
Sigma Point Policy Iteration

Michael Bowling and Alborz Geramifard
Department of Computing Science

University of Alberta
Edmonton, AB T6G 2E8

{bowling,alborz}@cs.ualberta.ca

David Wingate
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109

wingated@umich.edu

ABSTRACT
In reinforcement learning, least-squares temporal difference meth-
ods (e.g., LSTD and LSPI) are effective, data-efficient techniques
for policy evaluation and control with linear value function ap-
proximation. These algorithms rely on policy-dependent expec-
tations of the transition and reward functions, which require all ex-
perience to be remembered and iterated over for each new policy
evaluated. We propose to summarize experience with a compact
policy-independent Gaussian model. We show how this policy-
independent model can be transformed into a policy-dependent form
and used to perform policy evaluation. Because closed-form trans-
formations are rarely available, we introduce an efficient sigma
point approximation. We show that the resulting Sigma-Point Pol-
icy Iteration algorithm (SPPI) is mathematically equivalent to LSPI
for tabular representations and empirically demonstrate compara-
ble performance for approximate representations. However, the ex-
perience does not need to be saved or replayed, meaning that for
even moderate amounts of experience, SPPI is an order of magni-
tude faster than LSPI.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Reinforcement learning, least-squares, policy iteration

1. INTRODUCTION
Linear least-squares value function approximation has shown to

be a promising tool for reinforcement learning. Linear methods
are well understood, easily analyzed, and have attractive theoreti-
cal properties. For these reasons, many successful applications of
reinforcement learning have opted to use some sort of linear archi-
tecture possibly in a nonlinear feature space, to avoid the theoretical
quagmire of general nonlinear function approximation.

There has been a steady progression of ideas in value function
approximation with linear architectures. The original ideas be-
gan with the TD algorithm [8], which was shown to be convergent

Cite as: Sigma Point Policy Iteration, M. Bowling, A. Geramifard and D.
Wingate, Proc. of 7th Int. Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons
(eds.),May,12-16.,2008,Estoril,Portugal,pp.379-386.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

under a linear approximation of the value function. While TD is
easy to implement, it is not data efficient: each experience tuple is
used once to update the value function weights and then discarded.
The TD approach was extended to least-squares TD (LSTD) [2],
which summarizes experience tuples and finds the best weight vec-
tor given a whole stream of experience. Although more data effi-
cient, LSTD’s experience summary is specific to the policy being
evaluated, and a new policy requires gathering more data. Least-
squares policy iteration (LSPI) [6] further extends LSTD by cre-
ating a fully off-policy algorithm capable of repeatedly improving
a policy without gathering any further data. The main drawback is
that the algorithm must store all past experience tuples and “replay”
them to update key statistics whenever the policy is changed. Thus,
while TD is guaranteed to converge and is policy-independent, it
is not data efficient. Conversely, LSPI is data-efficient, but policy-
dependent.

We propose a new algorithm which takes the next step. We main-
tain the data efficiency of LSPI, but do not require further data after
improving the policy, and do not require storing or replaying past
experience. The key contribution is a general method of transform-
ing a policy-independent model into the policy-dependent statistics
needed for use in calculating the linear least-squares approximation
of the value function.

We begin by defining a Gaussian MDP, which is a compact,
policy-independent model of the system. We then introduce a pol-
icy iteration algorithm where the critical step involves transforming
this policy-independent model into policy-dependent statistics. The
step relies on two critical (although reasonable and common) as-
sumptions about the features used by the approximator. Since the
needed transformation is often nonlinear, we present a principled
and efficient approximation based on sigma-points — the resulting
algorithm is named “Sigma Point Policy Iteration” (SPPI). We con-
clude with empirical results demonstrating that SPPI achieves com-
parable performance to LSPI, but with an order of magnitude less
computation. In addition we note that SPPI is far more amenable
to online control, can easily and efficiently make use of new data,
and can naturally incorporate prior knowledge.

2. BACKGROUND
Reinforcement learning is an approach to sequential decision

making in an unknown environment by learning from past inter-
actions with that environment [9]. In this paper we are specifically
interested in learning in Markov decision processes (MDPs). An
MDP is a tuple, (S,A,Pass′ ,Rass′ , γ), where S is a set of states,A
is a set of actions, Pass′ is the probability of reaching state s′ after
taking action a in state s, Rass′ is the reward received when that

379

transition occurs, and γ ∈ [0, 1] is a discount rate parameter1. A
trajectory of experience is a sequence s0, a0, r1, s1, a1, r2, s2, . . .,
where the agent in s0 takes action a0 and receives reward r1 while
transitioning to s1 before taking a1, etc.. The agent’s actions are
assumed to come from a policy π, where π(s, a) is the probability
of selecting action a from state s.

We are interested in the control problem: find a policy that max-
imizes the expected sum of future discounted rewards. Formally,

π∗ = argmax
π

Eπ

"
∞X
t=1

γt−1rt

˛̨̨̨
s0,

#
. (1)

It is often convenient to look at a policy’s value function. The state-
action value for a given policy is the expected sum of future dis-
counted rewards if the agent started from a particular state taking a
particular action,

V π(s, a) = Eπ

"
∞X
t=1

γt−1rt

˛̨̨̨
s0 = s, a0 = a,

#
.

The optimal policy maximizes this function at every state for some
action. We can write the value function recursively as,

V π(s, a) = Eπ [rt+1 + γV π(st+1, at+1)|st = s, at = a] .

