. There is no restriction that the play-
ers choose the same Nash equilibrium profile. So if βe be the
Nash equilibrium profile chosen by the learner, the learning

rate at each iteration is determined by,

lto(j) = 1 if αt is fixed,

= 1 + σ if πt
o(j) < βe(j),

= 1 − σ if πt
o(j) ≥ βe(j), (5)

where 0 < σ << 1.The decision function of the learner
can be stated as D(< πt

i , π
t
o >)(j) = πt+1

o (j) = πt
o(j) +

ηπt
o(j)[l

t
o(j)Vo(j, π

t
i)−

P

k lto(k)πt
o(k)Vo(k, πt

i)],where the lto(k)’s
are determined by Equation (5). It is obvious that πt+1

o is
completely dependent on πt

i , πt
o, and lto. Since lto’s are also

completely dependent on πt
o and the constant βe, the update

is Markovian and hence can be learned using an AIM in S.
The results of ReDVaLeR in 57 structurally distinct 2 × 2
games is similar to that of WoLF-IGA and hence omitted.

4.4 PHC and WoLF-PHC
Bowling et al. proposed a variant of the Q-learning al-

gorithm called Policy Hill Climbing (PHC) that performs
hill-climbing on the policy space and can play mixed poli-
cies [4]. The decision function of PHC learner can be stated
as (Qo refers to the Q estimates maintained by the learner
and should not be confused with Q, which is for the player),

D(< πt
i , π

t
o >)(j) = πt+1

o (j) = πt
o(j) + η if

j = argmaxa′∈Ao
Qo(a′),

= πt+1
o (j) = πt

o(j) − η otherwise.(6)

The learner uses some exploration to choose the action to
be taken at each time step. From Equation (6) it is evident
that the process is not Markovian in S as πt+1

o depends
not only on πt

o but also on the Qo-values at t time step. For
small values of η and due to the continuous and differentiable
nature of Q-values, we can assume that the Q-values would
be close for πt+1 ∈ {< πt+1

i , πt
o − η >, < πt+1

i , πt
o + η >}.

For small values of η, the bootstrapping update given by
Equation 1 should be largely similar for both possible values
of πt+1. Hence the dynamics can be approximated by a
Markovian process in S.

The decision function for WoLF-PHC is similar except
now the learning rate is given by,

η = lmin if
X

j

πt
o(j)Q(j) >

X

j

π̂t
o(j)Q(j),

= lmax otherwise,

where π̂t
o is the average policy played by the learner un-

til time t. π̂t
o depends on all πt′

o , t′ ≤ t. WoLF-PHC is
not a Markovian learner due to the same reasons as PHC
and additionally due to the dependence on π̂t

o. However
for small values of lmin and lmax, it can be approximated
by a Markovian learner in S. Note that neither PHC nor
WoLF-PHC needs to observe the opponent player’s strategy
to compute their own strategy and hence they do not also
need to disclose their own strategy. In our experiments we
have assumed that the player observes the strategies played
by the learner in the previous step. However, if they are not
visible, then the player can estimate the opponent’s past
step strategy through a weighted average of the empirical
distribution of the opponent’s play with more weight given
to recent actions to account for changing opponent strategy.

Figure 6 gives the average reward obtained when learn-
ers play head to head. The results are based on average
reward received by the row player (AIM player) when faced

375

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

PHC

W
oLFPHC

IG
A

W
oLFIG

A

ReDVaLeR

BR

E
xp

ec
te

d
R

ew
ar

d

Learning algorithms

AIM
PHC

WoLFPHC
IGA

WoLFIGA
ReDVaLeR

BR

Figure 6: Result of learners playing head-to-head

against a column player which employs one of the learn-
ing algorithms discussed in this section. The results have
been averaged over all 57 structurally distinct 2 × 2 games
with each game run for 100 different instantiations of initial
strategies. We introduce the Best Response (BR) opponent,
which deterministically plays the best response to its ad-
versary’s last step strategy, for benchmarking. Most of the
learners do very well in self play (apart from BR which is
not really a MAL algorithm). Some do very well against
similar learners, e.g., ReDVaLeR and WoLF-PHC perform
well against each other due to both following almost similar
mechanisms involving variable learning rate. However AIM
learner does better than all other learners against all of these
learners. This result highlights the overarching motivation
of our work of developing a universal learning scheme that
does well against all possible MAL based on gradient ascent
approaches.

