
6161

An Agent-based Sensor Middleware for generating
and interpreting Digital Product Memories

Christian Seitz and Thorsten Schöler
Siemens Corporate Technology
Intelligent Autonomous Systems

Munich, Germany
[ch.seitz|thorsten.schoeler]@siemens.com

Jörg Neidig
Siemens Industry Sector

Advanced Technology and Standards
Nuremberg, Germany

joerg.neidig@siemens.com

ABSTRACT
Automatic identification technology such as the Radio Fre-
quency Identification (RFID) technology has significant val-
ue for production processes, supply chain management, and
inventory systems. For future purposes the idea of storing
a simple ID must be extended to a Digital Product Mem-
ory. This memory provides a digital diary of the complete
product life cycle that is embedded in the product itself,
using smart wireless micro-sensor technology. It records all
relevant ambient parameters in digital form. Sensors note
where and when an interaction with a product takes place
and the necessary data is added to the memory. A key prob-
lem with digital product memories is their cross-domain na-
ture, i. e. new relevant data must be added to the memory
from various stakeholders during the complete product life
cycle. In this paper we propose an agent-based architecture
for appending sensor data to a digital product memory in
a generic way. Additionally, methods are presented how a
digital product memory can be analyzed and evaluated to
simplify business processes, to ease maintenance, or to bring
benefit to the end-user.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
System; D.2.11 [Software Architectures]: Data abstrac-
tion

Keywords
Digital Product Memory, Sensor Abstraction, Sensor Mod-
elling

1. INTRODUCTION
Automatic identification technology such as the Radio

Frequency Identification (RFID) technology has significant
value for production processes, supply chain management,
and inventory systems. For future purposes the idea of
storing a simple ID must be extended to a Digital Product
Memory. This memory provides a digital diary of the com-
plete product life cycle that is—at least to some extend—
embedded in the product itself using smart wireless micro-

Cite as: An Agent-based Sensor Middleware for generating and inter-
preting Digital Product Memories, Christian Seitz et al., Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sensor technology. It records all relevant ambient parame-
ters in digital form. Sensors note where and when an inter-
action with a product takes place and the necessary data is
added to the memory.

There are already some consumer application which de-
scribe a simple RFID-based form of a product memory. The
authors in [19] present the Digital Sommelier, an interactive
wine shopping assistant that provides general product infor-
mation. Wine bottles sense their state via attached wireless
sensors and detect user interaction over RFID and accel-
eration sensors. Multi-modal interfaces allow the access of
information either through physical interaction with prod-
ucts or a natural language interface. With such a solution
a buyer of a product can check if the product was aging
adequately and is still in a good condition.

The Smart Shopping Assistant [20] application observes
the users’ interactions with products in a supermarket. On
displays mounted to the trolleys, context-dependent user
support is provided by the display. The user is provided
with detailed product information or a list of recipes that
could be prepared with the selected ingredients. For each
product, information including the product name, a textual
description, the price, and a set of physical and technical
properties is manually entered into a SQL database. The
information is in turn related to the object through a glob-
ally unique identification number.

A key problem with digital product memories is their
cross-domain nature, i. e. new relevant data must be added
to the memory from various stakeholders during the com-
plete product life cycle. This paper introduces an agent-
based middleware for creating, analyzing, evaluating, and
interpreting digital product memories. Additionally, appli-
cations and scenarios from the automation domain are pre-
sented, which show the benefit of a digital product memory
and of our sensor middleware approach.

The paper is organized as follows. The next section pre-
sents existing approaches for sensor middleware architec-
tures. Chapter 3 defines our requirements, it is followed by
a description of the agent-based middleware with Chapter 4.
Chapter 5 presents the implementation and Chapter 6 shows
some applications for the sensor middleware in combination
with the digital product memory. The paper concludes with
a summary and a future outlook.

2. RELATED WORK
Various middleware approaches for sensor networks, with

the goal to provide a unified access to sensors, are existing.
The authors in [17] discuss challenges for sensor middleware

Cite as: An Agent-based Sensor Middleware for generating and interpret-
ing Digital Product Memories, Christian Seit, Thorsten Schöler, Jörg Nei-
dig, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.),
May, 10–15, 2009, Budapest, Hungary, pp. 61 – 68
Copyright © 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

62

approaches, but their analysis is limited to sensor networks.
Our approach must also include sensors which are part of
existing systems, e. g. automation systems.

Kumar et al. [16] present a sensor middleware with au-
tonomous services. These services deal with basic sensor
network functionalities like a status monitor or monitoring
quality of services issues. Although a uniform access to het-
erogeneous systems is part of the system, no sensor mod-
elling is included in their approach, which would have made
their approach even more flexible.

In addition to creating an interface that realizes a uniform
access to get sensor values, the configuration of sensors has
also taken into account. Grace et al. [10] consider recon-
figuration of the network layer. We suggest that not only
the communication infrastructure needs to be reconfigured,
there must also be a possibility to change the sensor para-
meters (e. g. measuring range) as well.

