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ABSTRACT
Bots for Real Time Strategy (RTS) games provide a rich challenge
to implement. A bot controls a number of units that may have to
navigate in a partially unknown environment, while at the same
time search for enemies and coordinate attacks to fight them down.
Potential fields is a technique originating from the area of robotics
where it is used in controlling the navigation of robots in dynamic
environments. Although attempts have been made to transfer the
technology to the gaming sector, assumed problems with efficiency
and high costs for implementation have made the industry reluctant
to adopt it. We present a Multi-agent Potential Field based bot ar-
chitecture that is evaluated in a real time strategy game setting and
compare it, both in terms of performance, and in terms of softer at-
tributes such as configurability with other state-of-the-art solutions.
Although our solution did not reach the performance standards of
traditional RTS bots in the test, we see great unexploited benefits in
using multi-agent potential field based solutions in RTS games.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence, Dis-
tributed Artificial Intelligence - Multi-agent systems and I.2.1
[Computing Methodologies]: Artificial Intelligence, Applications
and Expert Systems - Games

General Terms
Algorithms, Design, Performance

Keywords
Artificial Potential Fields, RTS Games, ORTS, Multi-agent Bot

1. INTRODUCTION
A Real-time Strategy (RTS) game is a game in which the players

use resource gathering, base building, technological development
and unit control in order to defeat its opponent(s), typically in some
kind of war setting. The RTS game is not turn-based in contrast to
board games such as Risk and Diplomacy. Instead, all decisions by
all players have to be made in real-time. Generally the player has
a top-down perspective on the battlefield although some 3D RTS
games allow different camera angles. The real-time aspect makes
the RTS genre suitable for multiplayer games since it allows players
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to interact with the game independently of each other and does not
let them wait for someone else to finish a turn.

In 1985 Ossama Khatib introduced a new concept while he was
looking for a real-time obstacle avoidance approach for manipula-
tors and mobile robots. The technique which he called Artificial
Potential Fields moves a manipulator in a field of forces. The po-
sition to be reached is an attractive pole for the end effector (e.g.
a robot) and obstacles are repulsive surfaces for the manipulator
parts [8]. Later on Arkin [1] updated the knowledge by creating
another technique using superposition of spatial vector fields in or-
der to generate behaviours in his so called motor schema concept.

Many studies concerning potential fields are related to spatial
navigation and obstacle avoidance, see e.g. [3, 9, 12]. The tech-
nique is really helpful for the avoidance of simple obstacles even
though they are numerous. Combined with an autonomous naviga-
tion approach, the result is even better, being able to surpass highly
complicated obstacles [2]. However most of the premises of these
approaches are only based on repulsive potential fields of the ob-
stacles and an attractive potential in some goal for the robot [17].

Lately some other interesting applications for potential fields
have been presented. The use of potential fields in architectures
of multi agent systems is giving quite good results defining the way
of how the agents interact. Howard et al. developed a mobile sensor
network deployment using potential fields [5], and potential fields
have been used in robot soccer [7, 14]. Thurau et al. [15] has de-
veloped a game bot which learns reactive behaviours (or potential
fields) for actions in the First-Person Shooter (FPS) game Quake II
through imitation.

In some respect, videogames are perfect test platforms for multi-
agent systems. The environment may be competitive (or even hos-
tile) as in the case of a FPS game. The NPCs (e.g. the units of the
opponent army in a war strategy game) are supposed to act ratio-
nally and autonomously, and the units act in an environment which
enables explicit communication and collaboration in order to be
able to solve certain tasks.

Previous work on describing how intelligent agent technology
has been used in videogames include the extensive survey of Nieder-
berger and Gross [13] and early work by van Lent et al. [18]. Multi-
agent systems has been used in board games by Kraus and Lehmann
who addressed the use of MAS in Diplomacy [10] and Johansson
who proposed a general MAS architecture for board games [6].

The main research question of this paper is: Is Multi-agent Po-
tential Fields (MAPF) an appropriate approach to implement highly
configurable bots for RTS games? This breaks down to:

1. How does MAPF perform compared to traditional solutions?

2. To what degree is MAPF an approach that is configurable
with respect to variations in the domain?
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We will use a proof of concept as our main methodology where
we compare an implementation of MAPF playing ORTS with other
approaches to the game. The comparisons are based both on practi-
cal performance in the yearly ORTS tournament, and some theoret-
ical comparisons based on the descriptions of the other solutions.

