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ABSTRACT
We develop a novel mechanism for coordinated, distributed
multiagent planning. We consider problems stated as a col-
lection of single-agent planning problems coupled by com-
mon soft constraints on resource consumption. (Resources
may be real or fictitious, the latter introduced as a tool
for factoring the problem). A key idea is to recast the dis-
tributed planning problem as learning in a repeated game
between the original agents and a newly introduced group
of adversarial agents who influence prices for the resources.
The adversarial agents benefit from arbitrage: that is, their
incentive is to uncover violations of the resource usage con-
straints and, by selfishly adjusting prices, encourage the
original agents to avoid plans that cause such violations.
If all agents employ no-regret learning algorithms in the
course of this repeated interaction, we are able to show that
our mechanism can achieve design goals such as social op-
timality (efficiency), budget balance, and Nash-equilibrium
convergence to within an error which approaches zero as the
agents gain experience. In particular, the agents’ average
plans converge to a socially optimal solution for the original
planning task. We present experiments in a simulated net-
work routing domain demonstrating our method’s ability to
reliably generate sound plans.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent Agents, Multiagent Systems

General Terms
Algorithms, Economics, Design, Theory

Keywords
Multiagent planning, multiagent learning, auctions, mecha-
nism design, game theory, no-regret algorithms

1. INTRODUCTION
In this work, we develop a novel, distributed multiagent

planning mechanism. Our mechanism coordinates the dif-
ferent, individual goals of participating agents P1, ..., Pk to
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achieve a globally desirable plan. While the agents could
in principle compute the optimal global plan in a central-
ized manner, distributed approaches can improve robust-
ness, fault tolerance, scalability (both in problem complex-
ity and in the number of agents), and flexibility in changing
environments [18].

We consider multiagent planning problems stated as k ∈ N

single-agent convex optimization problems that are coupled
by n ∈ N linear, soft constraints with positive coefficients.
(By a soft constraint, we mean that violations are feasible,
but are penalized by a convex loss function such as a hinge
loss.) This representation includes, for example, network
routing problems, in which each agent’s feasible region rep-
resents the set of paths from a source to a sink, its objective
is to find a low-latency path, and a soft constraint represents
the additional delay caused by congestion on a link used by
multiple agents.

Since all coupling constraints are soft, each agent’s feasible
region does not depend on the actions of the other agents.
So, the agents could plan independently and be guaranteed
that their joint actions would be feasible. This interaction is
a convex game [20]: each player simultaneously selects her
plan from a convex set, and if we hold all plans but one
fixed, the remaining player’s loss is a convex function of her
plan. By playing this convex game repeatedly, the players
could learn about one another’s behavior and adjust their
actions accordingly. With appropriate learning algorithms
they could even ensure convergence to an equilibrium [3,
12]. Unfortunately, while distributed and robust, this näıve
setup can lead to highly suboptimal global behavior: a self-
ish agent which can gain any benefit from using a congested
link will do so, even if the resulting cost to other agents
would far outweigh its own gain [17].

Instead, a key idea of our approach is to introduce addi-
tional adversarial agents A1, ..., An, each of which can influ-
ence the cost of one of the resources by collecting usage fees.
Like the original agents, the new agents are self-interested.
But, collectively, they encourage the original agents to avoid
excessive resource usage: we show below how to define their
revenue functions so that they effectively perform arbitrage,
allocating extra constraint-violation costs to each original
agent in proportion to its responsibility for the violations.

The way we define the adversarial agents’ revenues and
payments effectively decouples the individual planning prob-
lems: an original agent perceives the other original agents’
actions only through their effects on the choices of the adver-
sarial agents. So, under our mechanism, the original agents
never need to communicate with one another directly. In-
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stead, they communicate with the adversarial agents to find
out prices and declare demands for the resources they need
to use. If an original agent never uses a particular resource,
it never needs to send messages to the corresponding ad-
versarial agent. This decoupling can greatly reduce commu-
nication requirements and increase robustness compared to
the centralized solution: a central planner must communi-
cate with every agent on every time step, and so constitutes
a choke point for communication as well as a single point of
failure.

Because we have decoupled the agents from one another,
each individual agent no longer needs to worry about the
whole planning problem. Instead, it only has to solve a lo-
cal online convex problem (OCP) [11, 22] independently and
selfishly. To solve its OCP, an agent could use any learning
algorithm it desired; but, in this paper, we explore what hap-
pens if the agents use no-regret learning algorithms such as
Greedy Projection [22]. No-regret algorithms are a natural
choice for agents in a multi-player game, since they provide
performance guarantees that other types of algorithms do
not. And, as we will show, if all agents commit to no-regret
learning, several desirable properties result.

More specifically, if each agent’s average per-iteration re-
gret approaches zero, the agents will learn a globally opti-
mal plan, in two senses: first, the average per-iteration cost,
summed over all of the agents, will converge to the optimal
social cost for the original planning problem. And second,
the average overall plan of the original agents will converge
to a socially optimal solution of the original planning prob-
lem.

These two results lead us to propose two different mech-
anism variants: in the online setup, motivated by the first
result, learning takes place online in the classic sense; all
agents choose and execute their plans and make and receive
payments in every learning iteration. By contrast, in the ne-
gotiation setup, motivated by the second result, the agents
learn and plan as usual, but only simulate the execution
of their chosen joint plan. The simulated results (costs or
rewards) from this proposed joint plan provide feedback for
the learners. After a sufficient number of learning iterations,
each agent averages together all of its proposed plans and
executes the average plan. One can interpret either setup,
but the negotiation setup in particular, as a very simple auc-
tion where the goods are resources. A plan which consumes
a resource is effectively a bid for that resource; the resource
prices are determined by the agents’ learning behavior in
response to the bids.