Notice that experience tuples (st, at, rt+1, st+1, at+1) can be seen
as essentially samples of this expectation. For a particular value
function V let the TD error at time t be defined as,

δt(V) = rt+1 + γV (st+1)− V (st). (2)

Then, Eπ [δ(V π)] = 0, that is, the mean TD error for the policy’s
true value function given experience following that policy must be
zero. Given a policy π finding or approximating that policy’s value
function is know as policy evaluation and, as we will see, is an
important step to finding a good control policy.

Often the number of state-action pairs is too large to represent
V π as a table of values. A common approach is to approximate
V π using a linear function approximator. In particular, suppose we
have a function φ : S × A → <m, which gives a feature repre-
sentation of the state-action space. We are interested in approxi-
mate value functions of the form Vw(s, a) = φ(s, a)Tw, where
w ∈ <m are the parameters of the value function. Because the
policy’s true value function is probably not in our space of linear
functions, we want to find a set of parameters that approximates
the true function. A common approach is to use the observed TD
error on sample trajectories of experience to guide the approxima-
tion. We will look at two such approaches, TD and LSTD, and
show how in each case finding an approximate value function can
be used to find a good policy.

2.1 Temporal Difference Learning
Temporal difference learning (TD) is the traditional technique

for computing an approximate value function of a policy through
interaction with the process. The basic idea of one-step TD learn-
ing, also known as TD(0), is to adjust a state’s predicted value to
reduce the observed TD error. Given some new experience tuple
(st, at, rt+1, st+1, at+1), the update with linear function approxi-
mation is,

wt+1 = wt + αtut(wt),

where αt is a learning rate parameter and,

ut(w) = φ(st, at)
“
rt+1 + [γφ(st+1, at+1)− φ(st, at)]

Tw
”
.

1γ can only equal 1 if the total reward is known to be bounded.

Algorithm 1 : Least-squares temporal difference (LSTD)

1. Given samples of experience
`
st, at, rt+1, st+1, at+1

´
from

following policy π.

2. Estimate A and b from data.bA =
X
t

φ(st, at)
ˆ
φ(st, at)− γφ(, st+1, at+1)

˜T
bb =

X
t

φ(st, at)rt+1

3. Return w with extimated zero expected TD update.

w = bA−1bb
The weight vector is thus updated in the direction that will reduce
TD error. We call ut the TD update for the tth experience tuple.

The TD learning rule finds an approximate value function for a
given policy, but it can also be used to find a good policy through
policy iteration. Given an initial policy π1, an approximate value
function is found using TD having weight vector w1. A new pol-
icy π2 is constructed to be greedy with respect to this approximate
value function parameterized by w1. π2 is then evaluated with TD
to find w2 and the procedure is repeated until convergence or a
maximum number of iterations is reached. When evaluating a pol-
icy it is not strictly necessary to wait for w to converge when em-
ploying TD. In fact, if only one step of experience is used when
evaluating a policy, we have the gradient-descent Sarsa algorithm.
This is the most common method for using TD to find a good con-
trol policy.

2.2 Least-Squares TD
The TD update ut is just one sample. Rather than repeatedly ap-

plying sampled updates until w converges, it may be more efficient
to directly estimate the weight vector w for which the expected TD
update is zero. The expected TD update can be written as,

Eπ[u] = Eπ
h
φ(s, a)(r + [γφ(s′, a′)− φ(s, a)]Tw)

i
,

where s, a, r, s′, a′ are samples of st, at, rt+1, st+1, at+1 while
following policy π. If we set the expectation to zero and solve
for w we get,

w = A−1b (3)

A = Eπ
h
φ(s, a)[φ(s, a)− γφ(s′, a′)]T

i
(4)

b = Eπ[φ(s, a)r]. (5)

By using a Monte Carlo estimate of A and b based on samples of
experience from following policy π, we have the LSTD algorithm,
which is summarized in Algorithm 1. It has been shown that the
move from the TD algorithm to the LSTD algorithm is equivalent
to moving from a model-free method to a model-based method [1].

2.3 Least-Squares Policy Iteration
LSTD approximates the value of one policy π, but suppose the

goal is to find a good policy. It seems natural to embed LSTD in-
side of policy iteration. Since LSTD requires experience that is
explicitly sampled from the policy being evaluated, each improve-
ment to the policy requires new data to be gathered. Not only is it
often not convenient to gather new data after each policy change,
it also can be very data inefficient to discard all previous experi-
ence. Least-squares policy iteration (LSPI) solves this problem by

380

Algorithm 2 : Least-squares policy iteration (LSPI)

1. Given samples of experience
`
st, at, rt+1, st+1, at+1

´
.

2. Estimate b̃, bb =
X
t

φ(st, at)rt+1.