First we describe the methodology that we propose to follow for
the design of a MAPF bot. In Section 3 we describe the test envi-
ronment. The creation of our MAPF player follows the proposed
methodology and we report on that in Section 4. The experiments
and their results are described in Section 5. We finish off by dis-
cussing, drawing some conclusions and outlining future work in
Sections 6–7.

2. A METHODOLOGY FOR
MULTI-AGENT POTENTIAL FIELDS

When constructing a multi-agent system of potential field con-
trolled agents in a certain domain, there are a number of issues that
have to be dealt with. To structure this, we identify six phases in
the design of a MAPF-based solution:

1. The identification of objects,

2. The identification of the driving forces (fields) of the game,

3. The process of assigning charges to the objects,

4. The granularity of time and space in the environment,

5. The agents of the system, and

6. The architecture of the MAS.

In the first phase, we may ask us the following questions: What
are the static objects of the environment? That is: what objects re-
main their attributes throughout the lifetime of the scenario? What
are the dynamic objects of the environment? Here we may iden-
tify a number of different ways that objects may change. They
may move around, if the environment has a notion of physical
space. They may change their attractive (or repulsive) impact on
the agents. What are the modifiability of the objects? Some objects
may be consumed, created, or changed by the agents.

In the second phase, we identify the driving forces of the game
at a rather abstract level, e.g. to avoid obstacles, or to base the
movements on what the opponent does. This leads us to a number
of fields. The main reason to enable multiple fields is that it is very
easy to isolate certain aspects of the computation of the potentials
if we are able to filter out a certain aspect of the overall potential,
e.g. the repulsive forces generated by the terrain in a physical en-
vironment. We may also dynamically weight fields separately, e.g.
in order to decrease the importance of the navigation field when
a robot stands still in a surveillance mission (and only moves its
camera). We may also have strategic fields telling the agents in
what direction their next goal is, or tactical fields coordinating the
movements with those of the team-mate agents.

The third phase include to place the objects in the different fields.
Static objects should perhaps be in the field of navigation. Typi-
cally, the potentials of such a field is pre-calculated in order to save
precious run time CPU resources.

In the fourth phase, we have to decide the resolution of space
and time. If the agents are able to move around in the environment,
both these measures have an impact on the look-ahead. The space
resolution, since it decides where in space we are able to go, and
the time in that it determines how far we may get in one time frame.

The fifth phase, is to decide what objects to agentify and set the
repertoire of those agents: what actions are we going to evaluate

in the look-ahead? As an example, if the agent is omnidirectional
in its movements, we may not want to evaluate all possible points
that the agent may move to, but rather try to filter out the most
promising ones by using some heuristic, or use some representable
sample.

In the sixth step, we design the architecture of the MAS. Here we
take the unit agents identified in the fifth phase, give them roles and
add the supplementary agents (possibly) needed for coordination,
and special missions (not covered by the unit agents).

3. ORTS
Open Real Time Strategy (ORTS) [4] is a real-time strategy game

engine developed as a tool for researchers within artificial intel-
ligence (AI) in general and game AI in particular. ORTS uses a
client-server architecture with a game server and players connected
as clients. Each timeframe clients receive a data structure from the
server containing the current game state. Clients can then issue
commands for their units. Commands can be like move unit A to
(x, y) or attack opponent unit X with unit A. All client commands
are executed in random order by the server.

Users can define different type of games in scripts where units,
structures and their interactions are described. All type of games
from resource gathering to full real time strategy (RTS) games are
supported. We focus on two types of two-player games, tankbat-
tle and tactical combat. These games were part of the 2007 years
ORTS competition [4].

• In Tankbattle each player has 50 tanks and five bases. The
goal is to destroy the bases of the opponent. Tanks are heavy
units with long fire range and devastating firepower but a
long cool-down period, i.e. the time after an attack before the
unit is ready to attack again. Bases can take a lot of damage
before they are destroyed, but they have no defence mecha-
nism of their own so it may be important to defend own bases
with tanks. The map in a tankbattle game has randomly gen-
erated terrain with passable lowland and impassable cliffs.

