Finding Approximate Competitive Equilibria:
Efficient and Fair Course Allocation

Abraham Othman, Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
{aothman,sandholm}@cs.cmu.edu

ABSTRACT

In the course allocation problem, a university administrator seeks to
efficiently and fairly allocate schedules of over-demanded courses
to students with heterogeneous preferences. We investigate how
to computationally implement a recently-proposed theoretical solu-
tion to this problem (Budish, 2009) which uses approximate com-
petitive equilibria to balance notions of efficiency, fairness, and in-
centives. Despite the apparent similarity to the well-known combi-
natorial auction problem we show that no polynomial-size mixed-
integer program (MIP) can solve our problem. Instead, we develop
a two-level search process: at the master level, the center uses
tabu search over the union of two distinct neighborhoods to suggest
prices; at the agent level, we use MIPs to solve for student demands
in parallel at the current prices. Our method scales near-optimally
in the number of processors used and is able to solve realistic-size
problems fast enough to be usable in practice.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics

General Terms

Economics, Algorithms, Experimentation

Keywords

Mechanism Design, Combinatorial Allocation, Winner Determina-
tion, Local Search

1. INTRODUCTION

At many educational institutions, students’ learning experience
requires limiting the number of students in a class. This creates
a challenging allocation problem for school administrators: how
should scarce course seats be allocated amongst students with het-
erogeneous preferences?

Course allocation is a well known open problem in market de-
sign (c.f. Roth [2002], Milgrom [2007]). Most of what is known
theoretically about this problem are impossibility theorems which
indicate that there is no perfect solution: there is no mechanism that
is efficient, strategyproof, and fair [Pdpai, 2001, Ehlers and Klaus,
2003]. Practitioners have not solved the problem either: the most
widely-used course-allocation mechanism in practice is inefficient,
Cite as: Finding Approximate Competitive Equilibria: Efficient and Fair
Course Allocation, Abraham Othman, Eric Budish, and Tuomas Sandholm,
Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10-14, 2010, Toronto, Canada, pp. 873-880
Copyright (©) 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

873

Eric Budish
University of Chicago
. Booth School of Business
eric.budish@chicagobooth.edu

easy to manipulate, and risks outcomes that are highly unfair (some
students may obtain zero courses) [Sonmez and Unver, Forthcom-
ing].

In recent work, Budish [2009] proposes a new theoretical so-
lution to the course-allocation problem. His mechanism—which
adapts the old idea of Competitive Equilibrium from Equal In-
comes [Foley, 1967, Varian, 1974, Thomson and Varian, 1985] to
the case of indivisible goods—satisfies tight approximations of the
efficiency, incentive compatibility and fairness properties a mecha-
nism ideally should satisfy. However, Budish’s theoretical solution
is not yet a practical solution for two reasons. First, the mecha-
nism is non-constructive: it relies on finding a Kakutani fixed point
of a highly discontinuous function. Second, the mechanism re-
quires that students report their ordinal preferences over all pos-
sible schedules of courses: this is impractical because the number
of schedules can be exponentially large.

This paper proposes a computational method for implementing
Budish’s Approximate CEEI Mechanism (A-CEEI). First, students
report their ordinal preferences over schedules using a reporting
language that is concise but expressive. Second, we use a decen-
tralized, two-level search process to solve for A-CEEI prices and
allocations. At one level of the search, the master level, the cen-
ter searches for prices for the courses, denominated in an artificial
currency. At the other level, the agent level, each agent searches
for their most preferred affordable bundle given the prices. We use
tabu search over price space; a unique feature of our search is a hy-
brid neighborhood. We use a mixed-integer program (MIP) solver
for the agents’ individual demand problems. Traditional economic
theory tells us that one of the advantages of prices is that they al-
low disjoint agents to make decisions disjointly [Hayek, 1945]; we
exploit Hayek’s insight by fully parallelizing the solving of agent
demand problems. Since nearly all of our computation time is
spent on the agent level, we achieve excellent scaling on multicore
systems. Our method is able to solve realistic-size problems fast
enough to be usable for practice.

The course-allocation problem belongs to a broader class of prob-
lems called combinatorial assignment, in which a set of indivisible
integer-supply objects is to be allocated amongst a set of agents
with preferences over bundles, without the use of monetary trans-
fers'. (A-CEEI uses artificial currency with no value outside the
problem at hand). This is similar to the well-known combinato-
rial auction problem: the only difference is the prohibition against
monetary transfers. This seemingly small difference has important

!Other potential examples of combinatorial assignment problems
include the assignment of fixed-wage shifts (or tasks) to inter-
changeable workers, leads to salespeople, players to amateur sports
teams, airport takeoff-and-landing slots to airlines, and shared sci-
entific resources to scientists.

implications for what allocation rules will have attractive efficiency,
fairness and incentive properties, and ultimately for what compu-
tational procedures will be attractive. Whereas MIPs are highly
effective at solving combinatorial auction problems, our analysis
suggests that MIPs alone cannot be used to solve the combinatorial
assignment problem. Specifically, we prove that no polynomial-
size MIP implements A-CEEI, even for the simplest class of stu-
dent preferences over courses (additive separable).