3. Repeat while i < maximum number of iterations:

(a) Policy Evaluation: Estimate Ã and compute wi

bA =
X
t

φ(st, at)(φ(st, at)−

γEπ[φ(st+1, at+1)|st+1])T

(b) Policy Improvement: Set πi to be the greedy policy
with respect to wi.

(c) If ||wi − wi−1|| < ε return wi.

(d) Increment i.

using an off-policy approximation of the expected TD update. This
approximation can be estimated in a Monte Carlo fashion from ex-
perience, regardless of the policy that the experience was sampled
from. Returning to the expected TD update,

Eπ[u] = Eπ
h
φ(s, a)(r + [γφ(s′, a′)− φ(s, a)]Tw)

i
= Eπ

h
φ(s, a)(r + [γφ(s′, a′)− Eπ[φ(s′, a′)|s′]]Tw)

i
(6)

≈ Eπ0

h
φ(s, a)(r + [γφ(s′, a′)− Eπ[φ(s′, a′)|s′]]Tw)

i
(7)

where Equation 6 is an application of iterated expectations, and the
final approximation just involves replacing π with any convenient
policy π0, for example, the policy used to collect the experience
samples. We can then compute the weight vector with a zero ap-
proximate expected TD update,

w = Ã−1b̃ (8)

Ã = Eπ0

h
φ(s, a)

`
φ(s, a)− γEπ[φ(s′, a′)|s′]

´T i (9)

b̃ = Eπ0 [φ(s, a)r]. (10)

Least-squares policy iteration uses the above approximation in
an iterative fashion. Given the current best policy, Ã and b̃ are
estimated in a Monte Carlo fashion by taking a pass over the in-
put experience, computing Eπ[φ(s′, a′)|s′], the expected resulting
next state-action feature vector if policy π selected the next action
a′ (If π is deterministic then this expectation is just φ(s′, a′) where
a′ is the action selected by π in state s′. This was how LSPI was
originally defined since all the policies being evaluated were greedy
with respect to some value function.) The Monte Carlo estimates
are then used to compute the weight vector with zero estimated TD
update.

The new weight vector implies a new policy, e.g., greedy with
respect to the resulting value function. An approximate value func-
tion can then be estimated for this new policy, and this is repeated
until either the change in the computed weight vector is small or
a predetermined maximum number of iterations is reached. The
LSPI algorithm is summarized in Algorithm 2.

3. THE GAUSSIAN MDP MODEL
Our goal is learn a policy-independent model of a given MDP,

which can then be transformed into a policy-dependent model. This
model will be used in a policy-iteration loop, which will allow us
to successively improve an initial policy.

As shown in Equations 3–5, least-squares methods use second-
order statistics about the relationships between feature vectors as
a key quantity. For example, the first term comprising the matrix
A is the expected outer product Eπ

ˆ
φ(st, at)φ(st, at)

T
˜
, which

can be thought of as a covariance matrix. In effect, least-squares
methods are implicitly modelling the system as a large Gaussian
with specific first and second moments.

It is this insight that motivates our development of an explicit
Gaussian MDP model, which completely characterizes the infor-
mation needed for policy iteration, but in a policy-independent way.
We will now develop our Gaussian MDP model, but wish to em-
phasize that we are not making any Gaussian assumptions about
the domains that will be modeled: we are not, for example, as-
suming that reward functions or transition functions have any sort
of Gaussian form. Rather, we will be focusing on covariance-like
relationships between feature vectors.

In order to create a policy-independent model of a given MDP,
we want to model the system’s transitions from state-action pairs
to next states. Therefore, we will make use of two different feature
mappings. In addition to φ(s, a) ∈ <m, we also assume we are
given a feature mapping on states only φ(s) ∈ <n. We make two
explicit assumptions about this representation:

A1. There exists a mapping Φ, such that φ(s, a) = Φ(φ(s), a).

A2. For any policy π that the agent can execute, there exists a
mapping Π, such that π(s, a) = Π(φ(s), a).

Assumption A1 requires that φ(s) contain no less information about
state s than φ(s, a). Assumption A2 requires φ(s) to contain all the
information about s that a policy might depend upon. These two as-
sumptions are quite common. Consider the very basic representa-
tion choice that takes an arbitrary set of features over states φ(s) ∈
<n and replicate these features for each action. So φ(s, a) ∈ <|A|n
has the ith block of the vector set to φ(s) when taking action i and
zero otherwise. For any value based policies (i.e., greedy, ε-greedy,
Boltzmann), this representation satisfies both Assumptions A1 and
A2. Many other approximation architectures satisfy these assump-
tions as well.

We now define the Gaussian MDP model, which will form the
basis for our model-based approach. In our proposed model, states
themselves are vectors in <n, but they can be thought of as state
feature vectors. Actions are from an arbitrary set A. Given a state
feature vector φ(s) and an action a the MDP stochastically pro-
duces a next-state feature vector φ(s′) and a reward r. In a Gaus-
sian MDP these random variables are distributed as a multivariate
Gaussian with the following form,

φ(s′) ∼ N(ms′ + FΦ(φ(s), a), Ss′) (11)

r ∼ N(mr +RΦ(φ(s), a), s2r), (12)

where ms′ ∈ <n×1, mr ∈ <1×1, Ss′ ∈ <n×n, sr ∈ <1×1,
F ∈ <n×m, and R ∈ <1×m are all parameters of the model.
Notice that unlike the statistics computed by LSTD, this model is
independent of policy and is a fully generative model.