• In Tactical combat each player has 50 marines and the goal
is to destroy all the marines of the opponent. Marines have
short fire range, average firepower and a short indestructible
period. They are at the start of the game positioned randomly
at either right or left side of the map. The map does not have
any impassable cliffs.

Both games contain a number of neutral units (sheep). These
are small and (for some strange reason) indestructible units mov-
ing randomly around the map. The purpose of sheep are to make
pathfinding and collision detection more complex.

4. MAPF IN ORTS
We have implemented an ORTS client for playing both Tankbat-

tle and Tactical Combat based on MAPF following the proposed
methodology. Below we will describe the creation of our MAPF
solution.

4.1 Identifying objects
We identify the following objects in our applications: Cliffs,

Sheep, and own (and opponent) tanks, marines and base stations.

4.2 Identifying fields
We identified four driving forces in ORTS: Avoid colliding with

moving objects, Hunt down the enemy’s forces and for the Tankbat-
tle game also to Avoid colliding with cliffs, and to Defend the bases.
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Figure 1: Part of the map during a tankbattle game. The upper
picture shows our agents (light-grey circles), an opponent unit
(white circle) and three sheep (small dark-grey circles). The
lower picture shows the total potential field for the same area.
Light areas has high potential and dark areas low potential.

This leads us to three types of potential fields: Field of Navigation,
Strategic Field, and Tactical field.

The field of navigation is generated by repelling static terrain.
We would like agents to avoid getting too close to objects where
they may get stuck, but instead smoothly pass around them.

The strategic field is an attracting field. It makes agents go to-
wards the opponents and place themselves on an appropriate dis-
tance where they can fight the enemies.

Own units, own bases and sheep generate small repelling fields.
The purpose is that we would like our agents to avoid colliding with
each other or bases as well as avoiding the sheep.

4.3 Assigning charges
Each unit (own or enemy), control center, sheep and cliffs has a

set of charges which generates a potential field around the object.
Below you will find a more detailed description of the different
fields. All fields generated by objects are weighted and summed
to form a total field which is used by agents when selecting ac-
tions. The actual formulas for calculating the potentials very much
depend on the application.

The upper picture in Figure 1 shows part of the map during a
tankbattle game. The screen shot are from the 2D GUI available in
the ORTS server. It shows our agents (light-grey circles) moving in
to attack an opponent unit (white circle). The area also has some
cliffs (black areas) and three sheep (small dark-grey circles). The
lower picture shows the total potential field in the same area. Dark
areas has low potential and light areas high potential. The light ring
around the opponent unit, located at maximum shooting distance of
our tanks, is the distance our agents prefer to attack opponent units
from (see Section 4.5). It is the final move goal for our units. The
picture also shows the small repelling field generated by own agents
and sheep.
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Figure 2: The potential pcliff (d) generated by a cliff given the
distance d.

Figure 3: Example of the navigation field before and after fill-
ing dead ends. White are passable tiles, black impassable tiles
and grey tiles filled by the algorithm.

Cliffs.
Cliffs generate a repelling field for obstacle avoidance. The po-

tential pcliff (d) at distance d (in tiles) from a cliff is:

pcliff (d) =

(
−80/d2 if d > 0

−80 if d = 0
(1)

Note that if more than one cliff affects the same potential field
tile, the actual potential is not calculated as the sum of the potentials
(as in the other fields) but rather as the lowest value. This approach
works better for passages between cliffs, see Figure 2.

The navigation field is post-processed in two steps to improve the
agents abilities to move in narrow passages and avoid dead ends.
The first step is to fill dead ends. The pseudo code below describes
how this is done:

for all x, y in navigation field F (x, y) do
if is_passable(x, y) then

blocked = 0
for all 16 directions around x, y do

if cliff_within(5) then
blocked = blocked + 1

end if
end for
if blocked >= 9 then

IMPASSABLE(x, y) = true
end if

end if
end for

For each passable tile (x, y) , we check if there are cliffs within
5 tiles in all 16 directions. If 9 or more directions are blocked by
cliffs, we consider tile (x, y) impassable (Figure 3).

