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ABSTRACT
We study the concept of bribery in the situation where vot-
ers are willing to change their votes as we ask them, but
where their prices depend on the nature of the change we
request. Our model is an extension of the one of Faliszewski
et al. [9], where each voter has a single price for any change
we may ask for. We show polynomial-time algorithms for
our version of bribery for a broad range of voting proto-
cols, including plurality, veto, approval, and utility-based
voting. In addition we prove NP-completeness for a couple
of our nonuniform bribery problems for weighted voters, and
give approximation algorithms for two NP-complete bribery
problems defined in [9].

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Theory
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1. INTRODUCTION
Multiagent systems can often be viewed as artificial soci-

eties of autonomous agents, with each agent having his/her
own set of goals, desires, and plans. Within such artificial
societies, just like within natural ones, it often becomes nec-
essary for a group of agents to arrive at a common decision
(e.g., in a planning environment when no single agent can
solve his/her own problems, but where they are capable of
solving problems cooperatively). A very natural approach
to handling such situations is to hold an election.

Unfortunately, as is well known due to theorems of Arrow,
Gibbard and Satterthwaite, and Duggan and Schwartz nei-
ther there are ideal election systems nor there are ones that
avoid giving agents incentive to act strategically. Bartholdi,
Tovey, Trick, and Orlin [3, 2, 4], brilliantly observed that
computational complexity of figuring out voter’s strategic
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behavior might be so high, as to perhaps be enough of a
barrier to prevent agents from attempting strategic actions.

Several scenarios of strategic behavior are considered in
the literature. In control we assume that the organizer of
the election attempts to modify their structure (e.g., via
partitioning the voters into districts) in order to obtain a
result most desirable for him/herself, see, e.g., [4, 10, 12, 14].
In the case of manipulation, a coalition of voters calculates
what vote each member of the coalition should cast in order
to obtain the result the coalition desires, see, e.g., [3, 2, 7,
5, 6, 11, 13, 14]. In bribery, see [9, 10], an external agent
tries to ensure a victory of one of the candidates via bribing
some voters to change their votes.

All of these problems can be studied both in the construc-
tive case (where the goal is to ensure our favorite candidate’s
victory) and in the destructive case (where we try to pre-
vent a hated candidate from winning). Also, in many situ-
ations it is natural to assume that different voters have dif-
ferent weights (e.g., consider the stockholders of a company
or various parts of a multicriteria decision-making system
that, internally, performs an election between its compo-
nents, weighted based on components’ confidence.)

In this paper we focus on the problem of bribery, intro-
duced by Faliszewski et al. [9]. The authors of that paper
studied bribery in several scenarios, depending on the voting
system used and whether the voters were weighted and/or
were assigned price-tags for changing their votes. In par-
ticular, in the priced cases they assumed that each voter
is willing to change his/her vote arbitrarily, provided that
the briber pays the fixed-per-voter price. This assumption
is fairly unrealistic. For example, consider an election with
three candidates, a, b, and c, and a particular voter who
prefers a to b to c, but who actually likes both a and b and
who absolutely hates c. Such a voter may be willing, at a
small price, to change his/her vote to rank b first, but would
never, regardless of the bribe, change the vote to rank c first.

A different example where it is useful to model voters as
having such nonuniform prices is best seen from the point of
view of the briber. A briber that wants some candidate p to
win, might want to follow a certain policy in his/her bribing.
For example, he/she might not want to bribe anyone to vote
for p in order not to cast “bad light” on p. Such a briber
would have to make p a winner via bribes that redistribute
other candidate’s support. Using the nonuniform model of
bribery one could express this policy via setting the prices
for voting for p so high as to be outside of the allowed budget.
This policy was studied in [9] but, other interesting policies
exist. e.g., limiting briber’s ability to change votes.

May,12-16.,2008,Estoril,Portugal,pp. 1569-1572.