5. MODEL BASED AIM LEARNING
The learning proposed in Section 4 assumed the presence

of a generative model that models the underlying MDP that
the player would face given an opponent. The assumption
of the existence of a generative model constrains the appli-
cation of the AIM learning approach in real environments.
Learning to play optimally against any practical opponent in
real time is, however, infeasible as there can be innumerable
opponent types which cannot be meaningfully classified into
a finite set of classes. For example, consider the Tit-for-Tat
and the Grim strategies for playing the Prisoner’s Dilemma
game(Table 1(b)). A1 and A2 are commonly referred as co-
operate and defect actions. The Tit-for-Tat agent plays the
action chosen by the opponent in the previous round. While
the Grim strategy agent will defect forever if its opponent
defected even once. It is impossible to learn to play opti-
mally against both these opponents in one shot as the learner
has to defect once just to differentiate between them. One
defection, however, is sufficient to spoil the learner’s chance
of achieving the cooperate-cooperate payoff against the grim
strategy opponent. A generative model gives the learner the
chance to learn against an opponent offline through repeated
episodes of learning. In this section we present a framework

that helps the learner to build a model online and then use
it to learn a near optimal strategy offline for future play
against identical opponents. We now present a motivating
scenario where our framework can be applied in practice and
then present the framework.

5.1 Model Based AIM Framework For Strate-
gic Interactions (MB-AIM-FSI)

A motivating example for such a scenario is a market with
multiple sellers where the buyer is interested to learn an op-
timal negotiation strategy for buying items. The play be-
tween the buyer and seller can be modeled as one of the 57
structurally distinct games discussed before. Chicken game
is a very popular market game where the two parties try to
pressurize each other until one chickens out. The buyer ne-
gotiates in turn with different sellers and learns from these
experiences. It is expected that the sellers would have sim-
ilar negotiation strategies and the learner, through efficient
mining of his knowledge of past interactions, can build a
set of possible models that the sellers employ in choosing
their strategies. These models can then be used later by
the buyer to choose effective negotiation strategies in future
negotiations. In our case, the sellers choose from a fixed
distribution of the set of gradient ascent learning algorithms
discussed in the previous section. For a fixed set of runs at
the start of each cycle of interaction with a seller (episode),
the buyer tries to map the strategy employed by the seller to
one of its learned models. If it finds a matching model for its
current opponent, the buyer switches to playing the optimal
strategy response to that model to maximize its benefit in
the ensuing episode.

Algorithm 1 gives an outline of our approach towards
learning in setting discussed above. The framework cap-
tures learning in a repeated setting where an agent i gets to
interact with an opponent o ∼ O at each episode where O
represents a fixed distribution over the possible set of gra-
dient ascent opponents discussed in section 4. Phase 1 is
the exploration phase where i takes exploratory actions and
records each possible transition that o makes (steps 12-13).
Transition in this case is a tuple < πprev

i , πprev
o , πcurr

o >
representing a decision made by o. Note that the model
an agent needs to learn of the opponent is its D function.
In Phase 2, i tries to map the recorded transitions to one
of its stored models (step 17). The method GetMLModel
gives the maximum likelihood (ML) model that could have
generated the transitions. However, if the probability of
the ML model fitting the transitions is below a threshold
κ, then null is returned. In such a case, a new model is
generated (step 19) else, the old model is updated with
the new set of transitions (step 21). Finally if the agent
has enough information of the model, it solves it offline us-
ing the SolveModel method (steps 22-23). The SolveModel
method approximates the D function of the opponent us-
ing an efficient supervised learning algorithm [8] over the
stored transition points, e.g., neural networks, Radial Ba-
sis functions, k-nearest neighbors, support vector machines,
etc. The SolveModel method treats the opponent model as
an AIM opponent and solves it through the approach dis-
cussed in Section 4. In the Learning /Exploration Phase 3,
i either chooses to exploit or continue learning the model.
If the model has already been solved, it chooses to exploit
(step 31); else it keeps learning (step 33). Learning in this
case refers to continuing in the learning task for that model

376

Algorithm 1: MB-AIM-FSI

begin
input : episodes, runs
πprev

o ← nil1

πprev
i ← nil2

πcurr
o ← nil3

Models ← nil4

while episode++ < episodes do5

o ← O6

run ← 07

model ← nil8

transitions ← nil9

while run++< runs do10

Phase1 (ExplorationPhase) :11

if run > 1 and run <12

EXPLORATION STEPS then
transitions ← transitions ∪13

< πprev
i , πprev

o , πcurr
o >14

Phase2 (ModelCheckingPhase) :15

if run = EXPLORATION STEPS then16

model ←17

GetMLModel(Models, tarnsitions)
if model = null then18

model ←19

GenerateNewModel(transitions)