We also briefly review why the Eisenberg-Gale paradigm cannot
be used in our context, and discuss the subtle but critical differences
between A-CEEI and the course-bidding procedures currently in
widespread use at professional schools around the world.

The remainder of this paper is organized as follows. Section 2
describes the theoretical mechanism. Section 3 shows that MIPs
alone cannot be used to implement A-CEEI. Section 4 describes
our two-level search process. Section 5 reports computational ex-
periments that assess our method’s speed. Section 6 concludes.

2. A-CEEIL: THEORY

The ingredients of a course-allocation problem are as follows.

There is a set of M courses with integer capacities (supply) (g;) jle.

There is a set of N students. Each student i has a set ¥; C {0, 1}
of permissible schedules. A schedule consists of O or 1 seats of each
course, and at most k < M courses altogether. The set ¥; encodes
any universal scheduling constraints (e.g. courses that meet at the
same time) and any constraints specific to ¢ (e.g. prerequisites).
Each student ¢ has a utility function over her permissible sched-
ules, u; : ¥; — R. We assume that preferences are strict, i.e.,
for @; # z; € Uy, ui(w;) # ui(x)). We do not place any further
restrictions on preferences. In particular, students are free to regard
courses as substitutes or complements.

Budish [2009] proposes the following course-allocation mecha-
nism.

MECHANISM 1. A-CEEI:
1. Students report their preferences. Denote the reports (ﬁl)f\;l

2. Assign each student i a budget b that is a uniform random
draw from [1,1 +], with 0 < 8 < min(%7 k—il)

3. Compute a set of prices (pj*)?il and allocations ()N,
such that

(a) Students maximize utility, based on their reported pref-
erences, subject to their budget constraints. Formally,

J

(b) The magnitude of market-clearing error is as small as
possible. Formally, minimize

Where &; is given by

5:{ ST =4 if pj > 0;
7 max [(szfj — Qj) ,O} ifp; = 0.

If @« = 8 = 0 this mechanism would be equivalent to the Compet-
itive Equilibrium from Equal Incomes proposed by Foley [1967],
Varian [1974], and numerous others since. The only difference is
that we use a Fisher economy rather than an endowment economy

Vi : 2 = arg max
z/' eV,

874

(c.f., [Vazirani, 2007]) because equal endowments are not well de-
fined with indivisibilities. Unfortunately exact CEEI need not exist.
Budish [2009, Theorem 1] shows that, as long as budget-inequality
[is strictly positive, there exist prices that clear the market to
within error of at most « = \/kM /2. This worst-case bound is
small for realistic problems, and, as INV,q — oo, market-clearing
error converges to zero as a fraction of the endowment.

But for the small amount of market-clearing error, the allocation
is Pareto efficient. Budish [2009] also shows that the mechanism
satisfies attractive criteria of fairness and satisfies an intuitive re-
laxation of strategyproofness; the reader is encouraged to consult
that paper for additional details.

2.1 An Example

We present a simple example to illustrate A-CEEI and its effi-
ciency and fairness properties.

EXAMPLE 1. There are two students {1,2} and four courses
{a,b,c,d}, each in unit supply. Students consume at most two
courses each; there are no other scheduling constraints. Students’
utility functions are additive separable over objects. Suppose they
report the following preferences (normalized to sum to 100):

a b ¢ d
1 60 30 6 4
2 62 32 4 2

We can think of a and b as courses taught by star professors and c
and d as unpopular courses. Suppose A-CEEI draws random bud-
gets of b1 = 1.1 and b5 = 1.0. Then at prices of p; = 1.1,p5 =
0.9, p3 = 0.1, and p} = 0.0, student 1’s utility maximizing afford-
able bundle is {a,d}, while 2’s is {b, c}. This allocation exactly
clears the market.

Observe that the allocation in Example 1 is Pareto efficient; fur-
ther, it is intuitively as fair as possible given the constraints of the
problem. (Fairness criteria are formalized in Budish [2009]).

3. WHY TRADITIONAL SOLUTIONS FAIL

Consider the well-known winner determination problem from
combinatorial auctions [Lehmann et al., 2006], applied to our set-
ting. We use z; to denote the bundle assigned to student ¢ and
x5 € {0,1} as an indicator of whether bundle z; contains course

e

max Z u;(z;) subject to (1)

D @iy < a5,Vi
J

xT; € \I/i,V’L'

Program (1) is well defined in our context, and, though NP-hard,
will often be easy to solve in practice [Hoos and Boutilier, 2001,
Sandholm, 2007]. But for course allocation this is the wrong pro-
gram to solve! First, it will lead to highly unfair allocations. For
instance, in Example 1 it will allocate both of the good courses to
student 2 and both of the bad courses to student 1. Second, it will
create incentives to misreport. If student 1 misreports her utility
vector as (63, 33, 3, 1) then she will get both of the good courses.
The basic reason why Program (1) works well in combinatorial
auction contexts but not in course allocation is that, in a combi-
natorial auction, the solution to (1) can be supported by transfers
of real money. The prices that define these transfers can be cal-
culated from the dual to (1). Given these supporting prices, each

bidder is assigned the bundle that maximizes their utility less their
expenditure. Consider Example 1, supposing that the object values
represent students’ willingness-to-pay in dollars. Then the outcome
in which student 2 gets both a and b but has to pay for them with
real money (e.g., pays $60 for a and $30 for b) will be envy free.
Student 1 does not envy the right to pay $90 for {a, b}. (See Alkan
etal. [1991]).