According to [12] four classes of sensor middleware solu-
tions exist. Each of the classes solves just a subset of prob-
lems. Database inspired solutions provide access to sensor
networks similar to databases, i. e. they are integrated into
a schema and can be accessed using a SQL-like query lan-
guage. Several solutions support query optimization (e. g.
energy-efficient query processing) or sensor configuration.
Most of the solutions are limited to a homogeneous sensor
infrastructure, like in [9]. Solutions based on tuple spaces
are comparable to database-inspired approaches. Data from
different sensor networks are integrated into a virtual storage
space. Systems like TinyLime [8] are limited to local sensors,
whereas a global tuple space solution would be very challeng-
ing because of scalability. Event-based systems adopt the
publish/subscribe paradigm for sensor infrastructures (e. g.
[23]). They especially support operators for event correla-
tion. The fourth class of service-discovery-based solutions
as well as event-based systems address just one aspect of
creating a global sensor infrastructure, i. e. the event prop-
agation or the discovery of sensors. The approach of Sen-
sor Web Enablement (SWE) of the OpenGIS consortium [7]
aims at the integration of sensor devices into an open sensor
infrastructure which is accessible in a web-based manner for
arbitrary services. The solution consists of a set of specifica-
tions divided into three XML document descriptions (Sen-
sorML, Observations & Measurements Schema (O&M) and
TransducerML). The solution provides a unified access to
geographically dispersed sensors, but the processing steps
for abstracting sensor data is left to the clients. While the
SWE approach is rather general one, our solution is cur-
rently focused on the industry domain and integrates raw
sensor data and results of hierarchical processing steps into
a unified infrastructure which allows the dynamic discovery
and sharing of all these components.

The creation of product memories is discussed in [15]. The
authors suggest to split the memory in a short-term and a
long-term memory. The short-term memory contains the
raw data and mechanisms exist to filter and aggregate the
data. This higher level data is then the long-term mem-
ory and stored in a database. The focus of the paper is
more the exploitation of memories than the definition of a
generic middleware concept. Wahlster et al.[22] describe an
extension of this approach and present the SmartKitchen
project. A semantic cookbook is created by monitoring per-
sons which are using the kitchen. The recorded information
can be shared locally or globally over the Internet.

3. REQUIREMENTS
The goal of our research was to develop a comprehensive

cross-domain approach for creating digital product mem-
ories. We assume a distributed, heterogeneous sensor in-
frastructure or other relevant information sources like user
input, databases, or web services. Because of the dynamic
character of pervasive environments, the solution should be
flexible and extensible. That requires especially indepen-
dence from the used sensor types, the structure of the sen-
sor networks, and of the different real world situations which
could occur. Also the solution should not depend on a spe-
cific application domain, because the product memory must
be accessed during the complete product life cycle. Further-
more, scalability and modularity is required, i. e. the solu-
tion should not restrict the amount of deployed sensors. For
better reuse, it is necessary that the system is designed in
building blocks reflecting the different abstraction steps of
the conceptual framework. Additionally, performance has
to be considered to address the requirements of different
applications. Based on the assumption of a heterogeneous
and distributed sensor and service infrastructure the self-
description, discovery of building blocks of the infrastruc-
ture is required to create an open sensing infrastructure.
While sensors are usually bound to a certain location, the
provision and handling of location information is of special
importance. The solution should also enable the sharing of
any component by multiple applications. Thus, all services
and sensor access components should be configurable to the
needs of different applications. Moreover, several applica-
tions could use the same sensor device at the same time in
a concurrent manner, e. g. a sensor can add information to
more than one product memory at a time. For later process-
ing, as well as for legal requirements, sensed and processed
data should be persistently stored for configurable periods
of time. Storage functionality should be integrable at all
steps of processing of data in a dynamic and configurable
manner. Even if the infrastructure should be open, security
and privacy have to be supported. Thus, the solution has to
provide means for restricting access to sensors and further
infrastructure components to authenticated and authorized
users or systems only.

4. ARCHITECTURE AND FRAMEWORK
In this chapter we present the architecture and generic

framework of the sensor middleware for creating and inter-
preting digital product memories. The architecture is shown
in Figure 1. It consists of a sensor infrastructure layer, in-
frastructure services, an agent system and the application
layer. The building blocks are explained in the following
sections in detail.

4.1 Sensor Infrastructure
The sensor infrastructure layer (see Figure 1) contains the

physical sensors and a proxy concept. The proxy concept is
the foundation concept of the sensor middleware. It can be
seen as an abstraction for wrapping heterogeneous sensing
devices and providing unified access to sensor measurement
and configuration, hiding the details of raw data acquisition
and sensor configuration from the higher-level components.