3.1 Learning a Gaussian MDP
Now we will show how we can estimate the needed parameters

from data. Then, in the next section, we will show how we can
perform an efficient form of policy iteration with this model.

381

Assume we are given samples from the transition and reward
model, (φ(st), at, rt+1, φ(st+1))t=1...T . We can find the maxi-
mum likelihood estimate for the parameters (µs′ , F) and (µr, R)
through simple linear regression between the inputs φ(st, at) and
the outputs φ(st+1) and rt+1, respectively. The maximum likeli-
hood estimates of the covariance and variance parameters, Σs′ and
σ2
r , are then just the averages of the outer products of the residu-

als. We can arrive at the same maximum likelihood parameter es-
timates with an alternative procedure, which will prove convenient
later. Let xt = [φ(st, at) rt+1 φ(st+1)]T be a column vector
summarizing the tth sample of experience. Consider the unknown
joint distribution from which the experience xt is generated. As-
sume this joint distribution is a multivariate Gaussian and so has
the form,

x ∼ N

0@24 µsa
µr
µs′

35 ,
24 Σsa Σsa,r Σsa,s′

Σr,sa Σr Σr,s′

Σs′,sa Σs′,r Σs′

351A . (13)

We call this joint distribution the joint Gaussian model. Now, we
can write the conditional distributions φ(s′)|φ(s, a) and r|φ(s, a),

φ(s′)|φ(s, a) ∼ N
`
µs′ − F (φ(s, a)− µsa),Σs′ − FΣsa,s′

´
r|φ(s, a) ∼ N

`
µr −R(φ(s, a)− µsa),Σr −RΣsa,r

´
where,

F = Σs′,saΣ
−1
sa R = Σr,saΣ

−1
sa

Notice that these distributions match the form of the Gaussian MDP
model from Equations 11 and 12, with model parameters,

F = Σs′,saΣ
−1
sa R = Σr,saΣ

−1
sa

ms′ = µs′ − Fµsa mr = µr −Rµsa (14)

Ss′ = Σs′ − FΣsa,s′ s2r = Σr −RΣsa,r.

If we use maximum likelihood to estimate the parameters of the
joint Gaussian model from Equation 13, then the MDP model pa-
rameters above are, in fact, the maximum likelihood estimators for
the MDP model.

In summary, we can estimate the parameters of a Gaussian MDP
model by finding the maximum likelihood parameters of the joint
Gaussian model of xt. We can then apply the Equations in 14 to
compute the MDP model parameters, although we will find it more
convenient to simply work in the space of the joint Gaussian model.

4. SIGMA POINT POLICY ITERATION
In this section, we show how to perform policy iteration on our

Gaussian MDP model. Like any policy iteration method, there are
two elements: policy evaluation and policy improvement. Recall
that the Gaussian MDP model itself is independent of any pol-
icy. We need to transform this Gaussian MDP model into a form
suitable for use in evaluating a specific policy using a linear least-
squares method.

Our method works as follows. We can think of the informa-
tion needed for linear least-squares policy evaluation as statistics
about some large random variableMπ . We can think of our Gaus-
sian model as some other large random variable M∅. On each
iteration, we will transform our policy-independent joint Gaussian
modelM∅ into a policy-dependent modelMπ , which will contain
exactly the information needed to compute the linear least-squares
estimate of the value function.

The key conceptual element to our algorithm involves a mapping
Tπ which transformsM∅ intoMπ . Specifically, it transforms the
experience summarized about φ(s′) into information about φ(s′, a′),

where a′ is drawn according to policy π. The existence of such a
mapping relies explicitly on Assumptions A1 and A2 (see Section
3). Because Tπ will generally be nonlinear, a closed-form solution
of the transformation will rarely be available. For such cases, we
propose a sigma point approximation as a principled and efficient
solution.

We will now explain the mapping Tπ in detail. Recall that we
can approximate the expected TD update as,

Eπ[u] ≈ Eπ0

»
φ(s, a)[r+ (γEπ[φ(s′, a′)|φ(s′)]−φ(s, a))Tw]

–
,

(15)
where π is the policy to be evaluated and π0 a policy of conve-
nience. In particular, we will choose π0 to be the policy used
to collect the data for estimating the Gaussian model. Define the
following transformation Tπ on vectors x from our joint Gaussian
model,

Tπ

0@24 φ(s, a)
r

φ(s′)

351A =

24 φ(s, a)
rP

a′ Φ(φ(s′), a′)Π(φ(s′), a′)

35 .
Notice that Tπ leaves the first two components of the vector un-
changed, but replaces φ(s′) with the expectation of φ(s′, a′) if π
were used to select a′ from s′. In other words, the third component
is Eπ[φ(s′, a′)|φ(s′)].