In our problem, money is artificial and has no outside use. As a
result, prices play a conceptually different role: prices define stu-
dents’ choice sets. At price vector p*, each student is assigned
the bundle that maximizes their utility out of all schedules in their
choice set. That is, student ¢ with budget b; is assigned

i(x):p"-x < by
arg max{u;(z) : p* - x < bil

whereas, in a combinatorial auction, student ¢ is assigned

*

arg max(u;(z) — p” - 2]

The reason Mechanism 1 has attractive fairness properties is that
students’ choice sets are roughly similar in quality (because budget
inequality is small). The reason Mechanism 1 has attractive incen-
tive properties is that each student is allocated her most-preferred
bundle in the choice set defined by the prices and her budget.

A natural idea is to seek a way to augment Program (1) so as
to implement Mechanism 1. Suppose, to conserve notation, that
there exists a solution with zero market clearing error. Consider the
following modified program:

Hzl-%)X ; u;(z;) subject to

D @iy < a;,Vi
j

x; = arg max [u;(x) :p-z < b, Vi
' ew,;

@

In order to use a MIP, one would have to find a way to re-express
the optimization constraints (2) as linear inequalities. There are
various ways to do this, but none that is concise. We formalize
this claim in Theorem 1 below. To state Theorem 1, we need the
following two definitions.

DEFINITION 1. An agent has additive separable utility if their
utility for a bundle is the sum of their utilities for the individual
courses within that bundle. Formally, for each student i, there exists
a vector of course values v; = (vi1, ..., vin) such that u;(z;) =
Zj VijTij for all x; € ;.

This is the simplest and most immediate way to think about stu-
dents’ values for a bundle of courses—simply add up the indepen-
dent values for the courses within the bundle. This way of think-
ing about valuations is also used (implicitly or explicitly) by many
current course-selection mechanisms, which assume additive sepa-
rability when they allot each student their most preferred available
course in turn.

DEFINITION 2. In the KNAPSACK OPTIMIZATION problem,
we are given a budget and a set of items. Each item has a value and
a price. We are asked which set of items maximizes the sum of val-
ues without exceeding the budget. KNAPSACK OPTIMIZATION is
NP-hard [Cormen et al., 2001].

THEOREM 1. Ifan agent can express additively separable util-

875

ity, their maximization objective cannot be represented in a poly-
nomial number of constraints (unless P=NP).

PROOF. Solving the maximization objective for an agent with
additively separable utility is equivalent to solving KNAPSACK
OPTIMIZATION. Now imagine we could express an agent’s max-
imization objective in a polynomial number of constraints. Then
we would have a polynomial-time verifier for KNAPSACK OP-
TIMIZATION: simply test a prospective optimization solution on
each constraint in turn. Having a polynomial number of constraints
would therefore imply that the verification version KNAPSACK
OPTIMIZATION (i.e., “Is this the optimal solution?”) is in NP,
because it could be verified in polynomial time.

Now imagine that we could verify any e-optimal solution with
our (unconditional in €) polynomial verifier. Put another way, our
verifier could distinguish between an e-optimal solution and an op-
timal solution for all €, with no size dependence on e. Since if
P# NP, any polynomial verifier for KNAPSACK OPTIMIZATION
must have a dependence on 1/¢, by shrinking ¢ small enough we
will either break our verifier or have P=NP. |

3.1 Eisenberg-Gale and Bidding Points Mech-
anisms

In this section we briefly discuss two other natural ideas for how
to solve the course-allocation problem. The first is to use a con-
vex program in the Eisenberg-Gale paradigm [Eisenberg and Gale,
1959]. As Vazirani [2007] and others have shown, this approach
can often yield competitive equilibrium prices in polynomial time
for problems in which (i) agents’ utilities are linear in their con-
sumptions; and (ii) agents face budget constraints. This sounds
promising for implementing A-CEEI for the case of additive sepa-
rable preferences.

The basic difficulty is that the Eisenberg-Gale paradigm assumes
that goods are perfectly divisible. In many indivisible goods allo-
cation problems, it actually works quite well to first solve for an
optimal allocation as if the goods were perfectly divisible, and then
“round” the resulting fractional allocation to a “nearby” integer al-
location. This approach is taken e.g., in Jain and Vazirani [2007],
and is discussed more generally in Budish et al. [2009]. However
this approach is dangerous in contexts like course allocation where
we care about ex-post fairness. It is possible, for instance, that
some student will use his entire budget to obtain a high-probability
chance of taking some star professor’s class, only then not to get it
(nor anything else he likes) [see Budish, 2009, Section 7.3].

A second natural idea is to allocate students equal budgets of
artificial currency, and then have them bid their points for differ-
ent courses. For each course j, the ¢; highest bidders get a seat.
Variants on this idea are widely used to allocate students to courses
around the world, and especially at professional schools in the US.
However, this mechanism is making the same mistake as Program
(1): it implicitly treats fake money as real money that enters the
utility function. If, in the environment of Example 1, students sub-
mit bids in real money according to the values table (e.g., student
1 bids 60 dollars for a), then student 1 will get stuck with a bad
course bundle {c¢, d} but at least he can spend his money on some
outside good. If, as is the case in practice, students are bidding fake
money, then student 1 gets stuck with {c, d} and is implicitly ex-
pected to take consolation in a large bank account of unspent fake
money [see Budish, 2009, Section 7.3].