The proxy concept, is shown in more detail in Figure 2.
A proxy represents either a single sensor or a collection of
sensors, e. g. from a sensor network. A collection of sen-
sors may even be heterogeneous. In that case, the Sensor

Christian Seit, Thorsten Schöler, Jörg Neidig • An Agent-based Sensor Middleware for generating and interpreting Digital Product Memories

63

� � � � � � � � � 	
� � � � � � � � � 	

� �
 	 � � �
 � � � � � � � � � �

� �
 	 � � � � 	 � � � �
 	 � � � � 	 � �� �
 	 � � � � 	 � �

�
 � � � � � � � � � � � � � � � � � � �

� � � � � � �
� � � � �
 � � � � � � 	
 �

�
 � � � � � � 	 � � � � � � 	

� � �
 � � � � � � �

� � � � � � � � � 	

� � � � � � � � � � � � � 	

� � � � � � � � � 	

� � � � � 	 � � �
 �

� � � 	
 �
 �
� � � �

 � �

Figure 1: Overall middleware architecture

Manager integrates all devices, manages them internally and
represents them to the outside as one logic sensor network.
The proxy manages meta information about its sensor de-
vices (e. g. sensor type, unit, accuracy and location) and
uses this information to register the sensors with an exter-
nal Registry to enable the discovery of the sensors. This
meta information can be requested from the proxy as well.
To enable a unified access to heterogeneous sensing devices,
the sensor proxy provides methods for accessing raw sen-
sor data, for configuring individual sensor devices and for
monitoring their state. Access to sensor data is supported
in two ways. First, data can be requested from the proxy.
Second, other components can subscribe to changes of sen-
sor measurements. Because the proxy should be usable by
multiple applications or components at the same time, it has
to coordinate competing data requests and subscriptions in-
ternally. In addition, potentially large amounts of raw data
should be processed in an application independent and con-
figurable way.

Sensor Management

Sensors

Sensor

Description,

Interpretation

Model,

Configuration

Sensor Model

Configuration

Communication

- Request/Response

- Publish/Subscribe

- Configuration

Interpretation

Driver Driver Driver

Sensor Sensor Sensor

- read

- configure

- subscribe

- sensor data

- register

- notify

Figure 2: Architecture of the sensor proxy in detail

4.1.1 Communication
The Communication subcomponent is responsible for han-

dling all communication of the sensor proxy with the ”out-
side”, i. e. other components of the system infrastructure.
Thus, the Communication component provides the unified

interface for sensor access and configuration. It handles mul-
tiple, potentially concurring requests and subscriptions and
provides the means for sending messages to remote compo-
nents, e. g. notification messages to registered subscribers
or messages to register sensors at the registry component.

4.1.2 Sensor Management
The Sensor Manager subcomponent maintains the low-

level concerns of the management of sensors and sensor ac-
cess inside the proxy. It manages a driver for each sensor or
sensor network and maps requests from the higher-level com-
ponents of the gateway proxy to the physical sensor devices.
The driver abstraction provides interfaces for requesting sen-
sor values, registering for sensor value updates and for the
configuration of sensor devices and data access. Thus, it
represents the link between the abstractions for data access
and configuration at the one hand and the sensing hardware
at the other hand. The driver abstraction hides all imple-
mentation details from the proxy developer and provides
a convenient way to integrate heterogeneous sensor devices
into a proxy.

4.1.3 Sensor Model
The Sensor Model contains meta data about all sensor

devices managed by the sensor proxy. There are various
ways to describe sensors.

The Sensor Model Language (SensorML) provides an XML
schema for describing sensors systems and processes, it pro-
vides information needed for discovery of sensors, location
of sensor observations, processing of low-level sensor obser-
vations, and listing of taskable properties [7]. SensorML
is rather complex and a sensor model can get quite large.
There is a first version of the SensorML specification avail-
able, but the complete sensor web enablement (SWE) mod-
elling stack is still not coherent.

Additionally, we evaluated IO-Link [5]—a communication
standard which was developed by the IO-Link research group
of the PROFIBUS & PROFINET International organiza-
tion. The communication standard below the field bus level
enables a central diagnosing and locating of errors down to
the sensor/actuator level, and facilitates the commissioning
and maintenance, by permitting parameter data—directly
from the Programmable Logic Controller (PLC)—to be dy-
namically changed. The standard uses an XML-based de-
vice description, which comprises the most important char-
acteristics of a sensor (e. g. vendor, sensor type, parameters,
unit). Unfortunately, no meta information like the location
is considered in the standard.

Both modelling approaches seem very promising. Sen-
sorML is pushed by university organizations, whereas IO-
Link will become an industry standard. Both approaches
complement each other, because each modelling technique
has its certain application domain. Nevertheless, both ap-
proaches are in an early stage, i. e. no mature tools are
available to create a sensor model and no query languages
exist. We believe that these tools will soon be available.

In the meantime we use our own simplified meta format.
This meta data comprises a logic ID per sensor, the physical
addresses of the sensors, sensor type information, the unit of
the values provided by a sensor, the accuracy of sensed data,
configuration parameters, the location of sensor devices and
a method for interpreting raw sensor data (among others).
These data is also entered in the registry component, which

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

64

make an efficient sensor discovery possible.

4.1.4 Configuration
The Configuration subcomponent is responsible for inter-

preting configuration requests of higher level entities and
for carrying out the configuration of the underlying sensors
accordingly. One important aspect is to resolve conflicting
configuration requests and to make sure that the sensing
components perform their task in a resource efficient (en-
ergy, bandwidth, etc.) manner. While the conflict resolution
mechanisms strongly depends on the type of the particular
configuration parameter, the Configuration subcomponent
has to be tailored to the sensor devices managed by the sen-
sor proxy.