Just as with any mechanism, because our agents are self-
ish, we need to consider the impact of individual incen-
tives. Focusing on the negotiation setup, we provide (mainly
asymptotic) guarantees of Nash-equilibrium convergence of
the overall learning outcome as well as classic mechanism
design goals such as budget balance, individual rationality,
and efficiency.

Due to space constraints, we have omitted some proofs
and some discussion of details and variants of our approach.
These may be found in the long version of this paper [5].

2. PRELIMINARIES
In an online convex program [11, 22], a possibly adver-

sarial sequence (Γ(t))t∈N of convex cost functions is revealed
step by step. (Equivalently, one could substitute concave
reward functions.) At each step t, the OCP algorithm must

choose a play x(t) from its feasible region F while only know-
ing the past cost functions Γ(q) and choices x(q) (q ≤ t− 1).
After the choice is made, the current cost function Γ(t) is
revealed, and the algorithm pays Γ(t)(x(t)).

To measure the performance of an OCP algorithm, we
can compare its accumulated cost up through step T to an
estimate of the best cost attainable against the sequence
(Γ(t))t=1...T . Here, we will estimate the best attainable
cost as the cost of the best constant play s(T ) ∈ F , cho-
sen with knowledge of Γ(1) . . . Γ(T ). This choice leads to
a measure called external regret or just regret : R(T ) =
PT

t=1 Γ(t)(x(t))−
PT

t=1 Γ(t)(s(T )). An algorithm is no-regret
iff it guarantees that R(T ) grows slower than O(T ), i.e.,
R(T ) ≤ ∆(T ) ∈ o(T ). ∆(T ) is a regret bound. (The term
no-regret is motivated by the fact that the limiting average
regret is no more than zero, lim supT→∞ R(T )/T ≤ 0.)

We define the convex conjugate or dual [4] of a function
Γ(x) to be Γ∗(y) = supx∈dom Γ[〈x,y〉−Γ(x)]. The conjugate
function Γ∗ is always closed and convex, and if Γ is closed
and convex, then Γ∗∗ = Γ pointwise.

2.1 Model and Notation
We wish to model interaction among k player agents,

P1 . . . Pk. We represent player Pi’s individual planning prob-
lem as a convex program: choose a vector pi from a compact,
convex feasible set FPi to minimize the intrinsic cost 〈ci,pi〉.
(In addition to the intrinsic cost, player Pi will attempt to
minimize cost terms which arise from interactions with other
agents; we will define these extra terms below and add them
to Pi’s objective.) We assume that the intrinsic cost vector
ci and feasible region FPi are private information for Pi—
that is, Pi may choose to inform other players about them,
but may also choose to be silent or to lie.

We assume each feasible set FPi is a subset of some finite-
dimensional Hilbert space VPi with real-valued scalar prod-
uct 〈·, ·〉VPi

. We write V = VP1 × . . . × VPk
and FP =

FP1 × . . . × FPk
for the overall planning space and feasible

region, and p = (p1; . . . ;pk) and c = (c1; . . . ; ck) for the
overall plan and combined objective. (We use ; to denote
vertical stacking of vectors, consistent with Matlab usage.)
And, for any c,p ∈ V , we write 〈c,p〉V =

P

i〈ci,pi〉VPi

for our scalar product on V . (We omit subscripts on 〈·, ·〉
when doing so will not cause confusion.) For convenience, we
assume each feasible set only contains vectors with nonneg-
ative components; we can achieve this property by changing
coordinates if necessary.

We model the coupling among players by a set of n soft
linear constraints, which we interpret as resource consump-
tion constraints. That is, we assume that there are vectors
lji ≥ 0 such that the consumption of resource j by plan
pi ∈ VPi is 〈lji,pi〉. (So, the total consumption of resource
j is 〈lj,p〉, where lj = (lj1; . . . ; ljk).) And, we assume that
there are monotone increasing, continuous, convex penalty
functions βj(ν) and scalars yj ≥ 0 so that the overall cost
due to consumption of resource j in plan p is βj(〈lj,p〉−yj).
In keeping with the interpretation of βj as enforcing a soft
constraint, we assume βj(ν) = 0 for all ν ≤ 0. (For exam-
ple, βj(ν) could be the hinge loss function max{0, ν}.) We
define

νj(p) = 〈lj,p〉 − yj (1)

to be the magnitude of violation of the jth soft resource con-
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straint by plan p.1 Because the resource constraints are soft,
no player can make another player’s chosen action infeasible;
conflicts result only in high cost rather than infeasibility.

The function βj describes the overall cost to all players
of usage of resource j. We will assume that, in the absence
of any external coordination mechanism, the cost to player
i due to resource j is given by some function βji(p) with
P

i βji(p) = βj(νj(p)). We will call βji the natural cost or
cost in nature of Pi’s resource usage. A typical choice for
βji is proportional to player i’s consumption of resource j:

βji(p) =



0 if 〈lj,p〉 = 0
βj(νj(p))〈lji,pi〉/〈lj,p〉 otherwise

(2)

So, including both her intrinsic costs and the natural costs
of resource usage, player i’s objective is

ωPi(p) = 〈ci,pi〉 +
X

j

βji(p) .