4. SOLVING A-CEEI

There are two basic computational challenges for implementing
A-CEEL First, calculating a student’s demand at a particular price

vector is NP-hard. Second, even if we had an oracle for students’
demands, we still need to find an approximate zero of a highly dis-
continuous function—the market-clearing error o of Mechanism 1,
Step 3(b)—in a large-dimensional price space.

There is also an important practical issue to keep in mind: A-
CEEI requires as input students’ ordinal preferences over schedules
of courses, but the number of possible schedules can be exponen-
tially large.

This section proposes a computational method for implementing
A-CEEI We use a decentralized, two-level search process to solve
for A-CEEI prices and allocations. At the master level, the center
searches through price space to determine what prices to next pro-
pose to the agents. At the agent level, each agent searches through
bundle space to find their most-preferred affordable bundle at the
current prices. We use a novel implementation of tabu search on
the master level, and MIPs on the agent level.

We also develop a novel language with which students report
their demands. The language is motivated by institutional features
of the course-allocation problem, and is tailored to our use of MIPs
on the agent level. Section 4.1 describes the agent level of our
search, including both the reporting language and its MIP repre-
sentation. Sections 4.2 and 4.3 describe the master level of our
search.

The following subsections describe in more detail the search at
the agent level and at the master level (price-setting level), respec-
tively.

4.1 The Agent Level
4.1.1 Preference Language

We propose a language in which each agent’s valuation for a
bundle is defined by three components:

e An additive component. For each course j that agent 7 re-
ceives, they receive utility of v;;.

e Substitute/complement effect variables defined on sets of courses.

If agent ¢ receives all courses in set s she receives additional
utility 7;s. A positive value indicates complementarity and a
negative value substitutability.

e A list, ¢, of constraints of the form, “No more than = of the
following y courses”, where any bundle violating the con-
straint is never selected.

Each student reports v and 7 information to the center. For any
subset of courses s for which student 7 does not specifically report
;s the center interprets that 7;; = 0. The ¢ constraints are partly
set by the market administrator (e.g., “no more than 1 course that
meets Thursday at 8:30am”) and are partly reported by the student
(e.g., “no more than 2 courses with a lot of programming”). The
basic challenge in any preference-reporting language is to balance
expressiveness with conciseness. A student with particularly sim-
ple preferences—additive separable—need only report M individ-
ual course values. In most course-allocation mechanisms currently
used in practice, students are restricted to reporting only this kind
of information. Our language allows students with non-additivities
in their preferences to report these; in principle a student can report
arbitrarily complex preferences over schedules, via the 1 terms.
Hence our language is expressive in the sense of Nisan [2006]. If
the non-additivities in a student’s preferences are due only to sub-
stitutabilities and complementarities between pairs of courses, then
she can fully express her preferences using M course values and
©(M?) of the 7 variables. The ¢ constraints are inspired by the re-
cently proposed bidding language of Milgrom [2008] in the context

876

of auctions. Milgrom [2008] restricts the constraints that agents
report in his language to those that satisfy a technical condition
known as hierarchy; this has both an economic and computational
payoff in his context. In our context there is no similar reason to
make such a restriction.

4.1.2 Agent-level Demand Computation

Given a set of prices, the optimization problem faced by an agent
with this utility model is NP-hard. Let each constraint in the con-
straint list, ¢; = (c¢i1, ¢i2, - . .), take the following form: ¢;; con-
sists of courses Ticl s T2 5 and has capacity constraint ¢x. To
solve this problem: we use the following MIP. The input to this
program is the set of prices p, and the output is an assignment to
the set of binary decision variables x; corresponding to the courses
demanded by the agent. In our simulations, we considered only
pairwise substitutability/complementarity effects, which are given
in the program by the 7;; ;.

maXE VijTij E 1ij.5' %ij,5'
J i<j’
SubjéCttO E PijTij < b;
j
Zijgl = Tij N Tagr
E T, < Cik
ik
l

Though the individual demand problem at any point is NP-hard,
MIPs are an effective way to solve this problem in practice. Exam-
ples corresponding to an academic year—picking 10 courses out
of 100—solved in milliseconds. As we will discuss, however, this
program must be solved millions of times for different agents and
candidate price vectors. As a result, profiling revealed that nearly
all of our computation time is spent solving these MIPs.

Traditional economic theory (c.f. Hayek [1945]) tells us that one
of the advantages of prices is that they allow disjoint agents to make
decisions disjointly, so no individual need factor the decision of any
other directly into her own decision-making process. This has an
analogue in computational parallelism. Given a set of prices, each
agent’s demand can be computed separately, on a separate proces-
sor, at the same time. Since virtually all of our computation time
is spent solving agents’ demand problems, we achieved extremely
good scaling from parallelizing our code in this manner.