else20

model ← UpdateModel(transitions)21

if IsSolvableModel(model) then22

model ← SolveModel(model)23

Models ← Models ∪ model24

Phase3 (Learning/ExploitationPhase) :25

πprev
o ← πcurr

o26

πprev
i ← πcurr

i27

πcurr
o ← OpponentAlgorithm(πprev

i , πprev
o)28

if run > EXPLORATION STEPS and29

IsSolvedModel(model) then30

πcurr
i ←31

GetOptimalAction(model, πprev
i , πprev

o)

else32

πcurr
i ←33

PlayerAlgorithm(model, πprev
i , πprev

o)

end

through the entire episode and gathering more information
(transitions) about the model. This entire flow is captured
in the PlayerAlgorithm and hence its specifics are the same
as that of an AIM learner. Note the Player Algorithm is an
on-line AIM learner leading to good initial Q-estimates for
the off-line SolveModel method. When it is time to solve the
model (step 23), the framework just loads all the learned in-
formation till date about the model to solve it comprehen-
sively. The PlayerAlgorithm implementation captures the
important issue of exploitation while exploration in the Ex-
ploration phase. After sufficient number of episodes when
the framework has seen ∀o ∈ O, random exploration over
the EXPLORATION STEPS number of steps would be
wasteful. Thus the problem boils down to tracking the num-
ber of episodes after which a random exploration would be

wasteful and then devising a mechanism that exploits well
together with generating efficient transitions that help in
recognizing the correct model. We tackle the first part of
the problem through an update rule given by,

λ1 ← 1

λt+1 ← λt + k × (avgmodelsgen − λt)

where λt is a probability estimate of observing a new model
at episode t, k ∈ (0 : 1) is a small positive constant, and
avgmodelsgen = numofmodelsgenerated

t
. As avgmodelsgen

approaches 0, λt tends to 0. The second part of the problem
is addressed by choosing an action that is Bayes optimal as
per all m ∈ Models. Hence the exploratory action at

τ at
time step τ of episode t (τ < EXPLORATORY STEPS)
is chosen using the following rule,

at
τ ← random action with probability λt

← choose argmaxa∈Ai

P

m∈Models Pr(m)Qa
m(·)

P

a∈Ai

P

m∈Models Pr(m)Qa
m(·)

with probability (1 − λt).

P r(m) is estimated as the number of visits to m until episode
t. The inputs to the Qa

m function for iteration τ are the past
step joint strategy, i.e., < πτ−1

i , πτ−1
o >.

5.2 Results
We experimented with a configuration where O consisted

of one instantiation each of WoLF-IGA, WoLF-PHC, and
ReDValeR. Note, O restricts the choice of a seller strategy in
the example scenario discussed in Section 5.1. The learning
rates of WoLF-IGA and WoLF-PHC (lmax and lmin) were
set at 0.01 and 0.005 respectively. For ReDVaLeR, both η
and σ was set at 0.1. The number of episodes of interactions
were set at 8000 with each episode spanning 100 runs. At
each episode, o is drawn randomly from O. To implement
the SolveModel method, a variation of the k-nearest neigh-
bor [8] algorithm was used. The joint-strategy state space S
was divided into eight zones (four zones each for πprev

i = 1
and 0 respectively, and for each πprev

i , πprev
o varied in the in-

tervals [0:0.25), [0.25, 0.50), [0.50, 0.75), [0.75, 1.00]). Each
transition is mapped into one of the intervals and is stored
if the density of the zone is below a fixed threshold and is
ignored otherwise. A model is assumed to be fully specified
and ready to be solved offline when all the zones for the
model have the desired density d. An unknown transition
can then be predicted by mapping it into one of the zones
and taking the weighted majority using the L2 norm of all
the points in the zone. This is a fast efficient representation
of the learned model which has a polynomial space complex-
ity in 1

d
and the number of zones. The prediction has a run

time complexity of O(1
d
).

Henceforth we would refer to the components of O as do-
main level learners. Figure 7 shows a comparative study
of the average reward received over all the 57 structurally
distinct 2 × 2 games of the MB-AIM-FSI framework with
respect to the domain level learners as the default strategy
for player i. From the plot it is evident that MB-AIM-FSI
framework generates higher average reward in most cases
w.r.t the domain level learners. What is more interesting
is that the MB-AIM-FSI framework has lower variation of
average reward over all the 57 games while the domain level
learners show a high fluctuation over the entire spectrum.
This observation corroborates the claim that the MB-AIM-
FSI framework is successful in modeling and identifying a

377

 1

 2

 3

 4

 5

 6

Cuban M
issile Crisis

Iron Hostage Crisis
Total Conflict

Polish Crisis
Ham

let Claudius conflict

Prisoners Dilem
m

a
Vietnam

 Bom
bing

Pursuit of Israelites
Revelation

Sam
son and Dililah

Chicken

re
w

ar
d

Games

Rewards Generated

MB-AIM-FSI
WOLFIGA

ReDVaLeR
WOLFPHC

Figure 7: Result against domain-level opponents.