Yet another scenario where nonuniform bribery model is
useful regards the issue of coalition formation. Consider an
election where one of the voters realizes that his/her option
is very unlikely to win, but where there are many agents
(voters) that support options similar, but slightly different.
Such an agent might want to find out which of the others,
but as few as possible, he/she would have to convince to
form a coalition with him/her in order to have enough vot-
ing power as to choose an option that all of them would
be reasonably satisfied with. One way to compute this set
would be to: (a) find a group of voters that currently vote for
options similar to the agent’s, (b) form nonuniform bribery
instance where those voters can be bribed at a relatively low
price to vote for the agent’s option and all other briberies
are either very expensive or impossible (beyond budget), (c)
compute a minimum-cost nonuniform bribery that ensures
that the agent’s favorite option wins. The voters involved
in this bribery would be candidates for the coalition.

Thus, we believe that the issue of nonuniform bribery is
both important and useful, even in the cases where we are
not really “bribing” anyone, but simply are trying to strate-
gically plan our behavior. In this paper we give a number
of results that show that the problem of nonuniform bribery
can often be solved in polynomial time in the case of un-
weighted voters, yet becomes NP-complete if the voters are
weighted. We also give several approximation algorithms for
previously studied NP-complete bribery problems.

2. PRELIMINARIES
We view an election as a pair (C, V ), where C is a set of

candidates, C = {c1, . . . , cm}, and V is a multiset of voters,
each represented via his/her preference over C. In this pa-
per we represent each voter’s preference as an m-dimensional
vector of nonnegative integers, indicating voter’s perceived
utility from electing each candidate (such utility-based vot-
ing was studied in the context of election manipulation, e.g.,
by Elkind and Lipmaa [8]).

Definition 2.1. Let k and b be two positive integers. By
a (k, b)-election we mean an election over some candidate
set C = {c1, . . . , cm}, where each voter from the voter set
V distributes k integral points among the candidates, never
assigning more than b points to a single candidate. In the
end, the candidates with most points are the winners.

A free-form (k, b)-election is a (k, b)-election where voters
can choose not to use all of their points.1

Note that if we, e.g., have to few candidates or k is too
large then a (non free-form) (k, b)-election is impossible.

The standard preference model studied in computational
social choice literature assumes that each voter has a strict
linear order of preference over all candidates. Our model is
more appropriate for utility-based voting, and is powerful
enough to capture such voting rules as plurality (as (1, 1)-
elections; in plurality elections each voter assigns one point
to his/her favorite candidate), veto (as (m− 1, 1)-elections;
in veto election each voter gives a single point to everyone
except for his/her most hated option), approval (as free-
form (m, 1)-elections; in approval each voter either approves
or disapproves of each of the candidates and the candidates

1Note: A (k, b)-election might be impossible, e.g., if k is too
large or if we have too few candidates. On the other hand,
free-form (k, b)-election is always possible.

with most approvals win), and t-approval (as (t, 1)-elections;
as approval, but each candidate has to approve of exactly
t candidates). Utility-based voting is a very attractive con-
cept and we believe it is interesting to study it in computa-
tional context. In the next section we will see a natural way
of expressing our idea of nonuniform bribery within (k, b)-
elections via introducing, possibly distinct, prices for moving
points between candidates. Similar schemes that we came
up with for preference-order-based voting were neither as
elegant nor easy to work with.

We now provide notation for our main algorithmic tool,
flow networks. A flow network is defined via a set of nodes
N = {s, t, n1, . . . , nm}, where s is the source and t is the
sink, a capacity function cpc : N ×N → N, and a cost func-
tion prc : N × N → N. We say that two nodes, call them
u and v, are connected if cpc(u, v) > 0. Note that cpc(u, v)
does not need to equal cpc(v, u); the channels connecting
two nodes are unidirectional. A function f : N×N → Z is a
flow in such a network if it satisfies the following constraints:
(a) (∀u,v∈N )[f(u, v) ≤ cpc(u, v)] (i.e., we do not send
flow beyond capacity), (b) (∀u,v∈N )[f(u, v) = −f(v, u)],
and (c) (∀u∈N−{s,t})[