4.2 Master Level: Tabu Search

The local search technique that we employ is tabu search, be-
cause it yielded good performance during our exploratory data anal-
ysis. On the surface, tabu search is a straightforward modification
of hillclimbing. It remembers the last ¢ nodes the search has ex-
panded, and does not return to them. In practice, this is remarkably
effective, mitigating the weaknesses of hillclimbing (getting stuck
in local minima or looping endlessly) while retaining its ability to
efficiently pursue good solutions [Glover, 1990]. The pseudocode
for tabu search is below.

Our tabu search operates through price space, so a node repre-
sents a set of prices (and the demands they induce). We define two
search nodes as equal, for the purposes of tabu list checking, if each
induces the same aggregate demand (i.e., >, 7;). As the heuristic
score, we use the clearing error (squared Euclidean distance be-
tween our solution and a true competitive equilibrium in demand
space) in order to stay in line with Budish’s theoretical result dis-
cussed earlier in this paper. We stop if we have not improved on our

tabu < A queue of fixed length ¢

curnode «— Random start point

bestnode « curnode

while bestnode.score() > some bound do
tabu.push(curnode)
n «— neighbors (curnode), by score ascending
while n. front() € tabu do n.pop()
curnode < n. front()
if curnode.score() < bestnode.score() then

bestnode < curnode
end

Algorithm 1: Tabu search algorithm.

best-found solution in 100 steps, provided that the solution satisfies
the theoretical bound.

4.3 Master Level: Tabu Neighborhood Selec-
tion
We developed a hybrid neighborhood approach that combines
two different, independent ways of generating neighbors. These
are discussed in the next two subsections, respectively.

4.3.1 Gradient Descent

Given our heuristic function of squared error, a simple way to
generate new neighbors is to move along the gradient of error, rais-
ing prices of classes that are oversubscribed and lowering the prices
of classes that are undersubscribed. Formally, let class j have cur-
rent price p;, demand d; =). x4, and supply g;. The gradient

1S
v,

Because the error function is non-linear and moves in discrete
jumps, finding the best step along the gradient is non-trivial. As
an alternative to exhaustive search for the best step, we generate
neighbors at different magnitudes along the gradient vector, taking
care so that prices were truncated below at zero to avoid negative
prices. (In our experiments, the average budget was about 100. We
generated neighbors such that the largest change in price was 10, 5,
1,0.5,and 0.1.)

Gradient descent finds its analogue in economic theory with the
idea of tatonnement. In titonnement, a central auctioneer adjusts
prices of goods, raising those that are overdemanded and lower-
ing those that are underdemanded. It is well-known that the ta-
tonnement process might not establish efficient prices, even in the
presence of divisible goods and convex preferences [Scarf, 1967].

ifp; >0
ifpj =0

dj — gy
max(d; — g;,0)

4.3.2 Individual Price Adjustments

Our second neighborhood is formed by adjusting the prices of
individual courses one at a time. That is, each neighbor from this
scheme has the same set of prices as its parent, with a change ap-
plied to only a single course. This is in contrast to the gradient
method, where most (if not all) courses have their prices changed.

For a course that is oversubscribed, we raise its price to reduce
its demand by exactly one student. For a course that is undersub-
scribed, we lower its price to zero.

An alternative to this that could be considered symmetric would
be lowering the price of an undersubscribed course until exactly
one more agent demands it. However, finding this price reduc-
tion would require significantly more computation time because
the set of courses an agent demands at a price vector is dramati-
cally smaller than the set of courses an agent does not demand.

877

The key difficulty here is determining the minimum price in-
crease to lower demand on an oversubscribed course by exactly
one student. We give a solution first for the general case, and then
use this intuition to derive a tractable formulation for our specific
bidding language.

General Case

Imagine the list of bundles ordered by the preference of agent i.
Given current prices p, the agent’s current selection is their k-th
preferred bundle, which we will denote as x¥. (This is the most

preferred bundle that ¢ can afford). Put another way, for every other

bundle :z:f/, K <kop- xf/ > b;.

Considering a course + from bundle wf, we seek to find the min-
imum amount that price p, must be raised to have the agent select
a bundle that does not include ;..

This amount is not simply b; —p- ¥ +e¢, the agent’s leftover bud-
get from selecting their current choice . As the price of course
T 18 raised, the agent could substitute another course in the bun-
dle for a less-expensive course. We must find the lowest-cost bun-
dle that still includes x;, that would be selected before picking a
bundle not including ;..

Going down the list of affordable bundles from z¥, eventually we
will hit bundle z; ", which does not include course x;.. Let X de-
note the sequence of bundles from z¥ up to (but not including) x; "
The minimum amount we would need to raise price p; to get agent
i to no longer demand course ;. is given by b; —minge x~ p-r+e€.
For every course, this is calculated over each agent demanding the
course, and then taking the minimum of these values.

Using Our Bidding Language

The above description relies on having an ordered list of bundles,
which has exponential size. With our bidding language, we can
avoid this explicit enumeration with a MIP.

As in the section above, we need to find the minimum-cost bun-
dle that still involves course z;,. before the first bundle that does
not include ;.. This can be solved using two MIPs.