4.1.5 Interpretation
The Sensor Manager subcomponent provides raw sensor

data according to particular data requests and subscriptions.
This raw data may be delivered directly to the requesting
instance or could be interpreted inside the proxy to reduce
the amount of data which has to be transmitted via the net-
work. The interpretation subcomponent is responsible for
this task. Components that access the infrastructure can
request raw sensor data or interpreted sensor data. If in-
terpreted sensor data is requested, the Interpreter subcom-
ponent is invoked. It refers to the Sensor Model to access
the interpretation model for the requested sensor value and
performs the interpretation.

4.2 Infrastructure Services
The Infrastructure Services provide mechanisms which are

necessary but generally optional. The services can be used
by the agent system and by the application as well. The
currently integrated services are explained in the following.

Registry: In our current framework an attribute-based
registry is used for discovering sensor proxies. It provides its
service under a well known URL. Components that should
be discoverable can register with the registry based on a
unique identifier, a component type and a set of attributes
in the form of name/value pairs. Especially, sensor type,
quality information of sensors, and the location of compo-
nents are represented as attributes.

Database: A database component is responsible for man-
aging historical data of the digital product memory. Parts of
the product memory can be attached to the product itself,
e.g. with a bar code or RFIDs. Product memories can be
large and may not fit on these storages, or a product memory
cannot be accessed at all times because of a lack of commu-
nication infrastructure (e.g. during transportation). There-
fore, an additional storage is needed which either stores parts
of the product memory or which is responsible for memory
replication.

The storage mechanism (e. g. a database, a RDF triple
store, or a file) is encapsulated in a Storage Manager who
is responsible for storing, delivering or synchronization of
the data. A request frequency can be provided, which de-
termines the period in which data is requested from that
source, i. e. the granularity in which historical data is avail-
able. Moreover, the configuration contains a maximum age
of data to control the deletion of old values.

Authentication and Authorization Service: The Au-
thentication and Authorization Service is responsible for au-

thenticating users in the system and for granting access to
system components to authorized users only.

4.3 Agent System
The agent system provides mechanisms to get the data

from the sensor proxy, to perform an optional preprocess-
ing, and finally to interpret the data accordingly. For each
mechanism, a single component is responsible that can be
attached to an agent to achieve the functionality.

Sensor Data Acquisition: The agent system must be
able to get the data from the sensor proxy. This module is
responsible for discovering the right sensor proxy and must
be able to obtain a single sensor value as well as to subscribe
to a sensor proxy in order to be provided with sensor data
continuously.

Preprocessing and Aggregation: If agents get sensor
data from a sensor proxy, not all the data needs to be stored
in a product memory or a special format is needed. For
that reason the preprocessing components comprise mech-
anisms like outlier extraction, noise reduction filtering, or
data transformation. The next step is the data aggrega-
tion, when several agents need data from more than one
sensor proxy. The sensor data often must to be combined
in a special way to increase expressiveness. This is achieved
by several aggregation functions like average, maximum and
minimum, or summing up.

Classification: Classification implements certain algo-
rithms for grouping items that have similar feature values
into groups, e. g. assigning raw sensor data provided by
a sensor proxy to a certain value class. Algorithms to be
adopted are for instance crisp limits or fuzzy sets. Thus, a
classifier requires a single value as input on which it applies
the implemented classification algorithm, configured by the
classifier settings (e. g. classifier ranges), and thus, produces
one resulting fact representing the classified sensor value.

Reasoning: The most sophisticated mechanism is a rea-
soning component, that makes it possible to generate new
higher-level data from pure sensor data. It requires a set
of lower-level facts as input and produce a higher-level fact
about the current situation as output. For example, data of
two light barriers can be used as a direction sensor or event,
provided that a time stamp is available, the velocity of an
object can be calculated. This is accomplished by using rule
engines (e. g. CLIPS, Jess, or Drools) and OWL Reasoner
(e. g. Racer Pro, Pallet or Fact++).

4.4 Communication
The communication framework is a general building part

of the generic framework which is reused in most of the com-
ponents for implementing their communication capabilities.
It is not explicitly mentioned in figure 1, because it is more
the glue between the components. It is an abstraction layer
which hides communication technologies regarding to pro-
tocols and message formats from the programmer and the
components into which it is integrated. The major func-
tionality it provides is for sending and receiving messages
to and from remote components. It represents a component
as an addressable communication endpoint in the system.
Moreover, it provides hooks to implement component spe-
cific functionality for handling and sending messages. The
main component of the communication framework is the

Christian Seit, Thorsten Schöler, Jörg Neidig • An Agent-based Sensor Middleware for generating and interpreting Digital Product Memories

65

Communication Manager. It contains the implementation of
the basic functionality for encoding and decoding messages
and encapsulates the concrete technologies and protocols for
sending and receiving messages. In our framework we cur-
rently use Jetty, an open-source, full featured web server,
which can be embedded into Java applications.

Thus, components can access functionality and data of
other components and offer their functionality and data in
a web-based manner and are addressed with a unique URL.
The communication protocol is HTTP 1.1. The communi-
cation framework defines a set of message types representing
messages, which belong to a certain interaction type (e. g.
request message, subscribe message, etc.). Messages are
identified by a unique ID and a particular message type.
Each message contains a set of data which is specific to
the message type. This data is encapsulated in a mes-
sage body. Currently, messages are defined in XML format.
The messages could easily be implemented also in another,
maybe binary format. Nevertheless, advantages of XML are
easy parsing based on available parsing library implementa-
tions, easy-to-implement XML-schema-based validation of
messages, easy extensibility, and a human-readable struc-
ture. The major drawbacks of XML-based messages—high
overhead and slow parsing—are avoided by defining a very
simple message format with short identifiers.