We will write ω(p) =
P

i
ωPi(p) for the social cost; as stated

above, our goal is to coordinate the player agents to min-
imize ω(p). (With this notation, several facts mentioned
above should now be obvious: for example, since the indi-
vidual objectives ωPi depend on the entire joint plan p, the
players cannot simply plan in isolation. Nor do we want
the players to compute and follow an equilibrium: using the
above choice for βji (which results in a setting similar to
so-called nonatomic congestion games), there are simple se-
quences of examples showing that the penalty for following
an equilibrium (called the price of anarchy) can be arbitrar-
ily large [17].)

3. PROBLEM TRANSFORMATION
In this section, by dualizing our soft resource constraints,

we decouple the problem of finding a socially optimal plan.
The result is a saddle-point or minimax problem whose vari-
ables are the original plan vector p along with new dual vari-
ables a, defined below. By associating the new variables a
with additional agents, called adversarial agents, we arrive
at a convex game with comparatively-sparse interactions.
Based on this game, we introduce our proposed learning-
based mechanism.

3.1 Introduction of adversarial agents
Write FAj = dom β∗

j . Since we have assumed that βj is
continuous and convex, we know that β∗∗

j = βj pointwise,

that is, βj(ν) = supaj∈FAj
[ajν−β∗

j (aj)] for all ν ∈ R. Since

β∗
j will become part of the objective function for the ad-

versarial agents, and since many online learning algorithms
require compact domains, we will assume that FAj = [0, uj ]

for some scalar uj . (For example, this assumption is satis-
fied if the slope of βj is upper bounded by uj , and achieves
its upper bound. The lower bound of zero follows from our
previous assumptions that βj is monotone and βj(ν) = 0 for
ν ≤ 0.) We will also assume that β∗

j is continuous on its
domain.

We define ΩAj : V × FAj → R as

ΩAj (p, aj) = ajνj(p) − β∗
j (aj) . (3)

1To enforce a hard constraint, we could choose a sufficiently
small margin ǫ > 0, replace yj by yj − ǫ, and set βj(ν) =
max{0, ν/ǫ}.

And, writing a = (a1; . . . ; an) ∈ FA = FA1 × . . . × FAn , we
define

Ω(p,a) = 〈c,p〉 +

n
X

j=1

ΩAj (p, aj) (4)

(note the inclusion of the intrinsic cost 〈c,p〉). Because
of the duality identity mentioned above, along with our
assumption about dom β∗

j , we know that for all plans p,
supaj∈FAj

ΩAj (p, aj) = βj(νj(p)), and so

ω(p) = max
a∈FA

Ω(p,a) . (5)

Note that we have replaced sup by max in Eq. 5: since
Ω(p, ·) is a closed concave function, it achieves its supremum
on a compact domain such as FA.

Now, as promised, we can introduce the adversarial agents:
the adversarial agent Aj controls the parameter aj ∈ FAj ,

and tries to maximize its revenue ΩAj (p, aj) − βj(νj(p)).

Note that βj(νj(p)) does not depend on aj , and so does not
affect the choice of aj once p is fixed.

To give Aj this revenue, we will have player Pi pay ad-
versary Aj the amount aj〈lji,pi〉 − βji(p)− djirj(a

j). Here
the remainder function rj is defined as rj(a

j) = ajyj +
β∗

j (aj); the nonnegative weights dji are responsible for di-
viding up the remainder among all player agents, so we re-
quire

P

i
dji = 1 for each j. Given these definitions, it is

easy to check that the sum of all payments to Aj is indeed
ΩAj (p, aj) − βj(νj(p)) as claimed.

We can interpret the above payments as follows: Aj sets
the per-unit price aj for consumption of resource j. Pi pays
Aj according to consumption, aj〈lji,pi〉, and is reimbursed
for her share of the actual resource cost, βji(p). For the
privilege of setting the per-unit price, Aj pays a fee rj(a

j);
this fee is distributed back to the player agents according
to weights dji. (We show in the long version that the fee is
always nonnegative.) Since the entire revenue for the agents
Aj arises from payments by the player agents, we can think
of Aj as opponents for the players—this is qualitatively true
even though our game has many players and even though
the player agent payoff functions contain terms that do not
involve a.

Including payments to adversaries, Pi’s cost becomes

ΩPi(pi,a) = 〈ci,pi〉 +
X

j

(aj〈lji,pi〉 − djirj(a
j)) (6)

By the above construction, we have achieved several impor-
tant properties:

• First, as promised, Pi’s cost does not depend on any
components of p other than pi, and Aj ’s revenue does
not depend on any components of a other than aj . So,
given an adversarial play a, each player could plan by
independently optimizing ΩPi(pi,a). Similarly, given
a plan p, each adversary could separately optimize
ΩAj (p, aj). (Aj can ignore the term βj(νj(p)) if p
is fixed.) So, the players’ optimization problems are
decoupled given a, and the adversaries’ optimization
problems are decoupled given p.