The first finds agent ¢’s most preferred bundle that does not in-

clude z;,:
E Nij,5' %ig,5"

<3’

max E VijTij +
J

subject to Zpijﬂcij <b;
J

Zij 5 = Tij N\ T
E Tyl < Cik
ik
l
Tix — 0

Let the objective value of this solution be o. It follows that any
feasible solution with an objective value greater than that of o must
include course x;,,. We must find the minimum cost bundle among
this set. We accomplish this with the following MIP:

min E DjTij
j
E Mij,g’ Zij,j' > O

subject to Z VijTij +
J

i<i’
Zijjl = Tij N\ Tijr
E Tl < Cik
ik
l
Tin = 1

Letting the objective value of this solution be 7, the minimum

amount p, must be raised by is b; — 7 + €.

S. EXPERIMENTS

In this section, we empirically investigate the properties of our

algorithm. We study in detail the convergence properties of a realistic-

sized test case corresponding roughly to assigning courses for a
business school semester. We then examine how our algorithm per-
forms as we alter the pertinent properties of the example cases.

5.1 Solving the Problem

Our baseline problem is as follows. There are 250 students and
50 courses. Each student requires 5 courses, hence total demand
is for 1250 course seats. Each course has a capacity of 27 seats,
so that courses are slightly oversupplied on average. The problem
size and level of excess capacity correspond roughly to a single-
semester course-allocation problem at an average-sized professional
school.

Student 7’s additive utility for course j, v;;, is generated as:

3

where U; = j, so that mean course utilities ranged between 1 and
M, and each €;; is an independent draw from the normal distribu-
tion with mean O and standard deviation 10. In order to simulate
non-additive complementarity/substitutability utility effects, Each
student also had 10 effects 7 drawn for random pairs of courses,
with values drawn uniform on [—10, 10]. Our utility model gen-
erates imperfect correlation in students’ preferences for courses,
which is important for realism because courses often vary in their
popularity. Models like (3) are widely used in econometrics, dating
from the work of McFadden [1976].

Vij = Uj + €5

5.1.1 Computational Setup

We ran our code on a machine running Fedora Core 7, with four
quad-core Intel Xeon 3.40GHz CPUs (for a total of 16 cores). The
MIPs in the agent-level search were solved with CPLEX 10.0.

5.1.2 Finding a Solution

We ran 100 instances of the baseline problem. With 16 cores,
each instance took about two hours to complete 100 iterations.

100000

kel \

c \

3 \

'

s 10000 } 4

o \

o] \

z

? |

2 1000 - | 4

5

S \

w 100 £ —— |
0 10 20 30 40 50 60 70 80 90 100

Iteration

Figure 1: The (squared) error of the best node found at each it-
eration, averaged over 100 trials. Budish’s theoretical worst-case
bound for market-clearing error is given by the flat line. The y-axis
has logarithmic scale.

Figure 1 shows the average clearing error over the 100 instances.
In a problem of this size, Budish’s theoretical worst-case bound
for market-clearing error is « = /kM /2 = 1/125. The average

878

instance was under the theoretical bound after 23 iterations, and
all 100 of the instances were under the theoretical bound after 100
iterations.

Our algorithm’s running time can be decomposed into the prod-
uct of the time per iteration and the number of iterations to achieve
the bound. We proceed to discuss both of these components.

5.2 Time per Iteration

We consider adding additional students, and then adding addi-
tional courses. As we change the parameters, we are careful to
ensure that total course seats are oversupplied by about 10%, as in
our semester-sized examples.

5.2.1 Number of Students

Adding students linearly increased the time per iteration.
ure 2 displays our results.

Fig-

14 1 7

12

Relative Time per Iteration
[ee]
\
.

300 400 500

Number of Students

Figure 2: Time per iteration scales linearly in the number of stu-
dents.

This result was expected. Adding an additional student means
that there is another MIP to solve in the agent level of the search,
but has no affect on the number of neighbors generated in an itera-
tion of the master level of the search.

5.2.2 Number of Courses

We next consider varying the number of courses: both the over-
all number of courses (M) and the number of courses per student
(k). One way to think about our method is that of determining a
student’s course allocation over a progressively larger number of
academic units. Specifically, in each academic unit (quarter) of the
school year, students select two courses from a possible 20, and we
vary the number of quarters simultaneously considered. We tested
on sizes ranging from selecting two courses out of 20, to 20 courses
out of 200. We also include our baseline of five courses out of 50.

Figure 3 depicts the increase in time per iteration as M and k
increase. Though the total number of bundles available to students
increases exponentially in the number of courses, MIPs were still
able to calculate individual demands effectively, and the time per
iteration does not blow up. This is broadly consistent with findings
in the context of the knapsack problem [see Kellerer et al., 2004].

*Budish [2009] uses the technique developed in this paper to solve
problems based on the actual preferences of students at Harvard
Business School. These computations on real data take less time
than similarly-sized instances here. This suggests that if anything
our utility model and testing setup are more challenging than what
is encountered in practice.

500
450 R
400 - R
350 R
300 R
250 + E
200 E
150 - R
100 -
50
0 . . .
100 150 200

Number of Courses

Seconds per Iteration (100 Students)

Figure 3: Time per iteration increases in the number of courses
cleared simultaneously.

5.3 Iterations to Clear Bound

It took between 10 and 86 iterations in our 100 baseline trials
to find prices that clear the market to within Budish’s theoretical
bound. Because examining iterations until convergence requires
running large numbers of trials for large numbers of iterations, we
were limited to testing for convergence over these semester-sized
examples. However, we can discuss the sensitivity to these param-
eters qualitatively.

