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ABSTRACT
Coalition formation is an important capability for automated
negotiation among self-interested agents. In order for coali-
tions to be stable, a key question that must be answered is
how the gains from cooperation are to be distributed. Coali-
tional game theory provides a number of solution concepts
for this. However, recent research has revealed that these
traditional solution concepts are vulnerable to various ma-
nipulations in open anonymous environments such as the
Internet. To address this, previous work has developed a so-
lution concept called the anonymity-proof core, which is ro-
bust against such manipulations. That work also developed
a method for compactly representing the anonymity-proof
core. However, the required computational and representa-
tional costs are still huge.

In this paper, we develop a new solution concept which we
call the anonymity-proof Shapley value. We show that the
anonymity-proof Shapley value is characterized by certain
simple axiomatic conditions, always exists, and is uniquely
determined. The computational and representational costs
of the anonymity-proof Shapley value are drastically smaller
than those of existing anonymity-proof solution concepts.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence - Multiagent systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Theory, Economics
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1. INTRODUCTION
Coalition formation is an important capability for auto-

mated negotiation among self-interested agents. In order for
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coalitions to be stable, a key question that must be answered
is how the gains from cooperation are to be distributed.
Coalitional game theory provides a number of solution con-
cepts for this, such as the Shapley value, the core, the least
core, and the nucleolus. Some of these solution concepts
have already been adopted in the multiagent systems litera-
ture [1, 2, 3, 4, 8, 10]. Besides being of interest to the game-
theory and multiagent systems research communities, the
growth of Internet and electronic commerce has expanded
the application areas of coalitional game theory. For exam-
ple, consider a large number of companies, some subsets of
which could form profitable virtual organizations that can
respond to larger or more diverse orders than an individual
company can. The Internet makes forming such virtual or-
ganizations much easier, but the companies must agree on
how to divide the profits among themselves.

However, the authors have pointed out that existing game-
theoretic solution concepts have limitations when applied to
open anonymous environments such as the Internet [9]. In
such environments, an agent can use multiple identifiers (or
false names) to pretend to be multiple agents. Alternatively,
multiple agents can collude and pretend to be a single agent.
Furthermore, an agent might try to hide some of its capabili-
ties (or skills). These manipulations are virtually impossible
to detect in open anonymous environments, and thus present
a serious vulnerability in such environments.

In our prior research, we developed a new solution con-
cept called the anonymity-proof core, which is robust against
these manipulations [9]. However, the anonymity-proof core
and other similar solution concepts have one serious lim-
itation, i.e., the representation size of the outcome func-
tion requires space exponential in the number of agents and
skills. In our more recent research [6], we have developed
a method for compactly representing the anonymity-proof
core (and other anonymity-proof solution concepts), given
that the characteristic function is represented using a com-
pact language that explicitly specifies only coalitions that
introduce synergy [2]. However, the required representation
size is still exponential in the number of skills/agents in the
worst case. Also, the required computational cost of the
existing anonymity-proof solution concepts remains huge.

In this paper, we propose a new solution concept, which
we call the anonymity-proof Shapley value. The characteris-
tics of the anonymity-proof Shapley value are as follows.

• It is based on the Shapley value, one of the most im-
portant solution concepts for coalitional games [7].

• It is characterized by simple axiomatic conditions, i.e.,
Pareto efficiency, the weak-null property, weak-symme-
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try, weak-additivity, and best-approximate-monotonicity
(which is a stricter condition than anonymity-proofness).
It is the only solution concept that satisfies these ax-
iomatic conditions simultaneously.

• It always exists and is uniquely determined.

• We do not need to compute/store the entire outcome
function; we need to compute/store only the value di-
vision for the grand coalition, and we can calculate the
rest on demand.

The rest of this paper is organized as follows. First, we re-
view the model of coalitional games in an open, anonymous
environment (Section 2). Next, we summarize the main re-
sults of this paper (Section 3). Then, we give a series of the-
orems to explain why and how the axiomatic conditions of
the (traditional) Shapley value should be relaxed (Section 4).
Furthermore, we introduce a new axiomatic condition called
best-approximate-monotonicity (Section 5). Then, we give
our definition of the anonymity-proof Shapley value and
show how it is axiomatically characterized (Section 6). Next,
we discuss the computational/representational costs and pos-
sible variations of the anonymity-proof Shapley value (Sec-
tion 7). Finally, we show experimental results that illustrate
the discrepancy between the anonymity-proof Shapley value
and the traditional Shapley value (Section 8).

2. MODEL
Traditionally, value division in coalition formation is stud-

ied in characteristic function games, where each potential
coalition (that is, each subset X of the agents) has a value
w(X) that it can obtain. However, in an open anonymous
environment, the characteristic function by itself does not
give sufficient information to assess what manipulations may
be performed by agents. Previous research has introduced a
more fine-grained representation of what each agent brings
to the table, i.e., instead of defining the characteristic func-
tion over agents, the characteristic function is defined over
the skills that the agents possess [9].1

Definition 1 (characteristic function). A charac-
teristic function v : 2T → � assigns a value to each set of
skills S ⊆ T , where T is the set of all possible skills.

We denote by w the characteristic function defined over
agents and by v the characteristic function defined over
skills. For a given set of agents X, let SX =

S
i∈X Si, where

Si is agent i’s set of skills. Thus, w(X) = v(SX). Typi-
cally, both v and w are nondecreasing: adding more skills
or agents to a coalition never causes harm. We also assume
that the characteristic function v is zero-normalized, i.e., the
value of a single skill is zero.

We assume that the coalition and the value division (pay-
offs to agents) are established as follows.