• Second, if an adversarial agent plays optimally, her rev-
enue will be exactly zero, since maxaj∈[0,uj ] ΩAj (p, aj) =
βj(νj(p)). (Suboptimal play will lead to a negative
revenue, i.e., a loss or cost.)
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• Third, the total cost to all player agents is
X

i

ΩPi(pi,a) = Ω(p,a) . (7)

On the other hand, the total revenue to all adversaries
is ΩA(p,a) = Ω(p,a) − 〈c,p〉 −

P

j βj(νj(p)). If the

adversaries each play optimally, then ΩA(p, a) will be
zero, so we will have

Ω(p,a) = 〈c,p〉 +
X

j

βj(νj(p)) = ω(p) . (8)

Combining Eqs. 7 and 8, we find that if the adversaries
play optimally, the total cost to the player agents is
ω(p), just as it was in our original planning problem.

• Finally, since Ω(p,a) is a continuous saddle-function
on a compact domain [16], it must have a saddle-point
(p̃, ã). (By definition, a saddle-point is a point (p̃, ã)
such that Ω(p, ã) ≥ Ω(p̃, ã) ≥ Ω(p̃,a) for all p ∈ FP

and a ∈ FA.) By the decoupling arguments above, we
must have that p̃i ∈ arg minpi∈FPi

ΩPi(pi, ã) for each

i, and that ãj ∈ arg maxaj∈FAj
ΩAj (p̃,aj) for each j.

(The latter is true since Ω and ΩA differ only by terms
that do not depend on a.)

3.2 Planning as learning in a repeated game
If we consider our planning problem as a game among

all of the agents Pi and Aj , we have just shown that there
exists a Nash equilibrium in pure strategies, and that in any
Nash equilibrium, the player plan p̃ must minimize ω(p̃)
and therefore be socially optimal. To allow the agents to
find such an equilibrium, we now cast the planning problem
as learning in a repeated game. We will show that, if each
agent employs a no-regret learning algorithm, the agents as
a whole will converge to a socially optimal plan, both in the
sense that the average joint plan converges and in the sense
that the average social cost converges. (This result, while
similar to well-known results about convergence of no-regret
algorithms to minimax equilibrium [8], does not follow from
these results, in part because our game is not constant-sum.)
Note that, from the individual agent’s perspective, playing
in the repeated game is an OCP, and so using a no-regret
learner would be a reasonable choice; we explore the effect
of this choice in more detail below in Sec. 4.

The repeated game is played between the k players and
the n adversarial agents. Based on their local histories of
past observations, in each round t, each player Pi chooses a
current pure strategy pi(t) ∈ FPi , and simultaneously, each

adversary Aj chooses a current resource price aj

(t) ∈ FA. We

write p(t) = (p1(t); ...;pk(t)) and a(t) = (a1
(t); ...; a

n
(t)) for the

joint actions of all players and adversaries, respectively.
After choosing p(t) and a(t), the players send their current

resource consumptions 〈pi(t), lji〉 to the adversaries, and the
adversaries send their current prices to the players. In the
online model, Pi observes βji(p(t)) and sends it to Aj as
well; in the negotiation model, we assume that βji is of the
form given in Eq. 2, so that Aji can compute βji(p(t)). The
above information allows each Pi to compute its current cost
function ΩPi(t)(·) = ΩPi(·, a(t)) and its cost ΩPi(t)(pi(t)).
It also allows each Aj to compute ΩAj(t)(·) = ΩAj (p(t), ·)
as well as βj(t) = βj(νj(p(t))), and thus, its total revenue

ΩAj(t)(a
j

(t)) − βj(t). (In fact, Aj may avoid computing or

storing βj(t) if desired, since it does not influence that term
directly.) In Sec. 3.3 below, we discuss how to implement
the necessary communication efficiently.

Each player Pi then adds observation p(t), ΩPi(t)(·) to her
local history, and each adversary Aj adds a(t), ΩAj(t)(·) to
her local history. Finally, the system enters iteration t + 1,
and the process repeats.

3.2.1 Game between two synthesized agents
For analysis, it will help to construe our setup as a ficti-

tious game between a synthesized player agent, P , and a syn-
thesized adversarial agent, A. When each component agent
Pi plays pi(t) and each component agent Aj plays aj

(t), then

we imagine P to play p(t) and A to play a(t). Accordingly,
we understand P to incur cost Ω(p(t),a(t)), and A to have
revenue ΩA(p(t), a(t)) −

P

j
βj(νj(p(t))) in round t. These

synthesized agents are merely theoretical notions serving to
simplify our reasoning; in practice there would never be a
single agent controlling all players.

Using these synthesized agents, we will prove two results:
first, immediately below, we show that if the individual
agents use no-regret algorithms, then the synthesized agents
also achieve no regret. And second, in Sec. 3.2.2, we show
that if the synthesized agents achieve no regret, then they
will converge to an equilibrium of the game, in the two senses
mentioned above.

Lemma 3.1. If each individual agent Pi achieves regret
bound ∆Pi(T ), then the synthesized player agent P achieves
regret bound ∆P (T ) :=

P

i
∆Pi(T ). So, if ∆Pi(T ) ∈ o(T )

for all i, then ∆P (T ) ∈ o(T ).