4.5 Design issues
The proposed architecture and framework structure has

several consequences on the performance and scalability of
the systems build on it, as well as on the reusability of frame-
work code and components. Therefore, in the following sec-
tions, the major design issues are discussed and the design
decision are made explicit.

Sensor proxy granularity: A major goal for the design
of the proxy abstraction is to introduce a unified interface for
accessing sensor data and for configuring sensors, no matter
what kind of sensor is represented by a particular proxy. In
practice sensor devices can have different granularity (e. g.
a single sensor vs. a sensor board with multiple sensors
attached). Thus, a proxy could either represent only a single
sensor or it could handle a set of sensors by definition. We
decided for the latter, to ensure a unique granularity of the
proxy interfaces and a more natural and efficient modelling
of sensor networks. Thus, to address a sensor within a proxy,
always a unique ID for each sensor is required.

Sensor proxy vs. Agent system relation: The sensor
proxy abstraction covers sensors providing raw data. Several
types of sensors (e. g. a microphone or an accelerometer)
produce a large amount of data. The agent system processes
such a stream of raw data, resulting in facts and reducing
the amount of data significantly. We decided to detach the
sensor proxy from the agent system in order to support a
clear separation of concerns. To avoid the transmission of
large amounts of raw data, agents should be placed locally
to sensor proxies, either on the same host or on a host with
a fast connection to the proxy host.

Sensor proxy vs. database: From the performance
perspective, sensor proxy and storage should be closely cou-
pled to optimize storage structures and data access. This
would increase the complexity of the proxy abstraction. The
other option is to separate the storage from the proxy. We

decided for the second option again to support a clear sep-
aration of concerns and a simple proxy solution. With the
introduction of the storage abstraction a uniform access to
data history can be provided at all levels of the architecture,
which also reflects the idea of a digital product memory. For
the drawback of that approach, see last paragraph.

5. IMPLEMENTATION
This section describes briefly our implementation of the

sensor middleware. It explains which sensors are currently
integrated and which agent system is used.

5.1 Sensor Infrastructure
We attached various information sources to the sensor

proxy. For each of them a driver component was developed
within the proxy, see figure 2.

We started with integrating a Crossbow Imote2 module.
The Imote2.NET is an advanced wireless sensor node plat-
form. It is built around the low-power PXA271 XScale CPU
and also integrates an 802.15.4 compliant radio [4]. It has
32MB SDRAM and 32MB of FLASH memory at its disposal,
which is enough for a lot of entries of a digital product mem-
ory. The sensor board contains a three-axis accelerometer,
an advanced temperature/humidity sensor, a light sensor
and a four channel A/D converter The Imote2 is integrated
via an 802.15.4 interface to the sensor proxy.

Additionally, driver exist for serial and parallel communi-
cation with sensors, IP-based communication is supported
as well.

We do not only concentrate on physical sensors, other
information sources can be added as well. There is the pos-
sibility to use databases, files or URLs as data sources for
the product memory.

5.2 Agent Platform
As already mentioned, we need another kind of infrastruc-

ture on top of the sensor proxy, namely a multi-agent system,
which is responsible for preprocessing and interpreting the
data, that is provided by the sensor abstraction layer.

5.2.1 JADE vs. Cougaar
We have gained a lot of experience in the Agent Platform

JADE (Java Agent DEvelopment Framework) in the last
years and developed a lot of prototypes, mainly in the mo-
bile computing domain. JADE is a software framework fully
implemented in the Java programming language. It simpli-
fies the implementation of multi-agent systems that complies
with the FIPA specifications and through a set of tools that
supports the debugging and deployment phases. JADE is
relatively suitable for simple agent applications and devel-
opers, that require FIPA compliance. JADE’s debugging
and monitoring tools, and its support for FIPA ACL mes-
sage format are a sound foundation for systems interactions
that require cross-platform interoperability [11]. JADE can
be distributed over several hosts, resulting in a distributed
system that seems like a single platform from the outside.
White and yellow pages services are available. Additionally,
ontologies are supported and a large number of plug-ins and
3rd party software is available [6].

We additionally started an evaluation of the Cougaar (cog-
nitive agent architecture) platform [3]. Cougaar is a Java-
based architecture for large-scale agent systems. Cougaar
has been used in distributed logistics planning and replan-

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

66

ning systems. Cougaar is an open source project and is
the product of a multi-year DARPA research project. The
Cougaar architecture is based on a node/container concept,
where each agent is implemented from a basic agent and
additional plug-ins. The agents communicate via a pub-
lish/subscribe-based blackboard system. Cougaar itself is
described as a highly configurable, robust and scalable archi-
tecture. It is designed and tested for scalability, performance
and robustness. The plug-in concept adds greater flexibility
and performance in more complex agent designs. An auto-
mated military logistics planning and execution system was
built with Cougaar, in which more than 1100 agents were
involved. Additionally to the open source version, there is a
commercial version of Cougaar, called ActiveEdge which is
offered by Cougaar Software, Inc. ActiveEdge provides all
features of Cougaar with key extensions to simplify appli-
cation development, increase agent functionality, and pro-
vides enhanced system capabilities. ActiveEdge is designed
to provide a sound real-time picture of enterprise operations.
Additionally, ActiveEdge provides advanced execution mon-
itoring and collaborative decision support [2].