• There exists a special agent whom we will call the
mechanism designer. The mechanism designer knows
T , the set of all possible skills,2 and v, the character-
istic function defined over T .

1The word “skills” should be interpreted broadly, e.g., they
may correspond to resources that the agents possess.
2We do not require that each skill in T is actually possessed
by some agent; the only thing that is required is that ev-
ery skill that an agent possesses is indeed in T . Therefore,
the mechanism designer really only needs to know an upper
bound on the set of skills possessed by the agents.

• If agent i is interested in joining a coalition, it declares
the skills it has to the mechanism designer.

• The mechanism designer determines the value division
among participants.

For this setting, the following three types of manipulation
by the agents have been identified: hiding skills, using false
names, and acting in collusion [9]. These manipulations take
the following forms, respectively:

• An agent i can declare that its skill set is S′
i ⊆ Si. It

is assumed that an agent cannot claim to have skills
that it does not have. Such a lie is detectable because
the lie will be exposed if the agent is called on to apply
such skills.

• Agent i can use multiple identifiers and declare that
each identifier has a subset of the skills Si. Because
the skills are unique, two different identifiers cannot
declare that they have the same skill. Thus, a false-
name manipulation by agent i corresponds to a parti-
tion of Si into multiple identifiers.

• Multiple agents can collude, i.e., pretend to be a single
agent. They can declare that this agent’s skills are the
union of their skills.

Combinations of these manipulations are also possible, e.g.,
hiding skills in addition to one of the last two manipulations.

To prevent these manipulations, we assume that the coali-
tion and the value division (payoffs to agents) are established
in the following way.

• The mechanism designer determines an outcome func-
tion π(s, S) for all S ⊆ T and s ∈ S. π(s, S) deter-
mines the payoff to skill s when the total set of declared
skills is S.

• The payoff to agent i, who declared a set of skills Si,
is determined as

P
s∈Si

π(s, S).

By using this method, the latter two manipulations be-
come ineffective, since they do not change the payoffs to
skills. Thus, to develop a solution concept that is robust to
the manipulations under consideration, we only need to en-
sure that hiding skills is ineffective as well. This motivates
the following condition.

Definition 2 (anonymity-proof outcome function).

An outcome function π is anonymity-proof iff ∀Si,∀S′
i,∀S,

subject to S′
i ⊂ Si and Si ∩ S = ∅, P

s∈S′
i
π(s, S′

i ∪ S) ≤P
s∈Si

π(s, Si ∪ S) holds.

This condition means that if agent i has a set of skills Si,
while the other agents have a combined set of skills S, then,
for agent i, if it declares that it has only S′

i, which is a subset
of Si, then its payoff never increases.

The anonymity-proof core [9] is an anonymity-proof so-
lution concept that satisfies the Pareto efficiency and non-
blocking conditions described below.

Definition 3 (Pareto efficiency). A solution con-
cept is Pareto efficient iff the outcome function π that repre-
sents the solution concept satisfies the following condition:
∀S,

P
s∈S π(s, S) = v(S).
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Definition 4 (non-blocking condition). A solution
concept satisfies the non-blocking condition iff the outcome
function π that represents the solution concept satisfies the
following condition: ∀S,∀S′ ⊆ S,

P
s∈S′ π(s, S) ≥ v(S′).

Definition 5 (anonymity-proof core). An anonym-
ity-proof outcome function π is in the anonymity-proof core
iff it satisfies Pareto efficiency and the non-blocking condi-
tion.

Please note that for the second argument of the outcome
function π, we need to consider all possible combinations
(subsets) of skills. If the mechanism designer knows the set
of skills possessed by agents beforehand, then it suffices to
specify the value division for these skills. However, in our
setting, we assume the mechanism designer knows only an
upper bound on the set of skills. Thus, the mechanism de-
signer needs to prepare value divisions for all possible subsets
of skills. In general, for a game with a set of skills T , where
|T | = n, a traditional solution concept needs to specify the
value division only for T , while an anonymity-proof solution
concept has to specify value divisions for all subsets of T ,
the number of which is 2n − 1. Thus, the size of the (näıve)
representation of the outcome function is exponential in the
number of skills.

Although we have developed a method for compactly rep-
resenting the anonymity-proof core (and other anonymity-
proof solution concepts), under the assumption that the
characteristic function is represented using a compact lan-
guage that explicitly specifies only coalitions that introduce
synergy [6], the required representation size is still exponen-
tial in the number of skills/agents in the worst case. Also,
the required computational cost for calculating an outcome
function for these solution concepts is quite large.

3. SUMMARY OF MAIN RESULTS
In this section, we briefly describe the main technical re-

sults of this paper. The (traditional) Shapley value is char-
acterized by the following axiomatic conditions: Pareto ef-
ficiency, null property, symmetry, and additivity. Since the
Shapley value is not anonymity-proof [9], we need to in-
troduce weaker notions of these axiomatic conditions. In
Section 4, we will present a series of theorems to explain
why/how these axiomatic conditions should be relaxed.

Among these conditions, we will not relax anonymity-
proofness or Pareto efficiency, since these properties are ba-
sic requirements for any solution concept that is used in
open, anonymous environments.

Figure 1 illustrates the main results of this paper. First,
Theorem 1 shows that there exists no anonymity-proof and
Pareto efficient solution concept that satisfies the null prop-
erty. Thus, we need to relax the null property. We intro-
duce a new axiomatic condition called the weak-null prop-
erty (Figure 1 (i), on the left side).