Proof. By definition, the regret RP (T ) for agent P is

RP (T ) =
PT

t=1 Ω(p(t),a(t)) − minp

PT

t=1 Ω(p,a(t))

and the regret for Pi is RPi(T ) ≤ ∆Pi(T ):

RPi(T ) =
PT

t=1 ΩPi(t)(pi(t)) − minpi

PT

t=1 ΩPi(t)(pi)

Owing to the decoupling effect of the adversary we have
Ω(p,a(t)) =

Pk

i=1 ΩPi(t)
(pi). So, we can expand RP (T ) as

T
X

t=1

Ω(p(t),a(t)) − min
p∈FP

T
X

t=1

Ω(p,a(t))

=
T

X

t=1

k
X

i=1

ΩPi(t)
(pi(t)) − min

p∈FP

T
X

t=1

k
X

i=1

ΩPi(t)
(pi)

=

k
X

i=1

T
X

t=1

ΩPi(t)
(pi(t)) −

k
X

i=1

min
pi∈FPi

T
X

t=1

ΩPi(t)
(pi)

=

k
X

i=1

(

T
X

t=1

ΩPi(t)
(pi(t)) − min

pi∈FPi

T
X

t=1

ΩPi(t)
(pi))

=
k

X

i=1

RPi(T ) ≤
k

X

i=1

∆Pi(T ) .

So, RP (T ) ∈ o(T ) as desired.

Analogously, for the adversarial agent A we have the fol-
lowing lemma. The proof is very similar, and is therefore
omitted.

Lemma 3.2. If each adversarial agent Aj achieves regret
bound ∆Aj (T ), then the synthesized agent A achieves regret
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bound ∆A(T ) :=
P

j ∆Aj (T ). So, if ∆Aj (T ) ∈ o(T ) for all

j, then ∆A(T ) ∈ o(T ).

3.2.2 Social optimality
In this section, we investigate the behavior of the averaged

strategies p̄[T ] := 1
T

PT

t=1 p(t) and ā[T ] := 1
T

PT

t=1 a(t), as

well as the averaged costs 1
T

PT

t=1 Ω(p(t),a(t)). (Recall that
the negotiation version of our mechanism outputs the aver-
aged strategies, while the online version of our mechanism
incurs the averaged costs.)

Starting with the averaged strategies, we show that if all
players achieve no regret, we can guarantee convergence of
(p̄[T ], ā[T ]) to a set KP × KA of saddle-points of Ω. (While
the sequences p̄[T ] and ā[T ] may not converge, the distance of
p̄[T ] from KP and the distance of ā[T ] from KA will approach
zero; and, every cluster point of the sequence (p̄[T ], ā[T ]) will
be in KP × KA. Due to the convexity and compactness of
the feasible sets, each average strategy and each cluster point
will be feasible.)

Theorem 3.3. Let p̄[T ] = 1
T

PT

t=1 p(t), ā[T ] = 1
T

PT

t=1 a(t)

be the averaged, pure strategies of synthesized player P and
adversary A, respectively. If P , A each suffer sublinear ex-
ternal regret, then as T → ∞, (p̄[T ], ā[T ]) converges to a
(bounded) subset KP × KA of saddle-points of the player
cost function Ω.

Since Ω is continuous on its domain, Thm. 3.3 lets us con-
clude that the outcome of negotiation is a plan which ap-
proximately minimizes total player cost in nature: if we
choose T sufficiently large, then (p̄[T ], ā[T ]) must be close
to a saddle point, and so the costs must be close to the
costs of a saddle point. (To determine how large we need to
choose T , we can look at the regret bounds of the learning
algorithms of the individual agents.)

If we choose to run our mechanism in online mode, we
also need bounds on the average incurred cost. Since ω(p) =
maxa Ω(p,a), the following theorem tells us that the average
social cost approaches the optimal social cost in the long run.

Theorem 3.4. If P and A suffer sublinear external re-
gret, then as T → ∞,

1
T

PT

t=1 Ω(p(t),a(t)) → minp maxa Ω(p,a) .

The proofs of Theorems 3.3 and 3.4 appear in the long ver-
sion of this paper [5].

3.3 Communication costs
So far we have assumed that all player agents broadcast

their resource usages (and possibly their natural costs) to all
adversarial agents, and all adversarial agents broadcast their
prices to all player agents. With this assumption, on every
time step, each player sends one broadcast of size O(n) (her
resource usages) and receives n messages of size O(1) (the
resource prices), while each adversary sends one broadcast
of size O(1) and receives k messages of size O(n), for a total
of n + k broadcasts per step, and a total incoming band-
width of no more than O(nk) at each agent.2 Even under
this simple assumption, the cost is somewhat better than

2Technically, the agents could multicast rather than broad-
cast, so that, e.g., one player would never see another
player’s messages, but in practice one would not expect this
optimization to save much.

a centralized planner, which would have to receive k much-
larger messages describing each player’s detailed optimiza-
tion problem, and send k much-larger messages describing
each player’s optimal plan.

However, by exploiting locality, we can reduce bandwidth
even further: in many problems we can guarantee a priori
that player Pi will never use resource j, and in this case,
we never need to transmit Aj ’s price aj to Pi. Similarly, if
Pi decides not to use resource j on a given trial, we never
need to transmit 〈lji,pi(t)〉 to Aj . (To take full advantage
of locality, we must also set the weights dji so that players
do not receive payments from adversaries they would other-
wise not need to talk to.) So, by using targeted multicasts
instead of broadcasts, we can confine each player’s messages
to a small area of the network; in this case, no single node or
link will see even O(k+n) traffic. We can sometimes reduce
bandwidth even further by combining messages as they flow
through the network: for example, two resource consump-
tion messages destined for Aj may be combined by adding
their reported consumption values.