Next step is to clear narrow passages between cliffs from having
a negative potential. This will make it easier for agents to use the
passages, see Figure 4. Below is pseudo code for this processing
step:
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Unit k1 k2 c1 c2 MSD a MDR

Marine 2 0.15 24.5 15 7 2 100
Tank 2 0.22 24.1 15 7 2 68
Base 3 0.255 49.1 15 12 2 130

Table 1: The parameters used for the generic p(d)-function of
Eq. 2.

for all x, y in navigation field F (x, y) do
potential = p(x, y)
if potential >= −50 AND potential <= −1 then

if p(x−1, y) < potential AND p(x+1, y) < potential
then

p(x, y) = 0
end if
if p(x, y−1) < potential AND p(x, y+1) < potential
then

p(x, y) = 0
end if

end if
end for

For each passable tile (x, y) with negative potential, check if adja-
cent tiles has even lower negative potentials. If so, (x, y) is proba-
bly in a narrow passage and its potential is set to 0.

The opponent units.
All opponent units generates a symmetric surrounding field where

the highest potential is in a ring around the object with a radius of
MSD (Maximum Shooting Distance). As illustrated in Figure 5,
MDR refers to the Maximum Detection Range, the distance from
which an agent starts to detect the opponent unit. In general terms,
the p(d)-function can be described as:

p(d) =

8><>:
k1d, if a ∈ [0, MSD − a[

c1 − d, if a ∈ [MSD − a, MSD]

c2 − k2d, if a ∈]MSD, MDR]

(2)

Own bases.
Own bases generate a repelling field for obstacle avoidance. Be-

low is the function for calculating the potential pownbase(d) at dis-
tance d (in tiles) from the center of the base. Note that 4 is half the
width of the base, and distances less than or equal to this value has
a much lower potential. This approximation is not entirely correct
at the corners of the base (since the base is quadratic rather than

Figure 4: Example of the navigation field before and after clear-
ing passages. White tiles has potential 0, and the darker the
colour the more negative potential a tile has.
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Figure 5: The potential popponent(d) generated by the general
opponent function given the distance d.

Unit radius k c l
Marine 0.5 3.2 5.6 1.75
Tank 0.875 3.2 10.8 3.375

Table 2: The parameters used for the generic pownunit(d)-
function of Eq. 4.

circular, see Figure 6), but it works well in practice.

pownbase(d) =

8><>:
5.25 · d− 37.5 if d <= 4

3.5 · d− 25 if d ∈]4, 7.14]

0 if d > 7.14

(3)

The own mobile units — tanks and marines.
Own units, agents, generate a repelling field for obstacle avoid-

ance (see Figure 7). In general terms, the potential pownunit(d) at
distance d (in tiles) from the center of an agent is calculated as:

pownunit(d) =

8><>:
−20 if d <= radius

d · k − c if d ∈]radius, l],

0 if d >= l

(4)

Sheep.
Sheep generate a small repelling field for obstacle avoidance.

The potential psheep(d) (depicted in Figure 8) at distance d (in
tiles) from the center of a sheep is calculated as:

psheep(d) =

8><>:
−10 if d <= 1

−1 if d ∈]1, 2]

0 if d > 2

(5)

4.4 On the granularity
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Figure 6: The repelling potential pownbase(d) generated by the
own bases given the distance d.
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Figure 8: The potential psheep(d) generated by a sheep given
the distance d.

When designing the client we had to decide a resolution for the
potential field. A tank-battle game has a map of 1024x1024 points
and the terrain is constructed from tiles of 16x16 points. After some
initial tests we decided to use 8x8 points for each tile in the poten-
tial field. The resolution had to be detailed enough for agents to
be able to move around the game world using only the total po-
tential field, but a more detailed resolution would have required
more memory and the different fields would have been slower to
update.1 Thus in our implementation 8x8 points was found to be a
good trade-off.

4.5 The unit agent(s)
When deciding actions for an agent, the potential of the tile the

agent is at is compared with the potentials of the surrounding tiles.
The agent moves to the center of the neighbour tile with the highest
potential, or is idle if the current tile is highest. If an agent has been
idle for some time, it moves some distance in a random direction to
avoid getting stuck in a local maxima. If an opponent unit is within
fire range, the agent stops to attack the enemy.