However, Theorem 2 shows that there exists no anonymity-
proof and Pareto efficient solution concept that satisfies the
weak-null property and symmetry. Thus, we need to relax
symmetry as well. We introduce a new axiomatic condition
called weak-symmetry (Figure 1 (i), on the right side).

Furthermore, Theorem 3 shows that there exists no
anonymity-proof and Pareto efficient solution concept that
satisfies the weak-null property and additivity. Thus, we
need to relax additivity. We introduce a new axiomatic con-
dition called weak-additivity (Figure 1 (ii)).

Null 
Property

Anonymity-
Proofness

Symmetry

(i) Theorems 1 and 2

Weak-Null 
Property

Weak-
Symmetry

Additivity

(ii) Theorem 3

Weak-Null 
Property

Weak-
Additivity

Anonymity-proof Shapley Value
is the only element in this intersection

Weak-Null 
Property

Weak-
Additivity

Weak-
Symmetry

Best--
Approximate--
Monotonicity

Pareto Efficient and Anonymity-
Proof Outcome Functions

Pareto Efficient and Anonymity-
Proof Outcome Functions

Pareto Efficiency Pareto Efficiency

Best-
Approximate-
Monotonicity

Proportional 
Distribution

(iii) Theorems 5 and 6 (iv) Theorems 7 and 8

Figure 1: Summary of Main Results

In Section 5, we introduce a new axiomatic condition
called best-approximate-monotonicity. Theorem 6 shows
that this is a stricter condition than anonymity-proofness,
i.e., any solution concept that is best-approximate-monotone
is also anonymity-proof, but not vice versa (Figure 1 (iii)).
Also, Theorem 5 shows that an outcome function is best-
approximate-monotone if and only if the outcome function
distributes the value for each skill s ∈ S proportionally to
the value divisions in the grand coalition of all skills T (Fig-
ure 1 (iii)).

In Section 6, we introduce our newly developed solution
concept, i.e., the anonymity-proof Shapley value. Theo-
rems 7 and 8 show that the anonymity-proof Shapley value
is the only solution concept that satisfies Pareto efficiency,
best-approximate-monotonicity, the weak-null property, weak-
symmetry, and weak-additivity (Figure 1 (iv)).

4. IMPOSSIBILITY RESULTS
In this section, we present a series of theorems to ex-

plain why/how the axiomatic conditions that characterize
the Shapley value should be relaxed to obtain a concept
that is satisfactory for our setting.

First, we review the definition of the Shapley value [7].3

Definition 6 (Shapley value). Give an ordering o of
the set of skills T , let S(o, s) be the set of skills in T that
appear before s in the ordering o. Then, if the characteristic
function of this game is v, the Shapley value for skill s is
defined as

shv(s, T ) =
1

|T |! (
X

o

v(S(o, s) ∪ {s}) − v(S(o, s))).

3In the traditional definition, the Shapley value is defined
over agents. In this definition, it is defined over skills.
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The intuitive interpretation of the Shapley value is that it
averages the marginal value of a skill over all possible orders
in which the skills may join the coalition.

The Shapley value is the only solution concept that satis-
fies Pareto efficiency, the null property, symmetry, and ad-
ditivity. We now show the formal definitions of these prop-
erties.

Definition 7 (null skill). A skill s is a null skill in
a set of skills S, iff s satisfies the following condition:

• ∀S′ for which S′  s and S′ ⊆ S, we have v(S′) =
v(S′ \ {s}).

Definition 8 (null property). A solution concept sat-
isfies the null property iff the outcome function π that rep-
resents the solution concept satisfies the following condition:

• if s is a null skill in S, then π(s, S) = 0.

Definition 9 (symmetric skills). Two skills s, s′ ∈
S are symmetric in S iff s and s′ satisfy the following con-
dition:

• ∀S′ ⊆ S \ ({s, s′}), we have v(S′ ∪ {s}) = v(S′ ∪{s′}).
Definition 10 (symmetry). A solution concept satis-

fies symmetry iff the outcome function π that represents the
solution concept satisfies the following condition:

• if s and s′ are symmetric in S, then ∀S′ ⊆ S\({s, s′}),
it must be that π(s, S′ ∪ {s}) = π(s′, S′ ∪ {s′}) and
π(s, S′ ∪ {s, s′}) = π(s′, S′ ∪ {s, s′}) hold.

Definition 11 (additivity). A solution concept sat-
isfies additivity iff for any characteristic functions v, v1, and
v2, the corresponding outcome functions π, π1, and π2 that
represent the solution concept satisfy the following condition:

• if the characteristic functions v, v1, v2 satisfy v = v1 +
v2, then ∀S ⊆ T , it must be that ∀s ∈ S, π(s, S) =
π1(s, S) + π2(s, S).

The Shapley value satisfies Pareto efficiency, the null prop-
erty, symmetry, and additivity. However, as shown in [9] it is
not anonymity-proof. Let us consider the following example.

Example 1. Let there be three skills a, b, and c. Let the
characteristic function over skills be as follows.

• v({a, b}) = v({a, c}) = v({a, b, c}) = 1,

• v({a}) = v({b}) = v({c}) = v({b, c}) = 0.

Let us assume π is the outcome function for the Shapley
value. Then, π(a, {a, b, c}) = 2/3 and π(b, {a, b, c}) =
π(c, {a, b, c}) = 1/6. On the other hand, if there are only
two skills a and b, π(a, {a, b}) = π(b, {a, b}) = 1/2, since
these two skills are symmetric in {a, b}.