Finally, any implementation needs to make sure that the
agents cannot gain by circumventing the mechanism: e.g.,
no player should find out another’s plan before committing
to her own. In the long version we discuss how to prevent
circumvention by encrypting messages where appropriate.

4. DESIGN GOALS
In designing our mechanism, we hope to ensure that indi-

vidual, incentive-driven behavior leads to desirable system-
wide properties. Here, we establish some useful guarantees
for the negotiation version of our mechanism. The guar-
antees are convergence to Nash equilibrium, budget
balance, individual rationality, and efficiency.

These guarantees follow from the fact that the learned
negotiation outcome approaches a set of saddle-points of
Ω(p,a) in the limit (Thm. 3.3). By continuity of Ω, we can
therefore conclude that, if we allow sufficient time for nego-
tiation, the negotiation outcome is approximately a saddle-
point. (We will not address distributed detection of con-
vergence, but merely assume that we use our global regret
bounds to calculate a sufficiently large T ahead of time; ob-
viously efficiency could be improved by allowing early stop-
ping.)

Convergence to Nash equilibrium. When working with
selfish, strategic agents, we want to know whether a selfish
agent has an incentive to unilaterally deviate from its part
of the negotiation outcome. The following theorems show
that the answer is, at least approximately, no: in the limit
of large T , the negotiation outcomes p̄[T ], ā[T ] converge to a
subset of Nash equilibria. So, by continuity, (p̄[T ], ā[T ]) is an
approximate Nash equilibrium for sufficiently large T—that
is, each agent has a vanishing incentive to deviate unilater-
ally.

Theorem 4.1. Let FPi denote the feasible set of player
agent Pi (i ∈ {1, ..., k}) and FAj denote the feasible set of
adversarial agent Aj (j ∈ {1, ..., n}). We have:

∀i∀p′
i ∈ FPi∀ã ∈ KA, p̃ ∈ KP : ΩPi(p

′
i, ã) ≥ ΩPi(p̃i, ã).

Proof. Let p̃ ∈ KP , ã ∈ KA. We know (p̃, ã) is a saddle-

point of Ω with respect to minimization over FP and maximiza-

tion over FA. Hence, ∀p′ ∈ FP : Ω(p̃, ã) ≤ Ω(p′, ã). Since

Ω(p,a) =
P

m ΩPm
(pm,a), ∀p,a, we have in particular: ∀p′

i ∈
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FPi
: ΩPi

(p′
i
, ã)+

P

m6=i ΩPm
(p̃m, ã) = Ω(p′

i, p̃¬i, ã) ≥ Ω(p̃, ã) =

ΩPi
(p̃i, ã) +

P

m6=i ΩPm
(p̃m, ã). Thus, ΩPi

(p′
i, ã) ≥ ΩPi

(p̃i, ã),

∀p′
i ∈ FPi

.

Theorem 4.2. Let (p̃, ã) be a saddle-point of Ω(p,a) with
respect to minimizing over p and maximizing over a. We
have: ΩAj (ã

j , p̃) = maxaj∈FAj
ΩAj (a

j , p̃), ∀j ∈ {1, ..., n}.

Proof. Since
Pn

j=1 ΩAj
(ãj , p̃) = ΩA(ã, p̃) = maxa ΩA(a, p̃)

= maxa∈FA

Pn
j=1 ΩAj

(ãj , p̃) =
Pn

j=1 maxaj∈FAj
ΩAj

(aj , p̃),

we have
Pn

j=1(maxaj∈FAj
[ΩAj

(aj , p̃)] − ΩAj
(ãj , p̃)) = 0. On

the other hand, ∀j : maxaj∈FAj
[ΩAj

(aj , p̃)] − ΩAj
(ãj , p̃) ≥ 0.

Hence, ∀j : maxaj∈FAj
[ΩAj

(aj , p̃)] − ΩAj
(ãj , p̃) = 0.

Theorem 4.2 allows us to conclude that the individual part of
an adversarial agent’s negotiation outcome is a best-response
action:

Corollary 4.3. Let FAj denote the feasible set of adver-
sarial agent Aj (j ∈ {1, ..., n}) and FPi denote the feasible
set of player agent Pi (i ∈ {1, ..., k}). We have:

∀j∀aj ∈ FAj∀p̃ ∈ KP , ã ∈ KA : ΩAj (a
j , p̃) ≤ ΩAj (ã

j , p̃).

Budget balance. Since our overall goal is a socially opti-
mal plan, we would hope that our mechanism neither siphons
off money from the agents by running a surplus, nor requires
continuous investment to fund a deficit. This is the ques-
tion of budget balance. Since the agents make payments
only to one another (and not directly to the mechanism), in
one sense our mechanism is trivially budget balanced. How-
ever, a more interesting question is whether the mechanism
is budget balanced if we consider the adversarial agents to be
part of the mechanism—this additional property guarantees
that the adversarial agents do not, in the long run, siphon
off money or require external funding. Since we showed (in
Sec. 3.1) that the adversarial agents each have zero revenue
at any saddle point, and since the outcome of negotiation
is an approximate saddle point, our mechanism is (approxi-
mately) budget balanced in this sense as well.

Budget balance can be evaluated ex ante, ex interim, or
ex post, depending on whether it holds (in expectation) be-
fore the agents know their private information, after they
know their private information but before they know the
outcome of the mechanism, or after they know the outcome
of the mechanism. Ex-post budget balance is the strongest
property; our argument in fact shows approximate ex-post
budget balance.