Since there is an advantage of keeping the agents close to the
maximum shooting distance (MSD), the positions of the opponent
units are not the final goal of navigation. Instead we would like to
keep them near the MSD. The obstacles should be avoided, roughly
in the sense that the further away they are, the better it is. Here, the
own agents are considered to be obstacles (for the ability to move).

When an agent executes a move action, the tactical field is up-
dated with a negative potential (same as the potential around own
agents) at the agents destination. This prevents other agents from
moving to the same position if there are other routes available.

4.6 The MAS architecture
In a tank-battle game our agents has two high-level tactical goals.

If we have a numerical advantage over the opponent units we attack
both bases and units. If not, we attack units only and wait with
attacking bases. For agents to attack both units and bases, one of
the following constraints must be fulfilled:

1The number of positions quadruples as the resolution doubles.

• We must have at least twice as many tanks as the opponent

• The opponent have less than six tanks left

• The opponent have only one base left

If none of these constraints are fulfilled, the tactical goal is to attack
opponent units only. In this case the field generated by opponent
bases are not an attracting field. Instead they generate a repelling
field for obstacle avoidance (same as the field generated by own
bases). We want to prevent our agents from colliding with opponent
bases if their goal is not to attack them. In a tactical combat game
no bases are present and agents always aim to destroy opponent
marines.

4.6.1 Attack coordination
We use a coordinator agent to globally optimise attacks at op-

ponent units. The coordinator aims to destroy as many opponent
units as possible each frame by concentrating fire on already dam-
aged units. Below is a description of how the coordinator agent
works. After the coordinator is finished we have a near-optimal al-
location of which of our agents that are dedicated to attack which
opponent units or bases.

The coordinator uses an attack possibility matrix. The i × k
matrix A defines the opponent units i (out of n) within MSD which
can be attacked by our agents k (out of m) as follows:

ak,i =

(
1 if the agent k can attack opponent unit i

0 if the agent k cannot attack opponent unit i
(6)

A =

264 a0,0 · · · am−1,0

...
. . .

...
a0,n−1 · · · am−1,n−1

375 (7)

We also need to keep track of current hit points (HP ) of the
opponent units i as:

HP =

264 HP0

...
HPn−1

375 (8)

Let us follow the example below to see how the coordination
heuristic works.

A1 =

2666664
1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1
1 0 0 0 0 0 0 1

3777775 HP =

2666664
HP0 = 2
HP1 = 3
HP2 = 3
HP3 = 4
HP4 = 4
HP5 = 3

3777775 (9)

First we sort the rows so the highest priority targets (units with low
HP) are in the top rows. This is how the example matrix looks like
after sorting:

A2 =

2666664
1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0
0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1

3777775 HP =

2666664
HP0 = 2
HP1 = 3
HP2 = 3
HP5 = 3
HP4 = 4
HP3 = 4

3777775 (10)

Next step is to find opponent units that can be destroyed this
frame (i.e. we have enough agents able to attack an opponent unit
to reduce its HP to 0). In the example we have enough agents within
range to destroy unit 0 and 1. We must also make sure that the
agents attacking unit 0 or 1 are not attacking other opponent units
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in A. This is done by assigning a 0 value to the rest of the column
in A for all agents attacking unit 0 or 1.

Below is the updated example matrix. Note that we have left out
some elements for clarity. These has not been altered in this step
and are the same as in matrix A2.

A3 =

2666664
1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3777775 HP =

2666664
HP0 = 2
HP1 = 3
HP2 = 3
HP5 = 3
HP4 = 4
HP3 = 4

3777775 (11)

The final step is to make sure the agents in the remaining rows
(3 to 6) only attacks one opponent unit each. This is done by, as in
the previous step, selecting a target i for each agent (start with row
3 and process each row in ascending order) and assign a 0 to the
rest of the column in A for the agent attacking i. This is how the
example matrix looks like after the coordinator is finished:

A4 =

2666664
1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0

3777775 HP =

2666664
HP0 = 2
HP1 = 3
HP2 = 3
HP5 = 3
HP4 = 4
HP3 = 4

3777775 (12)

In the example the fire coordinator agent have optimised attacks to:

• Unit 0 is attacked by agents 0 and 3. It should be destroyed.

• Unit 1 is attacked by agents 1, 2 and 6. It should be de-
stroyed.

• Unit 5 is attacked by agent 6. Its HP should be reduced to 2.