For our further developments, we decided to use the Cou-
gaar platform in our sensor middleware architecture. Not
only the availability of semantic technologies (e. g. Minsky’s
frames [21]) in Cougaar but also the gain in experience with
applications of Cougaar (as described in Chapter 6) and its
proven features like its maturity, its robustness, its scalabil-
ity1 and the additional possibility to switch to a commercial
system with little effort—if necessary in the future are back-
ing this decision.

5.2.2 Sensor Proxy - Cougaar Interaction
Figure 3 shows the combination of the sensor proxy and

Cougaar agents. For a sensor or a set of sensors a software

� � � � � � � 	

� � � � � � �

 � � � � � 	

� � � � � � � 	

� � � � � � �

 � � � � � 	

� � � � � � �

� � � � � � �

 � � � � �

� � � � � � �

� � � � � � �

 � � � � �

� � � � � � � �

� � � � � � �

 � � � � � �

� � � � � � � �

� � � � � � �

 � � � � � �

� � � � � � �

� � � � � �

 � � � � �

� � � � � � � � � � �

 � � � � �

� � � � � �

 � � � � �

� � � � � � �

� � � � � �

 � � � � �

� � � � � � � � �

 � � � � �
� � � � � �

 � � � � �

� � � � � � � �

� � � � � � �

 � � � � � �

� � � � � � � �

� � � � � � �

 � � � � � �
� � � �

� � � � � � �

� � � � � �

 � � � � �

� � � � � � � � � � �

 � � � � �

� � � � � �

 � � � � �

� � � � � �

 � � � � �

Figure 3: Sensor Proxy - Cougaar interaction

abstraction, a sensor proxy, exists. The sensor proxy is re-
sponsible to access the sensor hardware, i. e. the proxy must
be able to read the sensor data and performs an optional
sensor configuration.

A Cougaar agent’s functionality is determined by its plug-
ins. In order to obtain values from a sensor the agent must
contain a sensor plug-in. This plug-in connects an agent
with the sensor proxy via a HTTP connection. By this way
an agent subscribes to a certain kind of sensor data, which
is put in the agent’s blackboard. A Cougaar agent can share
its blackboard with other Cougaar agents. The data in the
blackboard can be further processed by other plug-ins. We

1Cougaar’s scalability compared against e. g. JADE is also
described in a post on the Cougaar mailing list [1].

implemented various filter, data transformation and data
aggregations plug-ins. Additionally, we made a plug-in for a
rule engine, which allow basic reasoning mechanisms. With
a database plug-in it is possible to transfer sensor data to a
database, which is part of the infrastructure services.

Applications also need be attached via plug-ins. In the
next section we present some of them, which we already have
successfully realized or which we are currently implementing.

6. APPLICATIONS
We have used the Cougaar agent platform in a variety of

applications. One of them is intelligent system management
in the automation system domain. System management can
be divided into three major services:

• Asset management, providing access to system con-
figurations, hardware/software revisions, and allowing
target/actual system configuration comparisons

• Event management, providing services for system
monitoring, alarming, and event correlation

• Software management, providing services for soft-
ware deployment and patch management

Additionally, we have gained a lot of good experience with
Cougaar in the following applications:

• Decentralized Automation, the product memory
controls and influences the manufacturing process

• Predictive Maintenance, detection potential prod-
uct failures in advance

Applications of the Cougaar agent system for asset man-
agement, event management, decentralized automation, and
predictive maintenance will be briefly described in the fol-
lowing sections.

6.1 Asset management
The asset management system uses Cougaar agents, de-

ployed on standard PC systems, to collect asset informa-
tion of automation equipment deployed in various industrial
applications. The Cougaar PLC proxy agent (as shown in
Figure 4) collects asset information for a set of deployed
programmable logic controllers (PLCs). The collected asset
information is stored by a PLC asset information plug-in in a
hierarchical system description, based on Cougaar’s seman-
tic frame set data structures, which is quite similar to the
semantic product memory approach. Other Cougaar plug-
ins are used to enrich and analyze the collected data. Finally,
exporter plug-ins are implemented that provide the collected
asset information to external systems (e. g. as XML repre-
sentation).

The collection and processing of asset information in the
described use-case would benefit from a standardized, hi-
erarchically organized system description as envisaged with
the semantic product memory. The laborious asset infor-
mation collection as well as the integration in other asset
management systems will be simplified.

6.2 Event management
One current challenge in event management for intelli-

gent system management is how to reduce the event count
produced by the managed system. Todays managed systems

Christian Seit, Thorsten Schöler, Jörg Neidig • An Agent-based Sensor Middleware for generating and interpreting Digital Product Memories

67

Figure 4: Cougaar agent configuration for asset
management use case

e. g. computer tomography systems are based on one or more
PC-based subsystems as well as a number of embedded de-
vices. In our scenario, the event information, produced by
the various PC or embedded systems, is collected and sent to
a remote service center connected via the Internet. Thus, a
reduction of the event count will lower communication costs
as well as interpretation and analysis costs.