Thus, the Shapley value is not anonymity-proof, since
π(b, {a, b, c}) + π(c, {a, b, c}) = 1/3 < 1/2 = π(b, {a, b}).
More specifically, let us assume there are two agents 1 and
2, and 1 has a and 2 has b and c, respectively. If agent 2
declares it has b and c, it receives 1/3. On the other hand,
if it declares it has only b, then it receives 1/2. Thus, hiding
a skill is profitable for agent 2.

Since the Shapley value is not anonymity-proof, we need to
relax some of these axiomatic conditions if we are to obtain a
good solution concept. We now present a series of theorems
to explain why/how these axiomatic conditions should be
relaxed.

Theorem 1. There exists no solution concept that sat-
isfies the null property, Pareto efficiency, and anonymity-
proofness.

Proof. Let us assume some outcome function π satisfies
these three properties. Suppose there are four skills, T =
{a, b, c, d}, and that the characteristic function is defined as
follows:

• v(a, b, c, d) = 1,

• v(a, b, c) = v(a, b, d) = v(a, c, d) = v(b, c, d) = 1,

• v(a, b) = v(c, d) = 1,

• otherwise, v(S) = 0.

If only a, b and d are present, since d is a null skill in
this situation, π(d, {a, b, d}) = 0. From Pareto efficiency,
π(a, {a, b, d}) + π(b, {a, b, d}) = 1 must hold. Furthermore,
from anonymity-proofness, the following condition must hold.

π(a, T ) + π(b, T ) + π(c, T )

≥ π(a, {a, b, d}) + π(b, {a, b, d}) = 1 (1)

Similarly, we know that:

• When a, b, c are present, c is a null skill.

• When b, c, d are present, b is a null skill.

• When a, c, d are present, a is a null skill.

By using the same argument as before in each case, we ob-
tain the following conditions:

π(a, T ) + π(b, T ) + π(d, T ) ≥ 1 (2)

π(a, T ) + π(c, T ) + π(d, T ) ≥ 1 (3)

π(b, T ) + π(c, T ) + π(d, T ) ≥ 1 (4)

By adding inequalities 1-4 together and dividing by 3, we
obtain

P
s∈T π(s, T ) ≥ 4/3, which is impossible because the

payments must sum to 1 if π is Pareto efficient.

From Theorem 1, it follows that we need to introduce a
weaker version of the null property. We propose the follow-
ing new axiomatic condition, called the weak-null property.

Definition 12 (weak-null property). A solution con-
cept satisfies the weak-null property iff the outcome function
π that represents the solution concept satisfies the following
condition:

• if s is a null skill in T , then ∀S ⊆ T , π(s, S) = 0.

An outcome function π that satisfies the weak-null property
must always assign 0 to s if s is a null skill in the grand
coalition T . However, if s is a null skill in S ⊆ T , but s is
not a null skill in T , π(s, S) can be a positive value without
violating the weak-null property.

Next, we show that we need to relax symmetry and addi-
tivity. This is demonstrated by the following two theorems.

Theorem 2. There exists no solution concept that satis-
fies the weak-null property, symmetry, Pareto efficiency, and
anonymity-proofness.

Proof. Let us consider a characteristic function v that
is identical to the example in Theorem 1, except that a null
skill in grand coalition e is added Moreover, assume that
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π satisfies the conditions in the theorem. Suppose a, b, d, e
are present. Since e is a null skill in the grand coalition,
π(e, {a, b, d, e}) = 0 must hold. Also, since d and e are
symmetric in {a, b, d, e}, π(d, {a, b, d, e}) = 0 must hold.
From these facts, and the fact that π is Pareto efficient,
it follows that π(a, {a, b, d, e}) + π(b, {a, b, d, e}) = 1 must
hold. Also, from anonymity-proofness, the following condi-
tion must hold.

π(a, T ) + π(b, T ) + π(c, T )

≥ π(a, {a, b, d, e}) + π(b, {a, b, d, e}) = 1 (5)

Similarly, we know that:

• c and e are symmetric in {a, b, c, e}.
• b and e are symmetric in {b, c, d, e}.
• a and e are symmetric in {a, c, d, e}.

By using the same argument as before in each case, we ob-
tain the following conditions:

π(a, T ) + π(b, T ) + π(d, T ) ≥ 1 (6)

π(a, T ) + π(c, T ) + π(d, T ) ≥ 1 (7)

π(b, T ) + π(c, T ) + π(d, T ) ≥ 1 (8)

By summing inequalities 5, 6, 7, and 8, and dividing by 3,
we obtain π(a, T ) +π(b, T )+ π(c, T ) +π(d, T ) ≥ 4/3, which
is impossible because the payments must sum to 1 if π is
Pareto efficient.

Theorem 3. There exists no solution concept that satis-
fies the weak-null property, additivity, Pareto efficiency, and
anonymity-proofness.

Proof. Let v1 be identical to the characteristic function
in the example of Theorem 1. Also, let v2 be defined by
v2({a, b, c, d}) = 1, and v2(S) = 0 otherwise. Also, let v3

and v4 be defined as follows, so that v1 + v2 = v3 + v4 holds.

• v3({a, b, c, d}) = v3({a, b, c}) = v3({a, b, d}) = v3({a, b})
= 1, and v3(S) = 0 otherwise.

• v4({a, b, c, d}) = v4({a, c, d}) = v4({b, c, d}) = v4({c, d})
= 1, and v4(S) = 0 otherwise.

Let us assume that a solution concept with the properties
in the theorem exists, and let π1, π2, π3, π4 be the corre-
sponding outcome functions for v1, v2, v3, v4, respectively.
By additivity, π1 + π2 = π3 + π4 must hold.