• Unit 4 is attacked by agents 4 and 5. Its HP should be reduced
to 2.

• Units 2 and 3 are not attacked by any agent.

4.6.2 The Internals of the Coordinator Agent
The coordinator agent first receive information from each of the

own agents. It contains its positions and ready-status, as well as a
list of the opponent units that are within range. Ready-status means
that an agent is ready to fire at enemies. After an attack a unit has
a cool-down period while it cannot fire. From the server, it will get
the current hit point status of the opponent units.

Now, the coordinator filters the agent information so that only
those agents that are i) ready to fire and ii). have at least one oppo-
nent unit within MSD, are left.

For each agent k that is ready to fire, we iterate through all op-
ponent units and bases. To see if k can attack unit i we use a three
level check:

1. Agent k must be within Manhattan distance2 * 2 of i (very
fast but inaccurate calculation)

2. Agent k must be within real (Euclidean) distance of i (slower
but accurate calculation)

3. Opponent unit i must be in line of sight of k (very slow but
necessary to detect obstacles in front of i)

The motivation behind the three-level check is to start with fast but
inaccurate calculations, and for each level passed a slower and more
accurate check is performed. This reduces CPU usage by skipping
2The Manhattan distance between two coordinates
(x1, y1), (x2, y2) is given by abs(x1 − x2) + abs(y1 − y2).

demanding calculations such as line-of-sight for opponent units or
bases that are far away.

Next step is to sort the rows in A in ascending order based on
their HP (prioritise attacking damaged units). If two opponent units
has same hit points left, the unit i which can be attacked by the
largest number of agents k should be first (i.e. concentrate fire
to damage a single unit as much as possible rather than spreading
the fire). When an agent attacks an opponent unit it deals a dam-
age value randomly chosen between the attacking unit’s minimum
(mindmg) and maximum (maxdmg) damage. A unit hit by an at-
tack get its HP reduced by the damage value of the attacking unit
minus its own armour value. The armour value is static and a unit’s
armour cannot be destroyed.

The next step is to find opponent units which can be destroyed
this frame. For every opponent unit i in A, check if enough agents
u can attack i to destroy it as:

(

m−1X
k=0

a(k, i)) · (damageu − armouri) >= HPi (13)

armouri is the armour value for the unit type of i (0 for marines
and bases, 1 for tanks) and damageu = mindmg +p ·(maxdmg−
mindmg), where p ∈ [0, 1]. We have used a p value of 0.75, but it
can be changed to alter the possibility of actually destroying oppo-
nent units.

If more agents can attack i than is necessary to destroy it, remove
the agents with the most occurrences in A from attacking i. The
motivation behind this is that the agents u with most occurrences
in A has more options when attacking other units.

At last we must make sure the agents attacking i does not attack
other opponent units in A. This is done by assigning a 0 value to
the rest of the column.

The final step is to make sure agents not processed in the previ-
ous step only attacks one opponent unit each. Iterate through every
i that cannot be destroyed but can be attacked by at least one agent
k, and assign a 0 value to the rest of the column for each k attacking
i.

5. EXPERIMENTS
Our bot have participated in the 2007 years ORTS competition.

Below is a brief description of the other competition entries [4].
The results from the competition are presented in Tables 3–4. As
we can see from the results summary our bot was not among the
top entries in the competition, but rather in the bottom half. We
did however win almost a third of the played games in both cate-
gories. Note that all other competition entries are based on more
traditional approaches with pathfinding and higher level planning,
and our goal is to investigate if our Multi-agent Potential Fields
based bot is able to reach the same level of performance as the tra-
ditional solutions.

The team NUS use finite state machines and influence maps in
high-order planning on group level. The units in a squad spread out
on a line and surround the opponent units at MSD. Units use the
cool-down period to keep out of MSD. Pathfinding and a flocking
algorithm is used to avoid collisions.