We efficiently reduce the number of reported events by
correlating simple events produced by the various subsystem
to higher-order events which allow better interpretation.

Again, the system is Cougaar agent-based, where an event
correlation agent (see Figure 5) is deployed on the man-
aged system. It attaches to various event sources (via im-
porter plug-ins), correlates them and exports higher-order
events via exporter plug-ins to the event management sys-
tem, which in turn forwards them to the service center.
The Cougaar agent uses a frames-based semantic represen-
tation—similar to a semantic product memory—of the man-
aged system. Occurring events are attached to the source
subsystem in the frame set. The actual event correlation
task is carried out by a rule engine plug-in.

Again, the event correlation/management use-case will
benefit from a more generic system or device representation
as it will be available with the semantic product memory.
Furthermore, the event collection process will be much sim-
pler when there is a well-defined interface to the managed
system as provided by a generic sensor middleware as de-
scribed above.

Figure 5: Cougaar agent configuration for event cor-
relation use case

6.3 Predictive Maintenance
Another possible benefit of a digital product memory is

the detection of technical issues when the product is already
deployed in the field. Since the digital memory contains a
lot of sensor data, an analysis is useful for diagnostics and
predictive maintenance.

An example is an industrial robot, that moves a work piece
from one machine to another. The robot is equipped with an
acceleration sensor. While the robot moves the work pieces,
the sensor values are continuously (every 20ms) recorded in
the digital product memory of the robot. On basis of this
data, an evaluation of the robots product memory can de-
tect, if the robot still works properly or if an execution has
occurred. A more sophisticated method is not only to detect
errors if they have occurred, but to detect slight changes in
the normal behavior. An anomaly detector should report if
new measured data of certain sensors have a different pat-
tern or are beyond the normal sensor values. The basis for
an abnormality detector are time series of sensor values or
other data sources (e. g. from databases), which are element
of the product memory. A given time series which describes
the normal behavior is the basis for creating a model. This
configuration phase is followed by a detection phase in which
a detector should detect any candidate of an abnormal be-
havior. This detection step should be as fast as possible—in
many cases even real time processing is necessary.

For the detection of abnormal behavior we implemented
two different algorithms—both are integrated into the Cou-
gaar platform by means of plug-ins. The first abnormality
detection mechanism is based on the HOT SAX algorithm,
[13]. The main idea of the algorithm is to analyze the sensor
data history, regarding abnormalities. A parameter specifies
how many data are to be extracted from the digital product
memory. Thus, if new data arrives, it is compared with
the data in the history and the distance is calculated. If a
threshold is exceeded, an abnormality has occurred.

The other algorithm is based on the work of Salvador [18]
and was extended in [14]. The algorithm transforms the
data of the digital product memory into a multi-dimensional
feature space, which results in a trajectory. This trajectory
is covered with shapes (e. g. boxes). An abnormality is
detected if new data is not within these shapes. The size
and the location of the shapes are transformed into rules.
Thus, an abnormality test can be done by using a rule engine
(e. g. Jess, CLIPS, Drools). The algorithm is best suited
for periodic events, is highly sensitive and a small rule set
is sufficient to detect abnormal behavior. It can also be
implemented on resource-limited devices like sensor nodes
or PDAs.

6.4 Decentralized Manufacturing Control
The need of products which are tailored to customers’

needs, results in a reduction of the lot size and implies a
more flexible production and the associated processes. In
the course of an increased diversification the changeover time
will be a critical cost factor. This essentially needed flexibil-
ity is hard to realize with traditional central control archi-
tectures that can be found in nowadays automation systems.
One solution is a decentralized production control, done by
the product itself. The goal is to operate autonomous work-
ing stations and all data that is needed to assemble the prod-
uct is kept on the product in the digital product memory.
If a product enters the vicinity of a working station the in-

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

68

formation is read from the digital product memory and the
station accomplishes the necessary tasks.

Thus, if a product is assembled in multiple steps, the nec-
essary data is written to the product memory when the or-
der is entered into the order system. The data contains
the description of the single production steps with all its
parameters, e. g. the position of bore holes or welds, the
used materials, the size or the color. The product memory
can even contain program code for the producing machines.
The memory is read by the machine (e. g. via RFID) and
the machine is parameterized and set up accordingly. If a
production step is finished, the product itself is responsi-
ble for the routing to the next station. Depending on its
weight and shape either an automated guided vehicle or a
conveyer belt can be used. This use case of course needs a
completely new infrastructure for shop floor systems. New
communication mechanisms (e. g. sensor networks) must be
introduced and additionally new software services are nec-
essary. One of them is a sensor middleware in combination
with an agent platform (e. g. Cougaar with its facilities for
logistics planning and replanning) for the evaluation of the
data and control of the working stations.

7. SUMMARY AND FUTURE WORK
This paper presents and agent-based middleware for cre-

ating and interpreting digital product memories. A product
memory provides a digital diary of the complete product life
cycle.

One building block of the middleware is a sensor proxy,
which implements a software abstraction of one or more
physical sensors. The sensor proxy offers a well defined inter-
faces for getting sensor values and for configuring the sensor.
We use the Imote2 sensor network node for obtaining sensor
data.

