
Approximate Bidding Algorithms for a Distributed
Combinatorial Auction

(Short Paper)
Benito Mendoza and José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

mendoza2@engr.sc.edu, vidal@sc.edu

ABSTRACT
Distributed allocation and multiagent coordination prob-
lems can be solved through combinatorial auctions (CAs).
However, most of the existing winner determination algo-
rithms (WDAs) for CAs are centralized. The PAUSE auc-
tion is one of a few efforts to release the auctioneer from hav-
ing to do all the work. The pausebid bidding algorithm[6]
generates myopically-optimal bids for agents in a PAUSE
auction but its running time is exponential on the number
of bids. We present new approximate bidding algorithms
that not only run in linear time but also increase the utility
of the bidders as result of small decrement in revenue.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Intelligent Agents, Multiagent Systems.

Keywords
Combinatorial auctions, coordination, task and resource al-
location.

1. INTRODUCTION
CAs have generated significant interest as automated mech-

anisms for buying and selling bundles of goods and for solv-
ing problems of task and resource allocation and multiagent
coordination[8]. In CAs bidders can place bids on combina-
tions of items rather than just individual items which intro-
duces computational and economic challenges. For example,
it makes it hard to find the allocation of items to bidders
which maximizes the auctioneer’s revenue. This computa-
tional problem, known as the winner determination prob-
lem (WDP), is NP-Hard[7]. Notwithstanding the complex-
ity of the WDP, several algorithms that have a satisfactory
performance for problem sizes and structures occurring in
practice have been developed [1, 9] however most of them
are centralized– they require all agents to send their bids
to a centralized auctioneer who then runs a WDA. We be-
lieve that distributed solutions to the winner determination

Cite as: Approximate Bidding Algorithms for a Distributed Combinato-
rial Auction (Short Paper), Benito Mendoza and José M. Vidal, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

problem should be studied as they offer a better fit for some
applications as when, for example, agents do not want to re-
veal their valuations to the auctioneer, the auctioneer does
not want to perform all the computation, or when it is dif-
ficult to establish a trusted auctioneer.

The PAUSE (Progressive Adaptive User Selection Envi-
ronment) auction[3, 4] is one of a few efforts to distribute
the WDP amongst the bidders. PAUSE establishes the rules
the participants have to adhere to so that the work is dis-
tributed amongst them, making the job of the auctioneer
very easy. All it has to do is verify that each new bidset has
a revenue bigger than the current winning bidset and that
every bid in an agent’s bidset that is not his does indeed
correspond to some other agents’ previous bid (we envision
completely eliminating the auctioneer by having every agent
perform this task). The computational problem shifts from
one of winner determination to one of bid generation where
bidders have a clear incentive for performing this compu-
tation. However, PAUSE is not concerned with how the
bidders determine what they should bid (strategy). pause-
bid and cachedpausebid are bidding algorithms which gen-
erate myopically-optimal bids[6] for PAUSE. Test results
show that on over 95% of the trials both algorithms find
the same allocation as given by the revenue-maximizing so-
lution. Still, their running time remains exponential as the
problem is NP-Hard and test results showed that the time
to calculate new bids does increase exponentially.

In many real life applications the time spent in finding
a solution is more critical than the optimality of the solu-
tion found. A number of approximate WDA for the cen-
tralized WDP have been developed which generate solu-
tions very close to the revenue maximizing solution, they
get even closer as the number of bids increases, and have
excellent performances in a very restricted time period. In
this paper we present new approximate bidding algorithms
for PAUSE which we created borrowing some ideas from ex-
isting centralized approximate WDAs. Our new algorithms
greatly reduced the time required to clear a PAUSE auc-
tion and increase the agents’ expected utility gains, which
we found counterintuitive since we would expect that not-
optimal agents would do worse than optimal agents. How-
ever the sum of expected utility increases up to 20% when
switching from using pausebid to one of our approximate
bidding algorithms. Our test results show that these new
bidding systems generate in average a little less revenue, be-
tween 1.5% and 5% below, than a system using pausebid.

May,12-16.,2008,Estoril,Portugal,pp.1597-1600.