UBC gather units in squads of 10 tanks or marines. Squads can
be merged with other squads or split into two during the game.
Pathfinding is combined with force fields to avoid obstacles and
bit-mask for collision avoidance. Units spread out at MSD when
attacking. Weaker squads are assigned to weak spots or corners of
the opponent unit cluster. If an own base is attacked, it may decide
to try to defend the base.
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Team Wins ratio Wins/games Team name
nus 98% (315/320) National Univ. of Singapore
WarsawB 78% (251/320) Warsaw Univ., Poland
ubc 75% (241/320) Univ. of British Columbia, Canada
uofa 64% (205/320) Univ. of Alberta, Canada
uofa.06 46% (148/320) Univ. of Alberta
BTH 32% (102.5/320) Blekinge Inst. of Tech., Sweden
WarsawA 30% (98.5/320) Warsaw University, Poland
umaas.06 18% (59/320) Univ. of Maastricht, The Netherlands
umich 6% (20/320) Univ. of Michigan, USA

Table 3: Summary of the results of ORTS tank-battle 2007

Team Wins ratio Wins/games Team name
nus 99% (693/700) National Univ. of Singapore
ubc 75% (525/700) Univ. of British Columbia, Canada
WarsawB 64% (451/700) Warsaw Univ., Poland
WarsawA 63% (443/700) Warsaw Univ., Poland
uofa 55% (386/700) Univ. of Alberta, Canada
BTH 28% (198/700) Blekinge Inst. of Tech., Sweden
nps 15% (102/700) Naval Postgraduate School, USA
umich 0% (2/700) Univ. of Michigan, USA

Table 4: Summary of the results of the ORTS tactical combat

WarsawA synchronises units by assigning each unit position to a
node in a grid. The grid is also used for pathfinding. When units are
synchronised they attack the enemy at a line going for its weakest
spots at a predefined distance.

WarsawB uses pathfinding with an additional dynamic graph for
moving objects. Own units uses a repelling force field collision
avoidance. Units are gathered in one large squad. When the squad
attacks, its units spread out on a line at MSD and each unit attack
the weakest opponent unit in range. In tactical combat, each own
unit is assigned to an opponent unit and it always tries to be at the
same horizontal line (y coordinate) as its assigned unit.

Uofa uses a hierarchical commander approach ranging from squ-
ad commanders down to pathfinding and attack coordination com-
manders. Units are grouped in a single, large cluster and tries to
surround the opponent units by spreading out at MSD. The hierar-
chical commander approach is not used in tactical combat.

Umich uses an approach where the overall tactics are imple-
mented in the SOAR language. SOAR in turn have access to low-
level finite state machines for handling, for example, squad move-
ment. Units are gathered in a single squad hunting enemies, and
opponent units attacking own bases are the primary goals.

Umaas and Uofa entered the competition with their 2006 years
entries. No entry descriptions are available.

6. DISCUSSION
We discuss potential fields in general, then the results of the ex-

periments, and finally write a few words about the methodology.

6.1 The use of PF in games
Traditionally the use of potential fields (PF), although having

gained some success in the area of robotic navigation, has been
limited in the domain of game AI. There are a number of more or
less good reasons for that:

1. PF are considered to be less controllable than traditional plan-
ning [16]. This may be an important feature in the early
stages of a game development.

2. A* and different domain specific improvements of it has pro-
ven to gain sufficiently good results.

3. PF based methods are believed to be hard to implement and
to debug. These problems may especially apply to the repre-
sentation of the environment, and the dynamic stability [16].

4. Agents navigating using PFs often get stuck in local optima.

However, from the reported use of potential fields in the area of
RoboCup and games indicate that:

PF may be implemented in a way that use the processing time
efficiently, especially in highly dynamic environments where lots
of objects are moving and long term planning is intractable. By
just focusing on nine options (eight directions + standing still) we
do, at most, have to calculate the potentials of 9n positions for our
n units. All potential functions may be pre-calculated and stored
in arrays, which makes the actual calculation of the potential of a
position just a matter of summing up a number of array elements.

By using multiple maps over the potential landscape (e.g. one for
each type of unit), the debug process becomes significantly more
efficient. We used different potential landscapes that were put on
the map to illustrate the potentials using different colours.

The great thing with PFs is that the attracting – repelling paradigm
is very intuitive: the good outcomes of actions are attractive, and
the bad outcomes repellent. Thus an action that lead to both bad
and good outcomes can be tuned at the outcome level, rather than
on the action level.