Within the natural bound that overall course demand does not ex-
ceed overall course supply (i.e., that some students would be forced
to take reduced course loads because of lack of space), adding stu-
dents without increasing the number of course seats makes con-
vergence harder. A smaller difference between course supply and
course demand means that fewer courses will be undersubscribed,
and so fewer courses will have prices of zero. In most cases, setting
an unpopular course’s price to zero allows that course to be ignored
for the rest of the search process, and so effectively reduces the
dimension of the problem.

Adding additional courses to clear has a mixed impact. If courses
are added but the number of students is not increased, then more
courses will have a price of zero. Moreover, adding more courses
makes the theoretical bound looser. On the other hand, adding
courses increases the dimension of the search space. Preliminary
testing suggests that our method scales effectively to larger exam-
ples. In particular, our method works in an example that is the
size of a full-year’s course-allocation problem at Harvard Business
School , with ~1000 students selecting 10 courses out of ~100.
(HBS is one of the world’s largest professional schools). We find
prices that clear the market to within the theoretical bound in around
30 iterations, taking around 11 hours.

5.4 Useful Tricks

Our method relies on two useful tricks: Parallelizing demand
computation through prices at the agent level, and combining two
different neighborhoods at the master level. As we discuss, both of
these features helped to make A-CEEI tractable.

5.4.1 Parallelization

One of our hypotheses was that the prices could be used as an
effective tool to parallelize the computation of individual demands.
By varying the number of simultaneous threads generated, we found
that our method parallelized with about 90% efficiency, so that us-
ing n cores was about .9n times faster than using a single core. Fig-
ure 4 shows our results, comparing them with the optimal speedup.

879

18
16 |- P i
14 - _ ,
a d
3 12} e 8
[0} —
g 10 T i
(2] _
2 8 =]
S 6t = 1
4 =
4 L e 4
2]
0 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18

Number of Processors

Figure 4: Our search method parallelized with more than 90%
efficiency. The upper line shows perfect scaling.

5.4.2 Hybrid Neighborhoods

Our method uses two different neighborhoods in local search,
one which moves prices along the gradient, and another which ad-
justs prices of individual courses.

Q.

g T

® \

.E 0.8 ¢ ‘\]
© \

g \

[©) 0.6 | |
o) |

£ \

S 04 \]
[\

» x

s 02 \]
% \ [\ \

E 0) A /) . \

10 20 30 40 50 60 70 80 90

Iteration

100

Figure 5: In our hybrid neighborhood scheme, nodes are selected
either from moving along the gradient or by adjusting the price of
a single course. The fraction of nodes selected along the gradient
in our trials is given on the y-axis.

Figure 5 shows which neighborhood method provided the node
that was selected in each iteration in the semester-sized data we ex-
perimented with. There is a transition at about twenty steps into
the algorithm where it selects gradient steps before and individ-
ual price adjustments after. Beyond 50 iterations, the steps chosen
were mostly, but not exclusively, individual price adjustments. One
possible interpretation is that traditional tatonnement works well
when we are far from a solution (the error is large), but when we
are close to a solution it is very difficult to predict what kinds of
price adjustments will reduce error.

Neighborhood | Additively Separable | Arbitrary

Gradient only 45 0

Individual only 0 66
Hybrid 929 98

Table 1: Number of instances (of 100) that found nodes with clear-
ing error under the theoretical bound in 100 iterations for two dif-
[erent demand structures.

Another advantage of hybrid neighborhoods comes when using
different utility models. As an extreme example, imagine that stu-
dents’ ordinal preferences over bundles are entirely unstructured:
¢’s preference order is just some random permutation of 7’s per-
missible bundles. In such a model, gradient steps are much less
informative, because once an agent can no longer afford their cur-
rent bundle their new demand will bear no relation to their previous
selection. Table 1 shows the strength of the hybrid neighborhood
method. By combining the gradient neighborhood with the indi-
vidual price adjustment neighborhood, virtually every instance in
both a standard additively-separable utility model as well as an ar-
bitrary utility model cleared to within the theoretical error bound
in 100 iterations. Interestingly, the hybrid neighborhood resulted in
more test instances being under the theoretical bound in 100 itera-
tions than either neighborhood on its own. This result suggests that
the hybrid neighborhood technique is considerably more powerful
than traditional tatonnement, even over demand structures that are
particularly amiable to tatonnement.

6. CONCLUSIONS AND FUTURE WORK

We explored a new interface of computer science and economics,
the combinatorial assignment problem. This problem is distinct
from the combinatorial auction problem because of the use of “funny
money”, that is, the lack of numeraire with which to compare indi-
vidual utilities. This distinction carries over into solution meth-
ods: we showed that the problem cannot be modeled with any
polynomial-sized MIP.