2. APPROXIMATE BIDDING ALGORITHMS
The pausebid algorithm and its variants implement a

complete search over the set of current best bids B in order
to find the new bidset which is myopically-optimal1. Ap-
proximate bidding algorithms forgo optimality in favor of
heuristics and simple local searches which deliver a solution
very quickly. The approximate algorithms we have devel-
oped are based in strategies used by i) a well-known approx-
imate algorithm for solving the WDP for centralized CAs,
the greedy algorithm described in[5], and ii) the well-known
hill climbing algorithm. The greedy algorithm is a very sim-
ple linear algorithm and can be summarized into two steps.

1. The bids are sorted by bvalue/|bitems|c for some number
c, 0 ≤ c ≤ 1. The authors showed that c = 0.5 was the
approximate best value.

2. Proceed down the sorted list of bids accepting bids if
the goods in demand are still unallocated and not con-
flicted, where bids b and b1 conflict if bitems∩bitems

1 6= ∅.

2.1 The GREEDYPAUSEBID algorithm
The greedyPauseBid algorithm (figure 1) implements

the idea discussed above maximizing the bidder’s utility, in-
stead of the seller’s revenue, under the condition that the
resulting revenue has to be greater or equal than r(W) + ε
(W is the current winning bidset, ε is the minimum bid in-
crement, and r the revenue function). We start by defining
my-bids to be the list of bids for which the agent’s valuation
is higher than the current best bid, as given in B. We set the
value of these bids to be the agent’s true valuation (but we
won’t necessarily be bidding true valuation, as we explain
later). Similarly, we set their -bids to be the rest of the bids
from B. If my-bids is empty, there is no bid that the agent
can dominate at this time and the algorithm ends. The
function sortForGreedy (called in lines 12 and 16) sorts
the list of bids received as first parameter by bvalue/|bitems|c.
After my-bids is sorted, we take the first bid and add it to
the initial solution g, to make sure that the solution includes
the bid from my-bids with the highest rank. Finally, to com-
plete the solution (a bidset that contain all the items), the
agent’s search list is simply the concatenation of their -bids
and the rest of my-bids ordered again by the same crite-
ria (lines 16 and 15 respectively). After we finish walking
down the bids list, we have a solution g. However, agent i’s
bids in g are still set to his own valuation and not to the
lowest possible price. If g has revenue less than or equal to
r(W) + ε, then the algorithm ends. When r(g) > r(W) + ε,
we call the procedure distributePayments with g as pa-
rameter (line 25). This function sets the agent’s payments
so that it can achieve its maximum utility (while satisfying
the revenue constraint). We have chosen to distribute the
payments in proportion to the agent’s true valuation for each
set of items (the way pausebid does it). After distributing
the payments of g the algorithm ends by returning g if the
utility that the agent receives from g is greater than that
what it gets from W , otherwise it returns an empty bidset.

2.2 The GREEDYPAUSEBID+HILL algorithm
A simple extension to the greedy WDA consists of using

a local search algorithm that continuously updates the al-
location found by the greedy algorithm[2], searching in the
1We recommend [6] to get a good understanding of the prob-
lem of bidding in the PAUSE auction.

greedyPauseBid(i, k, c)

1 my-bids ← ∅
2 their -bids ← ∅
3 for b ∈ B
4 do if bagent = i or vi(b

items) > bvalue

5 then my-bids ← my-bids
+new Bid(bitems, i, vi(b

items))
6 else their -bids ← their -bids +b
7 for S ∈ subsets of k or fewer items such that

vi(S) > 0 and ¬∃b∈Bb
items = S

8 do my-bids ← my-bids +new Bid(S, i, vi(S))
9 g ← ∅

10 if my-bids = ∅
11 then return g
12 my-bids ← sortForGreedy(my-bids, c)
13 b← first(my-bids)
14 g ← g + b
15 bids ← their -bids +rest(my-bids)
16 bids ← sortForGreedy(bids, c)
17 while bids 6= ∅
18 do b← first(bids)
19 bids ← rest(bids)
20 Ig ← items in g
21 if bitems ∩ Ig = ∅
22 then g ← g + b
23 bids ← {x ∈ bids |xitems ∩ bitems = ∅}
24 if r(g) > r(W) + ε
25 then g ← distributePayments(g)
26 if ui(g) ≤ ui(W)
27 then g ← ∅
28 else g ← ∅
29 return g

Figure 1: Our greedyPauseBid algorithm returns an
empty bidset if the solution it finds does not improve
the utility of bidder i. c is the bids sorting factor and
k is the current stage of the auction, for k ≥ 2.

remaining bids to improve the solution. We implement this
idea in the greedyPauseBid+Hill algorithm. This algo-
rithm starts with the solution provided by greedyPause-
Bid and then explores the neighborhood of that solution
looking for allocations that generate a higher utility for the
bidder. It consist of two main steps:

1. Call greedyPauseBid algorithm with appropriate in-
put and c = 0.5.

2. If the solution g returned by greedyPauseBid is not
empty then call hillClimbing with bids = my-bids +
their -bids sorted by c.