For each sensor, a sensor model is available that contains
its special characteristics (e. g. vendor, type, location, accu-
racy). The sensor description is stored on a registry compo-
nent, which is also able to process queries according to the
sensors.

On top of the sensor proxy the agent platform Cougaar is
used to evaluate the data, which are provided by the sensor
proxies. Cougaar agents are responsible for filtering, aggre-
gating and interpreting of the sensor data. A digital product
memory is created and can be interpreted with additional
mechanisms, e. g. querying or reasoning. Additional ser-
vices allow storing or replicating the product memories in
external databases. We use the middleware approach for
applications in the automation domain, e. g. for predictive
maintenance, decentralized control or asset management.

In the future we plan to gradually extend the system to
other domains to enrich the digital product memory with
data from other parts of the product life cycle.

8. ACKNOWLEDGMENTS
This research was funded in part by the German Federal Min-

istry of Education and Research under grant number 01 IA 08002 G.
The responsibility for this publication lies with the authors.

9. REFERENCES
[1] Cougaar Developer Mailarchive.

Cougaar’s 15,000+ Agents vs. other http://www.mail-ar-
chive.com/cougaar-developers@cougaar.org/msg-
00090.html, Accessed 12.12.2008.

[2] Cougaar Software, Inc., white paper.
ActiveEdge R©Situational Reasoning Framework Technical
Overview, http://www.cougaarsoftware.com/fi-
les/CSI_Situational_Reasoning_Frame-
work.pdf, Accessed 05.12.2008.

[3] CougaarForge. http://cougaar.org, Accessed 05.12.2008.
[4] Crossbow Imote2 Datasheet. http://www.xbow.com/Pro-

ducts/Product_pdf_files/Wireless_pdf/Imo-
te2.NET_ED_Datasheet.pdf, Accessed 5.12.2008.

[5] IO-Link Homepage.
http://www.io-link.com, Accessed 5.12.2008.

[6] JADE Homepage.
http://jade.tilab.com, Accessed 5.12.2008.

[7] M. Botts, G. Percivall, C. Reed, and J. Davidson.
OGC R©sensor web enablement: Overview and high level
architecture. GeoSensor Networks: Second International
Conference, 2006.

[8] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L.
Murphy, and G. P. Picco. Tinylime: Bridging mobile and
sensor networks through middleware. In Proceedings of the
PERCOM 2005.

[9] J. Gehrke and P. Seshadri. Querying the physical world.
IEEE Personal Communications, 7:10–15, 2000.

[10] P. Grace, D. Hughes, B. Porter, G. Coulson, and G. Blair.
Middleware support for dynamic reconfiguration in sensor
networks, 2007.

[11] A. Helsinger, M. Thome, and T. Wright. Cougaar: A
scalable, distributed multi-agent architecture. In SMC,
2004.

[12] K. Henricksen and R. Robinson. A survey of middleware for
sensor networks: state-of-the-art and future directions. In
Proceedings of the international workshop on Middleware
for sensor networks, 2006.

[13] E. Keogh, J. Lin, and A. Fu. HOT SAX: Efficiently finding
the most unusual time series subsequence. IEEE
International Conference on Data Mining, 2005.

[14] T. Kopp. Non-probabilistic analysis of time series for
detection of abnormal behaviour, Diploma Thesis,
University of Marburg, Germany, 2008.

[15] A. Kröner, D. Heckmann, W. Wahlster, and K. Kogure.
SPECTER: Building, exploiting, and sharing augmented
memories. In Workshop on Knowledge Sharing for
Everyday Life, 2006.

[16] K. Modukuri, S. Hariri, N. V. Chalfoun, and M. Yousif.
Autonomous middleware framework for sensor networks. In
Proceedings of the International Conference on Pervasive
Services, 2005.

[17] K. Römer, O. Kasten, and F. Mattern. Middleware
challenges for wireless sensor networks. ACM SIGMOBILE
Mobile Computing and Communication Review, 6, 2002.

[18] S. Salvador and P. Chan. Learning states and rules for
detecting anomalies in time series. Applied Intelligence,
2005.

[19] M. Schmitz, J. Baus, and R. Dörr. The digital sommelier:
Interacting with intelligent products. In C. Floerkemeier,
M. Langheinrich, E. Fleisch, F. Mattern, and S. E. Sarma,
editors, Internet of Things 2008. Springer, 2008.

[20] M. Schneider. Towards a general object memory. In T. S.
A. Bajart, H. Muller, editor, UbiComp Workshop
Proceedings, Innsbruck, Austria, 2007.

[21] R. Shapiro and J. Zinky. Cougaar frameset overview, 2007.
http://cougaar.org/docman/view.php/17/197/FrameSet-
Overview_Mar07.ppt, Accessed 12.12.2008.

[22] W. Wahlster, A. Kröner, M. Schneider, and J. Baus.
Sharing memories of smart products and their consumers in
instrumented environments. it - Information Technology,
50(1), 2008.

[23] E. Yoneki and J. Bacon. Unified semantics for event
correlation over time and space in hybrid network
environments. In IFIP International Conference on
Cooperative Information Systems. Springer, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