Individual rationality. Strategic agents will avoid partic-
ipating in a mechanism if doing so improves their payoffs. A
mechanism is individually rational if each agent is no worse
off when joining the mechanism than when avoiding it. Just
as with budget balance, we can speak of ex-ante, ex-interim,
or ex-post individual rationality.

To make the question of individual rationality well-defined,
we need to specify what happens if an agent avoids the mech-
anism. If an adversarial agent refuses to participate, we will
assume that her corresponding resource goes unmanaged:
no price is announced for it, and the player agents pay their
natural costs for it. The adversarial agent therefore gets no
revenue, either positive or negative. If a player agent refuses
to participate, we will assume that she is constrained use no
resources, that is, 〈lji,pi〉 = 0 for all j. (So, we assume that
there is a plan satisfying these constraints.)

Since we showed that supaj [ΩAj (p, aj)−βj(νj(p))] = 0 (in
Sec. 3.1), Aj has (approximately) no incentive to avoid the
mechanism when we play an (approximate) saddle point. So,
the mechanism is approximately ex-post IR for adversaries.

If a player agent does not participate in the mechanism,
she has no chance of acquiring any resources. Since she
would not have to pay for joining and using no resources
(the remainder rj(a

j) is nonnegative), it is irrational not to
join. So, the mechanism is ex-post IR for players.

Efficiency. A mechanism is called efficient if its outcome
minimizes global social cost. Thm. 3.3 showed that the
mechanism finds an approximate saddle-point of Ω. We
showed in Sec. 3.1 that, in any saddle-point, the player cost
is minp ω(p) (the socially-optimal cost), and the adversary
cost is 0. So, in an approximate saddle-point, the social
cost is approximately optimal; the mechanism is therefore
approximately efficient.

5. RELATED WORK
The idea of using no-regret algorithms to solve OCPs in

order to accomplish a planning task is not new (e.g., [1]).
It has, for instance, been proposed for online routing in the
Wardrop setting of multi-commodity flows [2], where the
authors established convergence to Nash equilibrium for in-
finitesimal agents. In contrast with this line of work, we seek
globally good outcomes, rather than just equilibria.

Another body of related work is concerned with selfish
routing in nonatomic settings (with infinitesimal agents—
e.g., [2, 17]). Many of these works provide strong perfor-
mance guarantees and price of anarchy results considering
selfish agents. We consider a similar but not identical setup,
with a finite number of agents and divisible resources.

As mentioned before, our planning approach can be given
a simple market interpretation: interaction among player
agents happens indirectly through resource prices learned by
the adversaries. Many researchers have demonstrated exper-
imental success for market-based planners (e.g., [18, 9, 19,
21, 10, 15]). While these works experimentally validate the
usefulness of their approaches and implement distributivity,
only a few provide guarantees of optimality or approximate
optimality (e.g., [14, 21]).

Guestrin and Gordon proposed a decentralized planning
method using a distributed optimization procedure based on
Benders decomposition [13]. They showed that their method
would produce approximately optimal solutions and offered
bounds to quantify the quality of this approximation. How-
ever, as with most authors, they assumed agents to be obedi-
ent, i.e., to follow the protocol in every aspect. By contrast,
we address strategic agents, i.e., selfish, incentive-driven en-
tities prone to deviating from prescribed behavior if it serves
their own benefit. But, since the trick of dualizing con-
straints to decouple an optimization problem is analogous
to Benders decomposition, we can view our mechanism as a
generalization of Guestrin and Gordon’s method to decen-
tralized computation on selfish agents.

Designing systems that provably achieve a desired global
behavior with strategic agents is exactly the field of study
of classic mechanism design. Many mechanisms, though,
are heavy-weight and centralized, and are concerned nei-
ther with distributed implementation nor with computa-
tional feasibility. Attempting to fill this gap, a new strand
of work under the label distributed algorithmic mechanism
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design has evolved [7, 6, 21].
Our approach combines many advantages of the above

branches of work for multiagent planning. It is distributed,
and provides asymptotic guarantees regarding mechanism
design goals such as budget balance and quality of the learned
solution. If we consider the adversarial agents to be inde-
pendent, selfish entities that are not part of the mechanism,
the proposed mechanism is relatively light-weight; it merely
offers infrastructure for the participating agents to coordi-
nate their planning efforts through learning in a repeated
game. And, as the following section shows, its theoretical
guarantees translate into reliable practical performance, at
least in our small-scale network routing experiments.

6. EXPERIMENTS
We conducted experiments on a small multi-agent min-

cost routing domain. We model our network by a finite,
directed graph with edges E (physical links) and vertices V
(routers). Each edge e ∈ E has a finite capacity γ(e), as
well as a fixed intrinsic cost ce for each unit of traffic routed
through e. We assume that bandwidth is infinitely divisible.

Players are indexed by a source vertex s and a destination
vertex r. Player Psr wants to send an amount of flow dsr

from s to r. Psr’s individual plan is a vector fsr = (fe
sr)e∈E ,

where fe
sr ∈ [0, U ] is the amount of traffic that Psr routes

through edge e. (U is an upper bound, chosen ahead of time
to be larger than the largest expected flow.) Feasible plans
are those that satisfy flow conservation, i.e., the incoming
traffic to each vertex must balance the outgoing traffic. We
also excluded plans which route flow in circles.