We will show that π1 does not satisfy anonymity-proofness.
By Pareto efficiency, there exists at least one skill that ob-
tains positive value in the grand coalition. Without loss of
generality, we assume π1(c, {a, b, c, d}) > 0 holds.

Let us consider the case where a, b, c are present. By the
weak-null property, π3(c, {a, b, c}) = 0 must hold. From
this fact and the fact that π4(c, {a, b, c}) = 0 (by Pareto
efficiency), it must be that π1(c, {a, b, c}) = 0 holds, because
v1 +v2 = v3 +v4. Thus, because π1(c, {a, b, c}) = 0, we have
π1(a, {a, b, c}) + π1(b, {a, b, c}) = 1 by Pareto efficiency.

Now, let us consider the case where a, b, c, d are present.
By anonymity-proofness, π1(a, {a, b, c, d})+π1(b, {a, b, c, d})+
π1(d, {a, b, c, d}) ≥ π1(a, {a, b, c}) + π1(b, {a, b, c}) = 1 must
hold. However, since we assumed π1(c, {a, b, c, d}) > 0,
π1(a, {a, b, c, d}) + π1(b, {a, b, c, d}) + π1(d, {a, b, c, d}) < 1
must hold by Pareto efficiency. Thus, we have derived a
contradiction.

From theorems 2 and 3, it follows that we need to intro-
duce weaker notions of symmetry and additivity to obtain
a desirable solution concept. We propose the following new
axiomatic conditions.

Definition 13 (weak-symmetry). A solution concept
satisfies weak-symmetry iff the outcome function π that rep-
resents the solution concept satisfies the following condition:

• π assigns the same value to s and s′, if they are sym-
metric skills in T , i.e., ∀S ⊆ T \{s, s′}, π(s, S∪{s}) =
π(s′, S ∪ {s′}) and π(s, S ∪ {s, s′}) = π(s′, S ∪ {s, s′})
hold.

Definition 14 (weak-additivity). A solution concept
satisfies weak-additivity iff for any characteristic functions
v, v1, v2 (with corresponding outcome functions π, π1, and
π2), subject to v = v1 + v2, π(s, T ) = π1(s, T ) + π2(s, T )
holds.

5. BEST-APPROXIMATE-MONOTONICITY
In this section, we consider another condition called best-

approximate-monotonicity. It turns out that this is a stricter
condition than anonymity-proofness, i.e., any solution con-
cept that is best-approximate-monotone is also anonymity-
proof, but not vice versa.

To define best-approximate-monotonicity, we first define
α-approximate-monotonicity.

Definition 15 (α-approximate-monotonicity). An
outcome function π is α-approximate-monotone for S and
S′, subject to S ⊆ S′, iff maxs∈S π(s, S)/π(s, S′) = α holds.

Since we assume that the characteristic function v is mono-
tone, for all S ⊆ S′ ⊆ T , v(S) ≤ v(S′) holds. Thus, it is
intuitively natural to think that π(s, S)/π(s, S′) ≤ 1 can be
made to hold (i.e., 1-approximate-monotonicity). However,
the following theorem contradicts that.

Theorem 4. There exists no Pareto efficient solution con-
cept that satisfies 1-approximate-monotonicity for all S ⊆
S′ ⊆ T .

Proof. Let v be defined as follows.

• v({a, b, c}) = v({a, b}) = v({b, c}) = v({a, c}) = 1,
and v(S) = 0 otherwise.

Let us assume π satisfies 1-approximate-monotonicity and
Pareto efficiency. By Pareto efficiency, there exists at least
one skill that obtains a positive value in the grand coali-
tion. Without loss of generality, we assume π(a, T ) = ε > 0.
By Pareto efficiency, we have π(b, T ) + π(c, T ) = 1 − ε. By
1-approximate-monotonicity, we have π(b, {b, c}) ≤ π(b, T )
and π(c, {b, c}) ≤ π(c, T ). Thus, we have π(b, {b, c}) +
π(c, {b, c}) ≤ π(b, T ) + π(c, T ) = 1 − ε. However, this con-
tradicts the assumption that π is Pareto efficient, since it
implies that π(b, {b, c}) + π(c, {b, c}) must be 1.

Since there exists no solution concept that satisfies
1-approximate-monotonicity for all S ⊆ S′ ⊆ T as well as
Pareto efficiency, for some characteristic functions, α must
be greater than 1 for some S ⊆ S′.

Now, we define best-approximate-monotonicity.
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Definition 16 (best-approximate-monotonicity).

A Pareto efficient outcome function π is best-approximate-
monotone iff for all S ⊆ S′ ⊆ T , for any (other) Pareto ef-
ficient outcome function π′ for which π′(s, S′) = π(s, S′) for
all s ∈ S′, maxs∈S π(s, S)/π(s, S′) ≤ maxs∈S π′(s, S)/π′(s, S′)
holds.

In other words, a Pareto efficient outcome function π sat-
isfies best-approximate-monotonicity if for every S ⊆ S′ ⊆
T , π is απ,S,S′ -approximate-monotone, and there exists no
other Pareto efficient outcome function π′ that is the same
as π on S′ and that is α-approximate-monotone for the same
S ⊆ S′ ⊆ T for some α < απ,S,S′ .

Now, we show that best-approximate-monotonicity im-
plies anonymity-proofness. First, we identify a lower-bound
on α for S ⊆ S′ ⊆ T .

Lemma 1. If π satisfies Pareto efficiency and α-approxi-
mate-monotonicity for S ⊆ S′ ⊆ T , then α ≥
v(S)/

P
t∈S π(t, S′) holds.