3. TEST AND COMPARISON
Our approximate algorithms allow an agent to place good,

but not necessarily myopically-optimal, bids in a PAUSE
auction. But the use of these new strategies raises several
questions. Does a system of approximate bidders arrive at
a different solution than a optimal biding agents system?
Do bidders lose utility by switching to these algorithms? Is
there any difference in the revenue generated? Are they

Figure 2: Average time in seconds that it takes to
finish an auction as a function of the number of items
in the auction.

faster? To answer these questions we have performed sev-
eral experiments in which we create bidder agents that have
randomly generated value functions as generated by the al-
gorithm in [6] (bidders with super-additive preferences). We
fixed the number of agents to be 5 and we experimented with
different number of items, namely from 2 to 10. We ran 100
auctions for each number of items, and the same auction
was run with all the algorithms.

As expected, the approximate algorithms are faster than
the optimal algorithms (figure 2). The fastest one is greedy-
PauseBid which is up to 99.5% and 99% faster than pause-
bid and cachedpausebid respectively. The running time
of these algorithms is linear in the number of bids since,
at worst, they will check all the bids once. Of course, in
practice they only check a small subset of all the bids. The
difference in execution speed between the myopic-optimal
(exponential time) algorithms and the approximate (linear
time) algorithms is even more clear as the number of items
increases.

We then compared the solutions found by both optimal
and approximate algorithms to the revenue-maximizing so-
lution as found by CASS2 [1] when given a set of bids that
corresponds to the agents’ true valuation. Note, however,
that the revenue from PAUSE on all the auctions is always
smaller than the revenue of the revenue-maximizing solution
when the agents bid their true valuations since PAUSE uses
English auctions. The optimal algorithms converge to the
same distribution as the revenue-maximizing solution more
than 90% of the time[6]. As shown in figure 3, the percentage
of convergence to that solution is lower for the approximate
algorithms, dropping as a function of the number of items
from 100% with 2 items to 70% with 10 items, for greedy-
PauseBid. greedyPauseBid+Hill does better, it remains
closer to the optimal algorithms, around 10% below. This
proves that a system with approximate bidders arrives to
different solutions than a system with myopic-optimal bid-
ders.

We then calculated the sum of the utilities obtained by
each agent in each auction. We can see (in figure 4) that the
sum of the agents’ utility increases as a function of the num-

2CASS implements a centralized WDA to find the solution
that maximizes revenue.

Figure 3: Average percentage of convergence, which
is the percentage of times that the algorithms reach
the revenue-maximizing solution.

Figure 4: Average of the utility sum from 100 auc-
tions as a function of the number of items.

ber of items and that the approximate algorithms generate
higher utility than the optimal ones. Being greedyPause-
Bid+Hill the algorithm that generates the highest utility.
In auctions with few items – 2, 3, and 4 – the utility gen-
erated by greedyPauseBid+Hill is about the same that
the one generated by pausebid, but with greater number of
items this difference in utility is about 20%. Thus we can
see that, on average, the agents always get higher utility
by using the approximate algorithms instead of the myopic-
optimal ones.

From an agent’s individual point of view, the sum of the
utilities is not as important as the individual utility. A bid-
der would be more interested on the expected individual util-
ity of switching from one system to another. We compare
the actual utility that an agent gained in two different sys-
tems (agents bid using pausebid in one and greedyPause-
Bid+Hill in the other). Figure 5 shows that the agent got
the same utility (the difference in individual utility is zero)
in both systems 54% of the 900 auctions, that only in 17% of
the auctions the difference in individual utility was in favor
of the pausebid (lower than zero) and that in 28% favored
greedyPauseBid+Hill. Notice that even in the cases with
no difference in the utility the approximate system would be

Figure 5: Distribution of the difference in individual
utility (the utility that an agent gets in one system
minus the utility it gains in the other). The negative
side is in favor of pausebid and the positive side is
in favor of greedyPauseBid+Hill.