The results of the mapping have exactly the needed properties.
The distribution of Tπ(x) is such that (i) the marginal distribution
of φ(s, a) is from π0, (ii) the conditional distribution of φ(s′) and
r given φ(s, a) is from the maximum likelihood estimate of the
Gaussian MDP, and (iii) the expectation of φ(s′, a′) given φ(s′) for
policy π is part of Tπ(x). These are exactly the terms appearing
in the approximation of the expected TD update in Equation 15.
Moreover, the first and second moments of Tπ(x) are all that are
needed to compute the approximation. Specifically,

E[u] ≈ (Σsa,r + µsaµ
T
r)− (Σsa + µsaµ

T
sa)w

+ γ(Σsa,s′a′ + µsaµ
T
s′a′)w.

Given these mean and covariance terms, the weight vector w for
which this approximation is zero can then be computed as,

A = Σsa + µsaµ
T
sa − γ(Σsa,s′a′ + µsaµ

T
s′a′) (16)

b = Σsa,r + µsaµ
T
r

w = A−1b.

We now must estimate the first and second moments of a trans-
formed multivariate Gaussian distribution. If the transformation Tπ
is linear then the resulting transformed random variable would also
be an easily computed Gaussian. In general, though, Tπ will be a
nonlinear function.

4.1 Sigma-Point Approximations
Abstractly, we now have the problem of propagating the Gaus-

sian random variable x through the nonlinear function Tπ , and
computing the first two moments of the result.

Sigma-point approximations, or “unscented transformations” [4],
are a general method of propagating an arbitrary distribution through
a nonlinear function. The method is conceptually simple, and should
be thought of as a deterministic sampling approach. Suppose we
are given a random variable Y = f(X) that is a nonlinear function
of a Gaussian random variable X . Instead of recording the dis-
tribution information of X in terms of a mean and covariance, we
represent the same information with a small, carefully chosen num-
ber of sigma points. These sigma points are selected so that they

382

have the same mean and covariance as X , but the advantage is that
they can be propagated directly through the nonlinear function f .
We then compute the desired posterior statistics of the propagated
points as approximations of the statistics of Y .

Sigma-point approximations should not be confused with parti-
cle filters. While they are similar in spirit, there are several im-
portant differences. Particle filters typically allow a multi-modal
distribution over states, while sigma-point approximations require
a Gaussian; it is the Gaussian assumption which gives the sigma-
point approximation its strong theoretical guarantees with a small
number of points. Also, where particle filters use random sampling,
sigma-point approximations use deterministic sampling.

Sigma point approximations not only perform well in practice,
but are theoretically well grounded. They are provably accurate to
at least second order for any f and distribution of X , and are ac-
curate to third order if X is Gaussian. Fourth order terms can even
sometimes be corrected. Sigma point approximations are exact if
the function f is linear, which will be important later as we relate
sigma-point policy iteration to LSPI.

4.2 Using Sigma-Points to Transform Policies
We now present a more detailed explanation in the context of our

problem of computing the first two central moments of Tπ(x). The
sigma-point approximation deterministically selects a set of points
xi=1...2d+1 from the original distribution, where d = m + n + 1
is the dimensionality of the distribution x. Each sigma point is also
assigned a weight, wi, such that the weighted sum of sigma points
is the original distribution’s mean and the weighted sum of outer
products of differences from the mean is the original distribution’s
covariance matrix.

The procedure we used for selecting sigma points is x1 = µx,
x2i:2i+1 = µx ± (

√
Σx)i with weights x1 = κ/(κ + d) and

xi>1 = 0.5/(κ+ d). The experiments in this paper all use κ = 0.
The nonlinear function is then applied to each point and the ap-
proximated first two central moments are just the weighted mean
and outer product differences, i.e.,

µ̃y =

2d+1X
i=1

wiTπ(xi) (17)

Σ̃y =

2d+1X
i=1

wi(Tπ(xi)− µ̃y)(Tπ(xi)− µ̃y)T .

We can then use the resulting transformed mean and covariance (µ̃y
and Σ̃y) in Equation 16 to find the weight vector for our approxi-
mation of the policy’s value function.

The sigma point approximation thus forms the crux of sigma
point policy iteration. On each iteration, we transform a set of
sigma points from our joint Gaussian model using our current best
policy and compute the first and second order statistics of the trans-
formed points. The resulting means and covariances are used to
solve for a new weight vector, which defines a new policy. This
is repeated until either the change in the weight vector is small or
a predetermined maximum number of iterations is reached. The
SPPI algorithm is summarized in Algorithm 3.

4.3 Discussion
There are a number of interesting observations that can be made

about SPPI and LSPI.

4.3.1 Time and Memory Analysis
SPPI summarizes the input experience in a compact policy-inde-

pendent model that requires only O(m2) space. As such, after a
single pass over the input, the experience can be deleted. For each

Algorithm 3 : Sigma point policy iteration (SPPI)
1. Given samples of experience (φ(st), at, rt+1, φ(st+1)) esti-

mate a joint Gaussian model (as in Equation 13),

µ =

24 µsa
µr
µs′

35 = 1
T

P
t

24 φ(st, at)
rt+1

φ(st+1)

35 ,

Σ =

24 Σsa Σsa,r Σsa,s′

Σr,sa Σr Σr,s′

Σs′,sa Σs′,r Σs′

35 =

1
T

P
t

24 φ(st, at)
rt+1

φ(st+1)

3524 φ(st, at)
rt+1

φ(st+1)

35T − µµT

2. Repeat while i < maximum number of iterations:

(a) Sigma point approximation: Compute the first two mo-
ments of Tπi(x) (see Equation 17).