Proof. Suppose π is Pareto efficient and α-approximate-
monotone for S ⊆ S′ ⊆ T . Since π is α-approximate-
monotone for S ⊆ S′ ⊆ T , for all s ∈ S, π(s, S) ≤ απ(s, S′)
holds. Thus,

P
s∈S π(s, S) ≤ α

P
t∈S π(t, S′) holds. By

Pareto efficiency,
P

s∈S π(s, S) = v(S).
Thus, v(S)/

P
t∈S π(t, S′) ≤ α holds.

Actually, this lower bound is tight, by the following lemma.

Lemma 2. There exists an outcome function π that is
Pareto efficient and απ,S,S′-approximate-monotone for all
S ⊆ S′ ⊆ T , where απ,S,S′ = v(S)/

P
t∈S π(t, S′). Specifi-

cally, π is defined as follows:

• Choose π(s, T ) for all s ∈ T so that Pareto efficiency
for T is satisfied.

• Define π(s, S), where S ⊂ T , as v(S) · π(s,T )P
t∈S π(t,T )

.

Proof. π is Pareto efficient because:P
s∈S π(s, S) = v(S) ×

P
s∈S π(s,T )

P
t∈S π(t,T )

= v(S). We now show

that π(s, S)/π(s, S′) = v(S)/
P

t∈S π(t, S′) holds. From
the definition of π, π(s, S) = v(S) · π(s, T )/

P
t∈S π(t, T ),

and π(s, S′) = v(S′) · π(s, T )/
P

t∈S′ π(t, T ) hold. Thus,

π(s, S)/π(s, S′) = v(S) ·
P

t∈S′ π(t,T )

v(S′)·Pt∈S π(t,T )
holds. Now, we

are going to show that
P

t∈S π(t, S′) = v(S′) ·
P

t∈S π(t,T )
P

t∈S′ π(t,T )

holds; this is the inverse of the fraction in the previous equa-
tion, and by replacing that fraction with 1/

P
t∈S π(t, S′),

the result is proved. By the definition of π, π(t, S′) =
v(S′) · π(t, T )/

P
t′∈S′ π(t′, T ) holds.

Thus,
P

t∈S π(t, S′) = v(S′)·Pt∈S π(t, T )/
P

t′∈S′ π(t′, T )
holds, and we are done.

Also, an outcome function is best-approximate-monotone
if and only if it is of the form introduced in Lemma 2.

Theorem 5. An outcome function π is best-approximate-
monotone if and only if for all S ⊂ T , s ∈ S, π(s, S) =
v(S) · π(s, T )/

P
t∈S π(t, T ) holds.

Proof. First, we prove the “only if” part. Suppose π
satisfies best-approximate-monotonicity (which implies π is
Pareto efficient).

Now, let us assume for some s, S, where s ∈ S ⊆ T ,
π(s, S) �= v(S) · π(s, T )/

P
t∈S π(t, T ) holds.

Also, let us define π′ by π′(s, T ) = π(s, T ), and π′(s, S) =
v(S) · π(s, T )/

P
t∈S π(t, T ) for all s ∈ S ⊆ T .

If π(s, S) > v(S) · π(s, T )/
P

t∈S π(t, T ) holds, then
π(s, S)/π(s, T ) > v(S)/

P
t∈S π(t, S) holds. However, this

means that maxs∈S
π′(s,S)
π′(s,T )

= v(S)P
t∈S π(t,S)

, is strictly smaller

than π(s,S)
π(s,T )

≤ maxs∈S
π(s,S)
π(s,T )

. This contradicts the assump-

tion that π is best-approximate-monotone, since π and π′

are identical on the grand coalition T .
Also, if π(s, S) < v(S) · π(s, T )/

P
t∈S π(t, S) holds, then

by Pareto efficiency, there exists at least one s′ ∈ S for
which π(s′, S) > v(S) · π(s′, T )/

P
t∈S π(t, T ) holds, which

we already showed leads to a contradiction.
Next, we prove the “if” part.
Suppose π(s, S) = v(S)·π(s,T )/

P
t∈S π(t, T ) holds for all

S ⊆ T , s ∈ S. Now, let us assume π is not best-approximate
monotone, i.e., there exists another outcome function π′ and
S ⊆ S′ ⊆ T , such that π′(s, S′) = π(s, S′) for all s ∈ S′, and
maxs∈S π(s, S)/π(s, S′) > maxs∈S π′(s, S)/π′(s, S′) holds.
By Lemma 2, π(s, S)/π(s, S′) = v(S)/

P
t∈S π(t, S′) holds.

By Lemma 1, maxs∈S π′(s, S)/π′(s, S′) ≥ v(S)/
P

t∈S π′(t, S′)
holds. Also, from

P
t∈S π′(t, S′) =

P
t∈S π(t, S′),

maxs∈S π′(s, S)/π′(s, S′) ≥ maxs∈S π(s, S)/π(s, S′) holds.
This contradicts the assumption that maxs∈S π(s, S)/π(s, S′) >
maxs∈S π′(s, S)/π′(s, S′) holds.

Now, we are ready to show that best-approximate-mono-
tonicity implies anonymity-proofness.

Theorem 6. If an outcome function π is best-approximate-
monotone, then it is anonymity-proof.

Proof. Assume π is best-approximate-monotone (which
implies π is also Pareto efficient). From Theorem 5, π(s, S) =
v(S) · π(s, T )/

P
t∈S π(t, T ) holds for all s ∈ S ⊆ T .

We show that by hiding skills, the obtained value never
increases, i.e., for any sets of skills S, S′, S′′, where S′ ⊂ S′′

and S ∩ S′′ = ∅, P
s∈S′′ π(s, S ∪ S′′) ≥ P

s∈S′ π(s, S ∪ S′)
holds.