In static environments, the local optima problem has to be dealt
with when using PF. In ORTS, which in some cases is surprisingly
static, we used convex filling and path clearing of the terrain to help
the units, but this did not always help. We believe that more efforts
here will improve the performance. Thurau et al. [15] describes
a solution to the local maxima problem called avoid-past potential
field forces. Each of their agents generate a trail of negative poten-
tial, similar to a pheromone trail used by ants, at visited positions.
The trail pushes the agent forward if it reaches a local maximum.
This approach may work for our agents as well.

6.2 The Experiments
There are a number of possible explanations for the good re-

sults of the top teams (and the comparative bad results for our
team). First, the top teams are very good at handling difficult terrain
which, since the terrain is generated randomly, sometimes cause
problems for our agents due to local optima.

The second advantage is coordinating units in well-formed squ-
ads. Since we do not have any attracting mechanism between agents
and higher-level grouping of squads, our agents are often spread out
with a large distance between them. Enemies can in some cases de-
stroy our agents one at a time without risk of being attacked by a
large number of coordinated agents.

The third advantage is that the top teams spread out units at
MSD, and always tries to keep that distance. Since the field of
opponents are a sum of the generated potentials for all opponent
units, the maxima tend to be in the center of the opponent cluster
and our agents therefore attack the enemy at their strongest loca-
tions instead of surrounding the enemy.

We believe it is possible to solve these issues using MAPF. The
first issue is a matter of details in the resolution of the MAPF. Our
agents move to the center of the 8x8 points tile with highest po-
tential. This does not work very well for narrow passages or if
bases, other agents or sheep are close. This could be solved by ei-
ther increasing the resolution of the MAPF or add functionality for
estimating a potential at a point to enable movement at point level.

The second issue can be solved by using a both positive and neg-
ative field for agents. Close to the agents, there is a surrounding
negative field as in our implementation, which in turn is surrounded
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by a positive one. The positive field will make the agents to keep
an appropriate distance and possibly having an emergent effect of
surrounding the opponent (see e.g. Mamei and Zambonelli [11]).

The third issue can be solved by not calculating the potential in
a point as the sum of the potentials all opponent units generate in
that point, but rather the highest potential an opponent unit generate
in the point. This will make sure the maxima in the strategic field
always are at MSD even if the opponent units are clustered in large
groups, and our agents will more likely surround the enemy.

To further improve our bot a new type of tactics field can be used.
By generating a large positive field at the weakest spot of the oppo-
nent units cluster, agents attack the weakest spot instead of attack-
ing strong locations. This field differs from the other fields used in
that it is not generated by a game object, but rather generated by a
higher-level tactical decision.

6.3 On the Methodology
We chose to implement and test our idea of using a Multi-agent

Potential Field based solution in the yearly ORTS competition. As
a testbed, we believe that it is good for this purpose for a number
of reasons: i). It is a competition, meaning that others will do their
best to beat us. ii) It provides a standardised way of benchmarking
Game AI solutions iii). The environment is open source and all of
the mechanics are transparent. iv) ORTS uses a client-server archi-
tecture where clients only has access to the information sent by the
server. No client can gain an advantage by hacking the game engine
as often is possible in a peer-to-peer architecture. v) Even though
ORTS is written in C++ the communication protocol is public and
it is possible to write a wrapper to any other language. The results
may seem modest, but we show that MAPFs is an alternative to A*
based solutions in the case of ORTS. We have no reason to believe
that MAPF would not be successful in other RTS games.

7. CONCLUSIONS AND FUTURE WORK
A long-term plan, for example path finding, generated by an

agent might need re-planning if the game world changes during
the execution of the plan. With a PF based solution path planning
may be replaced by one step look-ahead, if the analysis is carried
out carefully, but yet efficiently. We believe that in ORTS, MAPFs
fulfils the requirements of efficiency and flexibility and conclude
that MAPF is indeed an interesting alternative worth investigating
further. However, more research is needed on how to implement
MAPF based solutions in general, and on what tools to use in the
debugging and calibration process. Preliminary late results show
that our MAPF solution now beat all the competitors of the 2007
ORTS competition. The future of MAPF looks bright and we hope
to be able to report further on this in the near future. Future work
include to optimise the parameters using e.g. genetic algorithms,
to take care of the issues mentioned in Section 6, and to refine the
agent perspective through distributing the coordination of attacks
and the exploration of the map explicitly. We would also like to try
our approach in other domains.
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