P
v∈N−{u} f(u, v) = 0]. We interpret

f(u, v) = t, t > 0, as t units of flow traveling directly from
u to v. A negative flow value indicates reversed direction of
travel. The value of a flow is defined as

P
u∈N−{s} f(s, u)

and its cost is
P

u,v∈N|f(u,v)≥0 prc(u, v)f(u, v). I.e., for each

two nodes u, v we pay prc(u, v) for sending each single unit
of flow from u to v.

In the min-cost flow problem we are given a nonnegative
integer K, a set of nodes with source and sink, a capac-
ity function, and a cost function, and our goal is to find a
minimum-cost flow of value K (or to indicate that such a
flow doesn’t exist). Min-cost flow is solvable in polynomial
time, see, e.g., an excellent monograph of Ahuja et al. [1].
(We note that Procaccia et al. [15] also use flow networks in
the context of achieving proportional representation.)

An algorithm A is a fully polynomial-time approximation
scheme (FPTAS) for a given minimization problem (e.g., a
problem of finding minimum-cost bribery) if (a) algorithm A
on input (I, ε), where I is an instance of the problem and ε is
a positive real number, 0 < ε < 1, runs in time polynomial
in the size of I and 1

ε
, and (b) A has the property that

if O is the value of the optimal solution for I then A(I, ε)
produces a solution with value S such that S ≤ (1 + ε)O.
We stress that algorithm A has to output a correct solution
for the problem, only that the cost of this solution may be
somewhat above the optimum.

3. NONUNIFORM BRIBERY
Let k and b be two positive integer values (possibly de-

pendent on the number of candidates and voters in E; see
the next sentence). We define (k, b)-bribery problem as fol-
lows: The input is a (k, b)-election E with candidate set
C = {c1, . . . , cm} and a multiset V of voters v1, . . . , vn,
where each voter vi is represented via an m-dimensional in-
teger vector describing in an obvious way how many points
vi assigns to which candidates, a nonnegative integer B (the
budget), and for each voter vi a price function πi : C×C →
N. A unit bribery involves asking some voter v` ∈ V to
move a single point that v` currently assigns to some can-
didate ci to another candidate cj . The cost of such a unit
bribery is π`(ci, cj). (Naturally, for each ` ∈ {1, . . . , n} and



each candidate ci we have π`(ci, ci) = 0.) The question is
if given the budget B, this (k, b)-election E, and functions
π1, . . . , πn (one for each voter), it is possible to perform a
set of unit briberies of total cost at most B, such that (a)
preferred candidate p = c1 becomes a winner, and, (b) each
voter assigns at most b points to each candidate (i.e., the
rules of a (k, b)-election are not broken). We explicitly re-
quire that all the unit briberies are executed “in parallel,”
that is, a briber cannot first bribe voter v` to move a point
from some candidate ci to another candidate cj and after-
ward move that same point from cj to yet another candidate
cq.

2 (Though, it would still be legal to move to cq a point
that v` had assigned to cj before the bribery. Of course,
points are anonymous, unnamed, entities; our requirement
of not moving “the same” point twice formally means that
briberies are only legal if for each voter v` they move, within
the preference vector of that voter, at most as many points
away from each candidate as many that candidate had been
assigned by v` before bribery.)

Free-form (k, b)-bribery is defined analogously, only that
voters do not have to assign all their points to candidates
and, in addition to other unit briberies, we can bribe vot-
ers to either use their unassigned points or to remove some
of their points from particular candidates. In order to ac-
complish this we extend our price functions to incorporate
null candidate ε representing the slot for unassigned points
(naturally, the b-bound does not apply to ε).

We now give our main result regarding (k, b)-bribery.