Here,
P

s∈S′′ π(s, S ∪ S′′) = v(S ∪ S′′) ·
P

s∈S′′ π(s,T )
P

s∈S∪S′′ π(s,T )
.

Also,
P

s∈S′ π(s, S ∪ S′) = v(S ∪ S′) ·
P

s∈S′ π(s,T )
P

s∈S∪S′ π(s,T )
.

Since v(S ∪ S′) ≤ v(S ∪ S′′), it suffices to show that
P

s∈S′′ π(s,T )
P

s∈S∪S′′ π(s,T )
≥

P
s∈S′ π(s,T )

P
s∈S∪S′ π(s,T )

.

If we denote A =
P

s∈S′ π(s, T ), B =
P

s∈(S′′\S′) π(s, T ),

and C =
P

s∈S∪S′ π(s, T ) (thus, A+B =
P

s∈S′′ π(s, T ) and
C + B =

P
s∈S∪S′′ π(s, T )), this condition is represented as

A+B
C+B

≥ A
C

. It is clear that this condition holds when A ≤ C
and B ≥ 0.

6. ANONYMITY-PROOF SHAPLEY VALUE
In this section, we introduce our newly developed solution

concept, which we call the anonymity-proof Shapley value.
It satisfies Pareto efficiency, the weak-null property, weak-
symmetry, weak-additivity, and best-approximate-monotoni-
city (and hence, it automatically satisfies anonymity-proof-
ness). Also, it is the only solution concept that satisfies these
properties simultaneously.

Definition 17 (anonymity-proof Shapley value).

The anonymity-proof Shapley value is defined as follows.
Let shv(s, T ) be the Shapley value for skill s in the grand
coalition T for characteristic function v.
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• ∀S ⊆ T, ∀s ∈ S,
π(s, S) = v(S) · shv(s, T )/

P
t∈S shv(t, T )

When S is a set of skills that are present, then the anonymity-
proof Shapley value distributes v(S) among the skills in S,
and the value that each skill s ∈ S receives is proportional
to the Shapley value of s in the grand coalition T .

Theorem 7. The anonymity-proof Shapley value satisfies
Pareto efficiency, the weak-null property, weak-symmetry,
weak-additivity, and best-approximate-monotonicity.

Proof. Let π be the outcome function of the anonymity-
proof Shapley value. From Definition 17, π(s, S) = v(S) ·
shv(s, T )/

P
t∈S shv(t, T ) holds. We have

P
s∈S π(s, S) =

v(S) · P
s∈S shv(s, T )/

P
t∈S shv(t, T ) = v(S), so Pareto ef-

ficiency is satisfied.
Next, we show that π satisfies the weak-null property.

Suppose that s is a null skill in the grand coalition T . Since
the Shapley value satisfies the null property, shv(s, T ) = 0
holds. Thus, by Definition 17, π(s, S) = 0 holds for all
S ⊆ T .

Then, we show that π satisfies weak-symmetry. Sup-
pose that s1 and s2 are symmetric in the grand coalition
T . Since the Shapley value satisfies symmetry, shv(s1, T ) =
shv(s2, T ) holds. Also, v({s1} ∪ S) = v({s2} ∪ S) holds for
all S ⊆ T \ {s, s′}. Thus, from Definition 17, π(s, S ∪{s}) =
π(s′, S ∪ {s′}) and π(s, S ∪ {s, s′}) = π(s′, S ∪ {s, s′}) hold
for all S ⊆ T \ {s, s′}.

Next, we show that π satisfies weak-additivity. Suppose
that v = v1 + v2 holds for three characteristic functions
v, v1, and v2. Since the Shapley value satisfies additivity,
shv(s, T ) = shv1(s, T )+shv2(s, T ) holds. Thus, from Defini-
tion 17, π(s, T ) = π1(s, T )+π2(s, T ) holds, where π, π1, and
π2 are the outcome functions when the characteristic func-
tions are v, v1, and v2, respectively. Thus, the anonymity-
proof Shapley value satisfies weak-additivity.

Finally, by Theorem 5, π also satisfies best-approximate-
monotonicity.

Theorem 8. The anonymity-proof Shapley value is the
only solution concept that satisfies weak-null property, weak-
symmetry, weak-additivity, and best-approximate-monotonicity
simultaneously.

Proof. Suppose π satisfies the weak-null property, weak-
symmetry, weak-additivity, and best-approximate-monotonicity
simultaneously. For the grand coalition T , by Pareto effi-
ciency, the weak-null property, weak-symmetry, and weak-
additivity, π must be identical to the Shapley value [7].

Also, because π satisfies best-approximate-monotonicity,
by Theorem 5, π(s, S) = v(S) · π(s, T )/

P
t∈S π(t, T ) must

hold for any s ∈ S ⊂ T . Thus, π is identical to the anonymity-
proof Shapley value.

7. DISCUSSIONS

7.1 Computational/Representational Cost
The anonymity-proof Shapley value is identical to the

Shapley value in the grand coalition T . After we obtain
the Shapley value for the grand coalition, the computational
cost for obtaining the anonymity-proof Shapley value for
each S ⊆ T is at most O(n), where n = |T |. Thus, it suf-
fices to compute/store the anonymity-proof Shapley value

only for the grand coalition T , and compute the rest on de-
mand according to S that are actually present. Thus, the
computational cost for the anonymity-proof Shapley value
is about the same as that for the traditional Shapley value.
The computational cost for finding the traditional Shap-
ley value depends on the representation of characteristic
functions. Ieong and Shoham developed a compact rep-
resentation scheme of characteristic functions [5]. Using
this representation, the Shapley value can be computed in
O(2n). Also, if we can decompose a problem into smaller
sub-problems by utilizing (weak-)additivity, we can obtain
further speedup.