Figure 6: Average percentage of revenue from our
algorithms relative to the revenue-maximizing solu-
tion as a function of the number of items.

more attractive, since bidders do not need to do hard compu-
tation and they do not need to wait too long for the auction
to finish. This result is counter-intuitive (receiving a higher
utility when using an approximate algorithm than when us-
ing an algorithm that guarantees a bid that gives them the
highest possible utility). However, we must consider that
the agents are engaged in a PAUSE auction and that their
final utility depends, not on the intermediate bids placed
by the agents, but only on the final result of the action. It
seems that by having all agents place less than optimal bids,
the final result is that they all, on average, get higher utility.

We calculated a percentage representing the proportion
of the revenue given by each of the algorithms relative to
the revenue-maximizing solution (figure 6). This percent-
age generally increases as the number of items increases and
is lower for the approximate bidders than for the myopic-
optimal. In absolute terms, our tests show that the average
revenue for the four algorithms was approximately 274.29
times the number of items in the auction, with the greedy

algorithm resulting is sligthly lower revenue, thus smaller
slopes.

We also note that the social welfare (sum of buyers’ util-
ity and seller’s revenue) remains constant for all algorithms.
Thus, the greedy algorithms end up increasing the buyer’s
utility at the cost of reducing the seller’s revenue. In effect,
by having all buyers be less sophisticated in their bidding we
end up with a a lower selling price, as might be expected.

4. CONCLUSIONS
We have introduced two new approximate algorithms which

tackle the complexity of generating good bids in a PAUSE
auction. Based on the results of our experiments, we believe
that these approximate bidding algorithms are a realistic
tool for the development of large-scale distributed CAs. Fur-
thermore, bidders have double incentive to use them: they
are faster and they give the bidders higher utility. Of course,
they do reduce total revenue and thus, the seller’s utility.
But this loss is small compared to the gain in utility and
speed. We envision a future where complex sourcing prob-
lems are solved by millions of automated agents bidding and
negotiating in distributed CAs and even more complex ne-
gotiation networks. The algorithms we present here show
us that linear-time approximation methods are viable and,
thus, we should be able to scale up to very large numbers.

5. REFERENCES
[1] Y. Fujishima, K. Leyton-Brown, and Y. Shoham.

Taming the computational complexity of combinatorial
auctions: Optimal and approximate approaches. In
Proceedings of the Sixteenth IJCAI, pages 548–553.
Morgan Kaufmann Publishers Inc., 1999.

[2] N. Fukuta and T. Ito. Towards better approximation of
winner determination for combinatorial auctions with
large number of bids. In Proceedings of the
IEEE/WIC/ACM international conference on
Intelligent Agent Technology, pages 618–621, 2006.

[3] F. Kelly and R. Stenberg. A combinatorial auction with
multiple winners for universal service. Management
Science, 46(4):586–596, 2000.

[4] A. Land, S. Powell, and R. Steinberg. PAUSE: A
computationally tractable combinatorial auction. In
Combinatorial Auctions, pages 139–157. MIT Press,
2006.

[5] D. Lehmann, L. I. Oćallaghan, and Y. Shoham. Truth
revelation in approximately efficient combinatorial
auctions. Journal of the ACM, 49(5):577–602, 2002.

[6] B. Mendoza and J. M. Vidal. Bidding algorithms for a
distributed combinatorial auction. In Proceedings of the
AAMAS Conference, 2007.

[7] M. H. Rothkopf, A. Pekec, and R. M. Harstad.
Computationally manageable combinational auctions.
Management Science, 44(8):1131–1147, 1998.

[8] T. Sandholm. Expressive commerce and its application
to sourcing: How we conducted $35 billion of
generalized combinatorial auctions. AI Magazine,
28(3):45–58, 2007.

[9] T. Sandholm, S. Suri, A. Gilpin, and D. Levine.
CABOB: a fast optimal algorithm for winner
determination in combinatorial auctions. Management
Science, 51(3):374–391, 2005.

	Introduction
	Approximate Bidding Algorithms
	The GREEDYPAUSEBID algorithm
	The GREEDYPAUSEBID+HILL algorithm

	Test And Comparison
	Conclusions
	References