(b) Policy Evaluation: Compute wi from the first two mo-
ments of Tπi(x) (see Equation 16).

(c) Set πi to be the greedy policy with respect to wi.

(d) If ||wi − wi−1|| < ε return wi.

(e) Increment i.

iteration, an additional O(m2) space is used to transform and sum-
marize the sigma points. Meanwhile, O(Tm2) time is needed to
compute the joint Gaussian model, but then each iteration only re-
quires O(|A|m2 + m3) time. Contrast this with LSPI, which re-
quiresO(m2 +Tm) space andO(T

`
|A|m+m2

´
+m3) time per

iteration as the experience data needs to be saved and replayed with
each change to the policy. Note that the efficient incorporation of
new data, without any dependence on T makes SPPI significantly
more applicable to online use.

4.3.2 Relationship to LSTD/LSPI
SPPI is using an approximation (based on sigma points) to com-

pute the weight vector with approximately zero expected TD up-
date, and so, in general, will find a different policy than LSPI.
Under certain circumstances this approximation is exact and SPPI
will find the same weight vector and policy as LSPI if given the
same samples of experience. In particular, consider the case of a
Markov chain where |A| = 1. Notice that Assumption A1 forces
φ(s, a) = φ(s) in this case. Hence, Tπ is actually the identity map
and as a result the sigma point approximation is exact. Moreover,
SPPI will compute the same approximate value function as LSTD.

Similarly, consider a tabular representation of an MDP. Each
state s and state-action pair (s, a) is given a unique feature and
all feature vectors consist of a single non-zero entry. The transfor-
mation Tπ can be written as a matrix multiplication,

Tπ(x) =

24 I 0 0
0 I 0
0 0 P

35x,
where P is an |S||A| × |S| matrix such that the entry ((s, a), s′) is
the probability of π selecting action a in state s if s = s′ and zero
otherwise. Since Tπ is a linear transformation, the sigma point
approximation is exact, and SPPI will produce the same output as
LSPI.

383

.1

.1

.1 .1

.1 .1.1

.1

.9 .9 .9

.9

.9

.9 .9
2 3 41

Right
Left

.9

Figure 1: Chain walk domain with four states

4.3.3 Implementation Details
There are some subtleties to the implementation. First, the method

calls for a matrix square root. There are an infinite number of suit-
able square roots, all of which are related to each other by orthonor-
mal transformations. The literature prefers the Cholesky decompo-
sition, because it is fast and numerically stable, and because it can
be used in square-root versions of Kalman-filter algorithms [10].

The second issue is that when the new Gaussian random variable
Tπ(x) is constructed, its covariance matrix is not guaranteed to be
symmetric positive-definite, which means that a Cholesky decom-
position will fail on it. There are a number of possible ways to
force it to be positive definite: Higham presents an optimal method
(with respect to the Frobenius norm) of finding the nearest SPD
matrix to a given matrix A [3], and other similar methods exist.
Unfortunately, his method essentially zeros out any negative eigen-
values, making the result rank-deficient. Another popular approach
is to replace any negative eigenvalues with small positive constants,
which preserves the rank.

Note that the inverse in Eq. 16 does not need to be computed
explicitly, since only an inverse-vector product is needed. Instead,
an iterative linear solver should be used, such as conjugate gradi-
ents or GMRES [7]. This is especially preferred if the matrix A is
sparse.

5. SETUP OF EMPIRICAL EVALUATION
In this section we investigate the empirical performance of SPPI

as compared to LSPI. As SPPI depends on an additional approxi-
mation, these results focus on evaluating the effect of this approxi-
mation on finding good policies. In addition, we are also interested
in the computational costs of the two approaches.

The two algorithms were compared in four problem domains:
random MDPs, the chain walk, the inverted pendulum, and a con-
tinuous maze domain. The chain walk and inverted pendulum were
both used in the original evaluation of LSPI [6]. In all domains, the
algorithms were given a maximum number of 25 iterations and a
tolerance of ε = 10−6. They were each also given the same ex-
perience always generated from the random policy. In all cases a
problem specific feature map was used for φ(s) and the features
were replicated for each action to create the stacked φ(s, a) as de-
scribed in Section 3.

For the random MDPs and chain walk domain, the resulting poli-
cies were evaluated in terms of average reward over 1000 steps with
the whole process repeated 50 times. For the pendulum domain, the
setup was the same except that trials were a maximum of 3000 steps
repeated 200 times. For the continuous maze, 30 trials of 50,000
steps were used.