Theorem 3.1. There is an algorithm that solves both
(k, b)-bribery instances and free-form (k, b)-bribery instances
in time polynomial in k and the size of the instance.

Proof. Due to length restrictions we only sketch the
proof for (k, b)-bribery, skipping the free-form variant of the
problem. Our input is a (k, b)-election E, with candidate
set C = {c1, . . . , cm} and voter multiset V = {v1, . . . , vn}, a
nonnegative integer B (the budget), and voters’ price func-
tions π1, . . . , πn. Our goal is to ensure that candidate p = c1

is a winner of the election via a bribery of cost at most B.
Our proof follows via constructing a series of flow networks

and computing min-cost solutions for them. The intuition
here is that the points that voters assign to candidates are
modeled via the units of flow traveling in the network. We
design our networks in such a way that minimizing the cost
of the flow, in essence, maximizes the number of points our
designated candidate p = c1 via a minimum-cost bribery.

We know that each candidate can at most receive kn
points. For each nonnegative integer K between 1 and kn
our algorithm tests if there is a bribery of cost at most B
that ensures that p receives exactly K points and every other
candidate receives at most K points. Let us now fix a value
of K and show how such a test can be executed.

We form a network flow with node set N = {s, t} ∪Sn
i=1 Ci ∪

Sn
i=1 C′

i ∪ F , where F = {f1, . . . , fm} and for
each i ∈ {1, . . . , n} we have Ci = {ci1, . . . , cim}, C′

i =
{c′i1, . . . , c′im}. For each i ∈ {1, . . . , n}, nodes in the sets
Ci represent point distribution of voter vi before bribery,
nodes in C′

i represent point distribution of voter vi after
the bribery, and nodes in F are used to enforce the rules of
(k, b)-election and to sum points for all candidates.

2All our results stay if such sequential bribing was legal. We
believe that “parallel bribery mode” is more appropriate.

We introduce the following capacities and costs for edges
in our network. (All unmentioned edges have capacity 0.)
For each voter v` and candidate ci we have cpc(s, c`i) equal
to the number of points v` assigns to ci before bribery and
prc(s, c`i) = 0. These edges model delivering appropriate
number of points to nodes from sets C1, . . . , Cn.

For each node c`i and each candidate cj we have
cpc(c`i, c

′
`j) = k and prc(c`i, c`j) = π`(i, j). These edges

model unit briberies. The briber can ask each voter to move
his points as the briber likes, but pays appropriate price for
moving each point.

For each node c′`i we set cpc(c′`i, fi) = b and prc(c′`,fi
) =

0. These edges enforce that no candidate can receive more
than b points from a single voter. Finally, for each node
fi, we have cpc(fi, t) = K, prc(f1, t) = 0, and for all i ∈
{2, . . . , m} we have prc(fi, t) = T , where T is an integer
higher than the cost of any possible bribery (e.g., take T =
1 + kn max`,i,j π`(ci, cj)).

To perform our test we compute minimum-cost flow of
value kn in this network. If such a flow doesn’t exist then it
means that there is no legal way of distributing points via
bribery in such a way that each voter has score at most K.
In such a case we disregard this value of K and continue
with the next one. We can interpret our minimum-cost flow
as follows: Each set of nodes C1, . . . , Cn receives units of
flow corresponding to the distribution of points of each voter
(because flow has value kn and because of the capacities of
edges connecting the source with nodes in C1, . . . , Cn) and
units of flow travel from nodes in sets Ci to nodes in sets
C′

i, respectively, modeling our bribery. Finally, they all ac-
cumulate in nodes from set F , from where they all reach the
sink. The nature of edges between nodes in C′

i’s and nodes
in F guarantees that we arrive with a legal distribution of
points for each voter. The cost of this flow can be expressed
as T · (kn− p’s score after bribery) + cost-of-bribery. Since
T is chosen to be larger than any possible cost of bribery, we
know that minimum cost enforces that node f1, correspond-
ing to p = c1, receives as many units of flow as legally possi-
ble. If p can legally receive K units of flow then minimum-
cost flow delivers this many units; the capacity of the edge
linking p = c1 with the sink is K so the flow cannot deliver
more. If the flow cannot legally deliver K units of flow to c1