On the other hand, one needs to solve a linear program
with O(n · 2n) variables to compute one element of the
anonymity-proof core. Also, the amount of information that
we store for the anonymity-proof Shapley value is O(n),
which is much smaller than the representational cost of the
anonymity-proof core, i.e., O(n · 2n).

7.2 Variations of the Anonymity-proof Shap-
ley Value

The anonymity-proof Shapley value is the only solution
concept that satisfies Pareto efficiency, the weak-null prop-
erty, weak-symmetry, weak-additivity, and best-approximate-
monotonicity. On the other hand, if we replace best-approxi-
mate-monotonicity by anonymity-proofness, other solution
concepts can satisfy these axiomatic conditions.

For example, let us consider an outcome function π, where
π(s, T ) = shv(s, T ) for s ∈ T , and for s ∈ S ⊆ T , π(s, S) is
determined as follows.

• A priority ordering among skills, where symmetric skills
in the grand coalition have the same order, is deter-
mined.

• The skills with the highest priority take a share equal
to π(s, T ) from v(S), then the skills with the next-
highest priority do the same, etc.

• If at some point the remaining amount is not enough,
then the remaining amount is divided equally among
the remaining skills with the highest priority.

• If there remains some amount after all skills take their
shares, then the amount is distributed among skills
with the highest priority.

Since π is identical to the Shapley value at the grand
coalition T , it is clear that this outcome function satisfies
Pareto efficiency, the weak-null property, weak-symmetry,
and weak-additivity. Also, the value is distributed accord-
ing to the predefined priority ordering. Thus, if agent i,
who has S skills, hides a skill s ∈ S, it will miss the oppor-
tunity to obtain shv(s, T ). This might increase the share
for another skill s′ ∈ S, where s′’s priority is lower than
s. However, this increased amount never exceeds shv(s, T ).
Thus, this outcome function is also anonymity-proof.

However, we believe the anonymity-proof Shapley value is
more intuitively natural than the outcome function defined
above. In the next section, we show that the anonymity-
proof Shapley value is closer to the original Shapley value
than such an outcome function.

8. EVALUATION
The anonymity-proof Shapley value is identical to the

Shapley value for the grand coalition T , and, in a sense, it
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does some kind of approximation for every smaller coalition
S ⊂ T . One question we might ask is: how close is it to the
traditional Shapley value on S? Also, as shown in the previ-
ous section, if we replace best-approximate-monotonicity by
anonymity-proofness, there can be other solution concepts.
In this section, we introduce a notion called discrepancy rate
to measure the discrepancy between a solution concept and
the traditional Shapley value.

Definition 18 (discrepancy rate). The discrepancy
rate of an outcome function π is defined as follows:

1

2|T | ×
X

S⊆T

P
s∈S |π(s, S) − shv(s, S)|

2v(S)

The idea is to calculate the discrepancy rate for each S ⊆
T and take the average (there are 2|T | subsets). We do
not count cases where v(S) = 0. The discrepancy for S is
calculated as follows: for S = {s1, s2, . . .}, consider vectors
〈π(s1, S), π(s2, S), . . .〉 and 〈shv(s1, S), shv(s2, S), . . .〉. We
calculate the sum of the absolute values of the differences
over the elements of these two vectors. Since

P
s∈S π(s, S) =P

s∈S shv(s, S) = v(S), the sum of the above differences
is at most 2v(S). We normalize the sum by 2v(S), so the
discrepancy rate is between 0 and 1. If the outcome function
and the Shapley value are identical, then the discrepancy
rate is 0. If they are totally different—for example, if the
outcome function gives all of the value to a null skill—then
the discrepancy rate becomes 1.

In Figure 2, we compare the discrepancy rates of the
anonymity-proof Shapley value and priority-based anonymity-
proof outcome functions described in the previous section,
where the priority ordering is determined: (i) randomly, (ii)
in descending order of the Shapley value, and (iii) in as-
cending order of the Shapley value. We vary |T | from 3 to
12. We randomly generate the characteristic function v, in
such a way that it is weakly increasing. More specifically,
for S ⊂ S′ ⊆ T , v(S′) is determined by maxS⊆S′ v(S) + δ,
where δ is chosen randomly from [0, 2].

We generated 100 problem instances for each |T |; the av-
erage is shown. These results illustrate that the discrepancy
rate of the anonymity-proof Shapley value is quite small
(around 0.1) and is smaller than other outcome functions.

9. CONCLUSIONS
Anonymity-proof solution concepts are designed to be ro-

bust to various manipulations in open anonymous environ-
ments. However, for existing concepts, the representation
size of the outcome function is exponential in the number of
skills that agents declare (while that of the outcome func-
tion of conventional solution concepts is linear). Also, the
required computational cost is quite large.

In this paper, we developed a new solution concept called
the anonymity-proof Shapley value that drastically reduces
these computational/representational costs. This reduction
is possible because we need to compute/store only the value
division for the grand coalition, and calculate the rest on de-
mand. The anonymity-proof Shapley value is characterized
by simple axiomatic conditions: Pareto efficiency, the weak-
null property, weak-symmetry, weak-additivity, and best-
approximate-monotonicity. It is the only solution concept
that satisfies these axiomatic conditions simultaneously, al-
ways exists, and is uniquely determined.
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