5.1 Random MDPs
We generated random MDPs with 50 states, 3 actions, randomly

generated transition probabilities, and uniform random state action
rewards from the interval [−0.5, 0.5]. Each algorithm was pro-
vided with a 1000 step trajectory as experience samples. In the

0

0.2

0.4

0.6

0.8

1.0

T
ab

ula
r

A
ppro

x

20
 S

ta
te

s

50
 S

ta
te

s

SPPI LSPI

A
v
e

ra
g
e

 R
e

w
a
rd

4.6e-3 5e-3 2.0e-3 2.7e-2

4.7e-3 5e-3 2.0e-3 2.7e-2

No No No No

MDP Chain
Figure 2: Average reward of SPPI and LSPI in random MDPs
and chain walk.

first experiment, a tabular feature representation was used, and in
the second experiment each state was given a randomly generated
feature vector with n = 25. The discount rate was 0.9.

5.2 Chain Walk
First introduced by Koller and Parr [5], the chain walk environ-

ment consists of n states with reward of 0, except when taking ac-
tions in the two goal states where it is +1. The two actions move
the agent left or right, although with probability 0.1 the action has
the opposite effect. Figure 1 illustrates a chain walk with 4 states.
We examined two chain domains. The first had 20 states with the
goals at state 1 and 20, and the algorithms were given a 1000 step
trajectory. The second had 50 states with goals at state 11 and 40,
and the algorithms were given a 2000 step trajectory. In both cases
the state feature vector contained five features, with the the ith fea-
ture for state s being si−1. More detail about the chain walk and
the difficulties with low degree polynomial feature approximation
can be found in the work of Lagoudakis and Parr [6].

5.3 Inverted Pendulum
The episodic inverted pendulum task consists of a pendulum and

a cart. The goal is to balance the pendulum on the cart. The states
are the vertical angle (θ) and angular velocity (θ̇) of the pendulum,
and there are three actions: right-force, left-force, and no-force,
where uniformly distributed zero-mean noise up to 20% of normal
force is added to the action. The reward is zero as long as θ <
π
2

. Otherwise, the episode is finished with a reward of −1. The
state features consisted of a constant and nine radial basis function
features. The algorithms were evaluated based on the length of the
episode which was capped at 3000. See the work of Lagoudakis
and Parr [6] and Wang et al. [11] for details.

5.4 Continuous Maze
In this domain an autonomous robot must navigate a simple maze.

The state space consists of x, y coordinates and an orientation θ.
The agent has four actions: move forward, move backward, and
turn left / right by 15 degrees. The reward signal is given as a
Gaussian centered at the goal. The features were generated using
100 radial basis functions scattered randomly throughout the state
space. Specifically, φ(s)i = G(s−ci;σ2) where ci is the center of
the i’th Gaussian, σ2 is its variance, and G is the Gaussian density
function. This results in a “soft unit-basis encoding” of the state

384

5 10 20 50 100 200 500 1000
0

500

1000

1500

2000

2500

3000

Episode

L
en

g
th

 o
f

B
al

an
ci

n
g

SPPI

LSPI

Figure 3: Average reward of SPPI and LSPI in the pendulum
problem

0

25

50

75

100

125

T
ab

ula
r

A
ppro

x

20
 S

ta
te

s

50
 S

ta
te

s

50
0

Eps

10
00

 E
ps

SPPI - Modeling SPPI - Iteration LSPI - Iteration

MDP Pendulum

C
lo

c
k

ti
m

e
/
st

e
p

 (
m

s)

2.5e-3 5e-4 8.0e-4 8.6e-5 1.1e-2 1.2e-2

1.8e-3 1.6e-4 1.5e-4 6.2e-5 1.3e-2 2.7e-2

1.8e-3 1.6e-4 1.8e-4 4.7e-5

Chain

Figure 4: Timing results of SPPI and LSPI in our three do-
mains.

space.

6. EMPIRICAL RESULTS
Figure 2 shows the average reward per time step obtained by the

two algorithms for the random MDP and chain walk domains. For
the tabular-based random MDPs, we know SPPI will produce the
same policy as LSPI, and indeed the empirical performances of the
approaches are identical. Somewhat surprisingly, SPPI suffered no
observable degradation (relative to LSPI) when function approxi-
mation was used, even though the sigma point approximation in
this case is inexact. In fact, its performance across all four experi-
ments is indistinguishable from LSPI.

Figure 3 shows the performance of SPPI and LSPI on the pen-
dulum task for increasing amounts of training data. Notice that for
better visibility the horizontal axis is not uniformly distributed. On
this more complex problem, SPPI remains competitive with LSPI,
although LSPI has a noticeable advantage with medium to large
amounts of data.

Figure 4 plots a time comparison of the two algorithms on the
three domains. The horizontal axis shows the domain, while the

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

Amount of training data

A
ve

ra
g

e
re

w
ar

d

LSPI

SPPI

Figure 5: Performance results of SPPI and LSPI in the maze
domain.

vertical axis shows the clock-time in milliseconds. For each envi-
ronment, we show both the time for the initial model construction
as well as the per iteration time for SPPI along side the per iteration
for LSPI. Although SPPI needs extra time to construct the Gaussian
model, the time is not significant and is usually made up for after
just one single step of policy iteration. In practice, both techniques
required a similar number of policy iteration steps (5–7) but with
SPPI running approximately an order of magnitude faster on the
larger domains.