 1

 2

 3

 4

 5

 6

Cuban M
issile Crisis

Iron Hostage Crisis
Total Conflict

Polish Crisis
Ham

let Claudius conflict

Prisoners Dilem
m

a
Vietnam

 Bom
bing

Pursuit of Israelites
Revelation

Sam
son and Dililah

Chicken

re
w

ar
d

Games

Rewards Generated

MB-AIM-FSI
AIM(WOLFIGA)

AIM(ReDVaLeR)
AIM(WOLFPHC)

Figure 8: Result against AIM learners trained
against domain level opponents.

variety of opponents and derive appropriate responses for a
wide range of games. Figure 8 presents a comparative study
of the average reward received over all the 57 structurally
distinct 2×2 games by the MB-AIM-FSI framework in com-
parison to the strategies learnt by an AIM learner against
a generative model of each of the domain level learners (3
benchmarks each being an AIM learned strategy against one
of the three domain level learners). Once again we observe
that the framework generates stable strategies over the en-
tire spectrum. The AIM strategies show a high fluctuation,
the reason being they are strategies adaptive to one of the
components of O and hence have little guarantees of pro-
ducing high average rewards consistently. However, in some
cases they generate high average reward because fortuitously
the approximation is an effective one. We believe for larger
dimensional games, the chances of such accidental high re-
ward would decrease significantly.

6. FUTURE WORK AND CONCLUSIONS
We developed a technique for playing optimally against

a class of MAL algorithms that perform gradient ascent in
their respective strategy spaces. We evaluated a number of
well-known MAL algorithms and showed how each can be

modeled as a Markov Decision Process in the joint strategy
space. We then used reinforcement learning using a function
approximation scheme (RBF in this case) to respond to such
models assuming the availability of a generative model that
models the underlying MDP. We then presented a framework
that eliminates the need of a generative model and instead
builds a model of the opponent online and which it uses
later to compute an optimal strategy for future plays. We
analyzed our approach on a market situation where sellers
adopt one of several known MAL algorithms. Our proposed
MB-AIM-FSI framework was able to learn models from in-
teracting with such sellers, develop appropriate responses
and later was able to use such responses gainfully by cor-
rectly identifying the seller strategies in future interactions.
For our future work we would like to run our framework
in larger dimensional games and with larger set of oppo-
nents. Also it would be interesting to map opponents as
< game, learner > pairs. A learner in one game may have
similar behavior with another learner in another game. A
strategic player which learns this commonality can transfer
learning between the above games.

Acknowledgment: A DOD-ARO Grant #W911NF-
05-1-0285 partially supported this work. We would
also like to thank Peter Stone for his valuable feed-
back.

7. REFERENCES
[1] B. Banerjee and J. Peng. A unifying approach to

performance and convergence in online multiagent learning.
In AAMAS ’06: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems,
pages 798–800, New York, NY, USA, 2006. ACM Press.

[2] M. Bowling. Convergence and no-regret in multiagent
learning. In Neural Information Processing Systems 17.
MIT Press, 2005.

[3] M. Bowling and M. Veloso. Convergence of gradient
dynamics with a variable learning rate. In Proc. 18th
International Conf. on Machine Learning, pages 27–34.
Morgan Kaufmann, San Francisco, CA, 2001.

[4] M. H. Bowling and M. M. Veloso. Rational and convergent
learning in stochastic games. In IJCAI, pages 1021–1026,
2001.

[5] S. J. Brams. Theory of Moves. Cambridge University Press,
Cambridge: UK, 1994.

[6] Y. Chang and L. Kaelbling. Playing is believing: the role of
beliefs in multi-agent learning. In NIPS-2001, 2001.

[7] V. Conitzer and T. Sandholm. Awesome: A general
multiagent learning algorithm that converges in self-play
and learns a best response against stationary opponents.
pages 83–90, 2003.

[8] T. Mitchell. MachineLearning. McGraw Hill, 1997.

[9] R. Powers and Y. Shoham. Learning against opponents
with bounded memory. In IJCAI, pages 817–822, 2005.

[10] S. Singh, M. Kearns, and Y. Mansour. Nash convergence of
gradient dynamics in general-sum games. pages 541–548.

[11] R. S. Sutton and A. G. Barto. In Reinforcement Learning.
MIT Press, 1998.

[12] C. J. C. H. Watkins and P. D. Dayan. Q-learning. Machine
Learning, 3:279 – 292, 1992.

378