Instead, we show that a two-level search process can solve A-
CEEI effectively. At the master level, the market searches for prices
for items. At the agent level, each agent searches for their most pre-
ferred affordable bundle given the prices. The search at both levels
leverages a structured utility model (i.e., bidding language) that we
developed for representational conciseness, An interesting aspect
of our master search is the use of a hybrid neighborhood, which
effectively combines two independent ways of generating neigh-
bors. The hybrid neighborhood outperformed the union of each
neighborhood on its own. Overall, our method is the first to be
able to clear realistic-size course-allocation problems fast enough
to be usable in practice. Because our method parallelized so effec-
tively, it will only run faster on the large-scale multicore systems
of the future. Prices, which in economics serve as a decentralized
messaging system, allow us to fully parallelize the most processor-
intensive part of our code. Price-based algorithms are promising
for large-scale agent-based systems, especially with the prolifera-
tion of multi-core architectures.

We considered only the traditional course-allocation setting but,
as we noted, combinatorial allocation has a variety of potential ap-
plications, including workers to tasks and scientists to shared re-
sources. Since the fundamental structure of all these problems is
the same, we anticipate that our search technique would be able to
effectively solve these related problems as well.

The combinatorial assignment problem also opens up a line of
theoretical work. Some interesting questions are analogous to sim-
ilar questions that have been studied in the context of combinatorial
auctions. One specific example relates to preference elicitation. In
the auction context, theorists have studied the number of queries
about agents’ valuations required to find an optimal or near-optimal
allocation. In the auction context, a query is returned with the bun-
dle that maximizes an agent’s value less expenditure; in our con-
text, one could ask similar questions, but queries would be returned
with the agent’s most preferred affordable bundle. Other interesting
questions relate to how best to implement A-CEEI. For instance, if
supplied with a demand oracle, how many iterations (of any price-

880

changing algorithm) would it take to find a solution that minimizes
error (or at least satisfies Budish’s bound), and how does this vary
with the structure of agents’ preferences.

Acknowledgements

We thank Intel for donating the hardware used to run our experi-
ments. Othman and Sandholm are supported by NSF I1S-0905390.

References

A. Alkan, G. Demange, and D. Gale. Fair allocation of indivisible
goods and criteria of justice. Econometrica, 59(4):1023-1039,
1991.

E. Budish. The combinatorial assignment problem: Approximate
competitive equilibrium from equal incomes. Technical report,
University of Chicago Booth School of Business, 2009.

E. Budish, Y.-K. Che, F. Kojima, and P. Milgrom. Implementing
random assignments: A generalization of the birkhoff-von neu-
mann theorem. Technical report, 2009.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, second edition, 2001.

L. Ehlers and B. Klaus. Coalitional strategy-proof and resource-
monotonic solutions for multiple assignment problems. Social
Choice and Welfare, 21(2):265-280, 2003.

E. Eisenberg and D. Gale. Consensus of Subjective Probabilities:
The Pari-Mutuel Method. The Annals of Mathematical Statistics,
30(1):165-168, 1959.

D. Foley. Resource Allocation and the Public Sector. Yale Eco-
nomic Essays, 7(1):45-98, 1967.

F. Glover. Tabu search: a tutorial. Interfaces, 20(4):74-94, 1990.

F. Hayek. The use of knowledge in society. American Economic
Review, 35:519-530, 1945.

H. Hoos and C. Boutilier. Bidding languages for combinatorial
auctions. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI), pages 1211-1217,
Seattle, WA, 2001.

K. Jain and V. V. Vazirani. Eisenberg-gale markets: algorithms and
structural properties. In STOC ’07: Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing, pages
364-373, 2007.

H. Kellerer, U. Pferschy, and D. Pisinger.
Springer Verlag, 2004.

D. Lehmann, R. Miiller, and T. Sandholm. The winner determina-
tion problem. In P. Cramton, Y. Shoham, and R. Steinberg, edi-
tors, Combinatorial Auctions, pages 297-317. MIT Press, 2006.
Chapter 12.

D. McFadden. Quantal choice analysis: a survey. Annals of Eco-
nomic and Social Measurement, 5(4):363-390, 1976.

P. Milgrom. Package auctions and exchanges. Econometrica, 75
(4):935-965, 2007.

P. Milgrom. Assignment exchanges. In WINE, 2008.

N. Nisan. Bidding languages for combinatorial auctions. In
P. Cramton, Y. Shoham, and R. Steinberg, editors, Combinato-
rial Auctions, chapter 9. MIT Press, 2006.

S. Pdpai. Strategyproof and nonbossy multiple assignments. Jour-
nal of Public Economic Theory, 3(3):257-271, 2001.

A. Roth. The economist as engineer: Game theory, experimenta-
tion, and computation as tools for design economics. Economet-
rica, pages 1341-1378, 2002.

T. Sandholm. Expressive commerce and its application to sourcing:
How we conducted $35 billion of generalized combinatorial auc-
tions. Al Magazine, 28(3):45-58, 2007.

H. Scarf. On the computation of equilibrium prices. Cowles Foun-
dation for Research in Economics at Yale University, 1967.

T. Sonmez and U. Unver. Course Bidding at Business Schools.
International Economic Review, Forthcoming.

W. Thomson and H. Varian. Theories of justice based on symmetry.
Social Goals and Social Organizations: Essays in Memory of
Elisha Pazner, 1985.

H. Varian. Equity, envy, and efficiency. Journal of Economic The-
ory, 9(1):63-91, 1974.

V. Vazirani. Combinatorial algorithms for market equilibria. In Al-
gorithmic Game Theory, chapter 5, pages 103—134. Cambridge
University Press, 2007.

Knapsack problems.