Finally, Figure 5 shows the performance of SPPI and LSPI on
the maze domain for increasing amounts of training data. In this
case, SPPI consistently outperforms LSPI. The maximum reward
possible in this domain is 1.0, implying that SPPI is performing
very well relative to optimal performance. Again, SPPI also per-
formed well in terms of wall clock time: to compute a policy with
100,000 training points, SPPI took 22 seconds while LSPI took 549
seconds.

Because SPPI is an approximation of LSPI, SPPI’s superior per-
formance is quite unexpected. Figure 6 illustrates why this occurs.
The maze is simple, and there are two acceptable paths to the goal:
LSPI chooses one path which is slightly shorter, but which has two
turns, while SPPI chooses a slightly longer path with only one turn.
The problem is with the final turn: LSPI consistently turns too soon,
and clips the corner of the wall. In this domain, when an agent
bumps into a wall, no motion occurs. Since the policy determinis-
tically maps states to actions, and since the state does not change,
the agent bumps into the wall forever. To help counter this, we also
tested with a mildly stochastic policy. While the occassional ran-
dom actions sometimes allowed the agent to escape this trap, it usu-
ally could not. In contrast, SPPI chose a path which did not involve
the second turn, and never got stuck. This problem could perhaps
be dealt with by adding more features (thereby giving higher reso-
lution to problematic regions) or by adding a small negative reward
for bumping into walls (thereby encouraging agents to walk down
the middle of the hall). In any case, the improved performance
seems to be largely due to chance, but does illustrate that different
policies can have other properties (such as robustness) that are not
explicitly optimized for.

These results suggest three broad conclusions: in tabular do-
mains, SPPI and LSPI perform equally well, as expected. In some

385

Goal

Start

LSPI

SPPI

Figure 6: Example solution paths on the maze domain.

domains (pendulum) the approximate nature of SPPI harms perfor-
mance, but in other domains (maze), the approximate nature helps.
In all cases, SPPI is able to learn policies much more quickly than
LSPI for large data sets, reflecting the fact that the complexity of
the policy iteration stages do not depend on the amount of data.

7. CONCLUSION
We have proposed a new linear least-squares method called Sigma

Point Policy Iteration. We introduced the Gaussian MDP model,
which captures policy-independent statistics about the process. We
then showed that under reasonable conditions on the features used
for approximation that this model can be be transformed into a
policy-dependent form suitable for least-squares policy evaluation.
We described how sigma-points can be used to approximate the
transformation efficiently. The result is an algorithm for model-
based policy iteration with linear function approximation that does
not require data to be saved or replayed. Our empirical results sug-
gest SPPI is viable, demonstrating on a number of domains that
it generates policies on-par with LSPI while requiring an order of
magnitude less computation.

There are several exciting directions for future work. First, as
we have briefly noted, the complexity of SPPI does not depend
upon the number of data points used to estimate the model. This
means that new experience can be efficiently incorporated into the
Gaussian MDP model. Therefore, it may be possible to employ
SPPI in an online fashion, which is not practical with LSPI. Second,
SPPI’s explicit construction of a model makes it possible to explore
a more Bayesian approach for fitting the model from data. Even an
uninformed prior might provide a useful regularization effect, and
a more complicated prior could allow for the natural inclusion of
domain and circumstance specific knowledge, such as experience
with a similar MDP.

Third, higher-order unscented transforms may further improve
the accuracy of the method by incorporating third and fourth order
statistics into the model. Finally, it may be possible to incorporate
knowledge of the policy transformation (e.g., greedy policies result
in piecewise linear transformations) to further improve the sigma
point approximation accuracy.

Acknowledgments
Michael Bowling and Alborz Geramifard were supported by NSERC,
iCore, and Alberta Ingenuity through the Alberta Ingenuity Centre
for Machine Learning. David Wingate was supported by an NSF
Graduate Research Fellowship.

8. REFERENCES
[1] J. A. Boyan. Least-squares temporal difference learning. In

Proceedings of the Sixteenth International Conference on
Machine Learning, pages 49–56. Morgan Kaufmann, San
Francisco, CA, 1999.

[2] S. Bradtke and A. Barto. Linear least-squares algorithms for
temporal difference learning. Machine Learning, 22:33–57,
1996.

[3] N. J. Higham. Computing a nearest symmetric positive
semidefinite matrix. Linear Algebra and its Applications,
103:103–118, 1988.

[4] S. Julier and J. K. Uhlmann. A general method for
approximating nonlinear transformations of probability
distributions. Technical report, University of Oxford, 1996.

[5] D. Koller and R. Parr. Policy iteration for factored MDPs. In
Proceedings of Uncertainty in Artificial Intelligence (UAI),
pages 326–334, 2000.

[6] M. G. Lagoudakis and R. Parr. Least-squares policy iteration.
Journal of Machine Learning Research, 4:1107–1149, 2003.

[7] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS
Publishing, Boston, 1996.

[8] R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

[9] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[10] R. van der Merwe and E. A. Wan. The square-root unscented
Kalman filter for state and parameter-estimation. In
International Conference on Acoustics, Speech, and Signal
Processing, 2001.

[11] H. O. Wang, K. Tanaka, and M. F. Griffin. An approach to
fuzzy control of non-linear systems: Stability and design
issues. IEEE Transactions on Fuzzy Systems, 4(1):14–23,
1996.

386