then we can safely disregard this network (because we have
already handled this flow when analyzing smaller values of
K). Interpretation of our flow gives that our bribery guaran-
tees that p gets exactly K points and all the other candidates
receive at most K points each (as each node f2, . . . , fn can
only deliver K units of flow to the sink). This is achieved
via a minimum cost bribery as the cost-of-bribery is the re-
maining part of the cost of our flow.

This way we test in polynomial-time for each K if there is
a nonuniform bribery of cost at most B that ensures that p
receives exactly K points and all other candidates receive at
most K points. In total, the running time of our algorithm
is polynomial in the size of our election and k.

Corollary 3.2. Nonuniform bribery is solvable in poly-
nomial time for: plurality, veto, (t-)approval, and utility-
based voting where the number of points each voter can dis-
tribute is polynomial in the number of candidates.

All the rules mentioned above can be expressed as appro-
priate (k, b)-elections and our main result applies. Naturally,
we ask if the result also holds for weighted voters? Unfortu-



nately, in general the answer is “no.” (k, b)-weighted-bribery
is an analog of (k, b)-bribery, with weighted voters

Theorem 3.3. (1, 1)-weighted-bribery is NP-complete.

The proof, skipped for space reasons, follows via a reduc-
tion from plurality-weighted-negative-bribery, defined in [9].
(m− 1, 1)-weighted-bribery, where m is the number of can-
didates, is NP-complete as well via a reduction from veto-
weighted-bribery, a problem studied in [9] as well.

We cannot hope for a general, efficient, algorithm han-
dling (k, b)-weighted-bribery for k, b polynomially bounded
in the input size, but there are interesting special cases. We
focus on the restriction of (1, 1)-weighted-bribery to the case
where each voter has a single price for moving his/her point
to any of the candidates. This problem is called plurality-
weighted-$bribery in [9] and we will use this name. We also
consider a restriction of free-form (m, 1)-weighted-bribery,
where m is the number of candidates, to a situation where
each voter has for each candidate a price of flipping the sup-
port for that candidate. This restriction is equivalent to
what in [9] is called approval-weighted-$bribery′. These two
problems can be solved approximately.

Theorem 3.4. plurality-weighted-$bribery and approval-
weighted-$bribery′ both have fully polynomial-time approxi-
mation schemes (FPTAS).

We skip the details of the proof, but we outline the main
idea. For both of our problems, Faliszewski et al. [9] gave
algorithms that work in time polynomial in the size of the
instance and the value of the highest prime. The idea of
our FPTAS is to divide the prices by an appropriately large
factor so that the largest price has value at most polyno-
mial in the size of a given instance. However, simply taking
this approach is not enough as the largest price might be
enormous and yet not used in the optimal solution. Scaling
the prices taking into account very large price range may
essentially remove all the information about the prices that
actually participate in the optimal solution. Our FPTAS
performs polynomially many “scalings” of prices, starting
with a very small scaling factor and up to one appropriate
for the largest occurring price. Small factors do not reduce
large prices enough, so—when using a small factor—we re-
move prices that are too large and replace them with appro-
priately smaller ones, that nonetheless are too large to be
used in a successful bribery.

It is unlikely that a general FPTAS for (k, b)-weighted-
bribery exists. If we had one for (1, 1)-weighted-bribery then
via a good enough approximation, one could solve plurality-
weighted-negative-bribery. This would imply P = NP.

4. FUTURE WORK
There are several interesting open directions of study. In

particular, it would be interesting to study notions similar
to our nonuniform bribery, but in the context of preferences
represented via linear orders. We are also interested in fur-
ther results regarding approximation of bribery and other
election-related problems.
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