If the total usage of an edge e exceeds its capacity, all
agents experience an increased cost for using e. This extra
cost could correspond to delays, or to surcharges from a
network provider. We set the global penalty for edge e to
be a hinge loss function βe(ν) = max{0, ueν}, so the total
cost of e increases linearly with the amount of overuse. For
convenience we also modeled each player’s demand dsr as a
soft constraint βsr(ν) = max{0, usrν}, although doing so is
not necessary to achieve a distributed mechanism.

Applying our problem transformation led to new, total
player cost Ω(f ,a) =

P

s,r

P

e∈E
cefe

sr+
P

e∈E
ΩAe(ae

cap, f)+
P

s,r ΩAsr (asr
d , f) in the mechanism. Here, for each edge e,

we introduced an adversarial agent Ae, who controls the cost
for capacity violations at e by setting the price ae

cap. And,
as a slight extension to our general description in Section
3, we introduced additional adversarial agents to implement
the soft constraints on demand; agent Asr chooses a price
asr

d for failing to meet demand on route sr.
With this setup, we ran more than 2800 simulations, for

the most part on random problem instances, but also for
manually-designed problems on graphs of sizes varying be-
tween 2 and 16 nodes. In each instance there were between
1 and 32 player agents. For no-regret learning, we used
the Greedy Projection algorithm [22] with ( 1√

t
)t∈N as the

sequence of learning rates.
A simple example of an averaged player plan after a num-

ber of iterations is depicted in Figure 1(d). In this experi-
ment, we had a 6-node network and three players P2,3, P1,4,
and P4,6 with demands 30, 70 and 110. We set c(2,3), c(3,2) =
10, and ce = 1 for all other edges e. Edges (5, 6) and (6, 5)
had capacities of 50, while all other capacities were 100.
Our method successfully discovered that P4,6 should send

as much flow as possible through the cheap edge (5, 6), and
the rest along the expensive path through (3, 2). Adversar-
ial agents successfully discouraged the players from violating
the capacity constraints, while simultaneously making sure
that as much demand as possible was satisfied. Also note
that player P2,3 served the common good by (on average)
routing flow through the pricey edge (2, 3) instead of tak-
ing the path through the bottleneck (6, 5); this latter path
would have been cheaper for P2,3 if we didn’t consider the
extra costs imposed by the adversarial agents.

The plots in Figs. 1(a)–(c) validate our theoretical re-
sults: Figs. 1(a)–(b) demonstrate that the regrets of the
combined agents P and A converge to zero, as shown in
Lem. 3.1 and Lem. 3.2. Fig. 1(c) demonstrates convergence
to a saddle-point of Ω. In the plot, the upper curve shows
maxa Ω(f̄[T ],a), while the lower curve shows minf Ω(f , ā[T ]).
The horizontal line is the minimax value of Ω. As guaran-
teed by Thm. 3.3, the three curves converge to one another.
While the fact of convergence in Figs. 1(a)–(c) is not a sur-
prise, it is reassuring to see that the convergence is fast in
practice as well as in theory.

7. DISCUSSION
We presented a distributed learning mechanism for use in

multiagent planning. The mechanism works by introducing
adversarial agents who set taxes on common resources. By
so doing, it decouples the original player agents’ planning
problems. We then proposed that the original and adver-
sarial agents should learn about one another by playing the
decoupled planning game repeatedly, either in reality (the
online setup) or in simulation (the negotiation setup).

We established that, if all agents use no-regret learning al-
gorithms in this repeated game, several desirable properties
result. These properties included convergence of p̄[T ], the
average composite plan, to a socially optimal solution of the
original planning problem, as well as convergence of p̄[T ] and
the corresponding adversarial tax-plan ā[T ] to a Nash equi-
librium of the game. We also showed that our mechanism is
budget-balanced in the limit of large T .

So far, we do not know in what cases our mechanism is
incentive-compatible; in particular, we do not know when
it is rational for the individual agents to employ no-regret
learning algorithms. Certainly, we can invent cases where
it is not rational to choose a no-regret algorithm, but we
believe that there are practical situations where no-regret
algorithms are a good choice. Investigating this matter, and
modifying the mechanism to ensure incentive compatibility
in all cases, is left to future work.

Compared to a centralized planner, our method can greatly
reduce the bandwidth needed at the choke-point agent. (The
choke-point agent is the one who needs the most bandwidth;
in a centralized approach it is normally the centralized plan-
ner.) In very large systems, agents Pi and Aj only need to
send messages to one another if Pi considers using resource
j, so we can often use locality constraints to limit the num-
ber of messages we need to send.

Our method combines desirable features from various pre-
vious approaches: like centralized mechanisms and some
other distributed mechanisms we can provide rigorous guar-
antees such as social optimality and individual rationality.
But, like prior work in market-based planning, we expect our
approach to be efficient and implementable in a distributed
setting. Our experiments tend to confirm this prediction.
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Figure 1: (a), (b): Average positive regret of synthesized agents, averaged over 100 random problems, as a
function of iteration number. Grey area indicates standard error. (c): Payoff Ω for the synthesized player
(upper curve) and adversary (lower curve) when P and A play their averaged strategy against a best-response
opponent in each iteration. Horizontal line shows minimax value. (d): Average plan for three agents in a
6-node instance after 10,000 iterations, rounded to integer flows. The displayed plan is socially optimal.
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