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ABSTRACT
A common decision problem in multi-robot applications involves
deciding on which robot, out of a group of N robots, should travel
to a goal location, to carry out a task there. Trivially, this deci-
sion problem can be solved greedily, by selecting the robot with
the shortest expected travel time. However, this ignores the in-
herent uncertainty in path traversal times; we may prefer a robot
that is slower (but always takes the same time), over a robot that is
expected to reach the goal faster, but on occasion takes a very long
time to arrive. We make several contributions that address this chal-
lenge. First, we bring to bear economic decision-making theory, to
distinguish between different selection policies, based on risk (risk
averse, risk seeking, etc.). Second, we introduce social regret (the
difference between the actual travel time by the selected robot, and
the hypothetical time of other robots) to augment decision-making
in practice. Then, we carry out experiments in simulation and with
real robots, to demonstrate the usefulness of the selection proce-
dures under real-world settings, and find that travel-time distribu-
tions have repeating characteristics.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Economics, Performance, Experimentation

Keywords
Multi-Robot Systems, Decision-Making, Regret

1. INTRODUCTION
A common decision problem in multi-robot settings involves de-

ciding on which robot, out of a group of N robots, should travel to
a goal location, to carry out a task there. This decision repeats in
many applications: in multi-robot exploration (e.g., deciding who
should go to explore a new frontier), in package delivery robots
(e.g., deciding who should go to pick up a package), and in other
service robotics applications (e.g., in hospitals). In all of these,
robots can plan a path to reach their destination, in an environment
that is—for the most part—known to them. Thus, in principle, they
can analytically predict their travel time to any location.
Cite as: Who Goes There? Selecting a Robot to Reach a Goal, Meytal
Traub, Gal A. Kaminka and Noa Agmon, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Yolum,
Tumer, Stone and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
 91-98.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Trivially, this decision problem can be solved greedily, by select-
ing the robot with the shortest predicted travel time [12], or using
a market-based allocation scheme (see [4]). However, this ignores
the inherent variance in the actual path traversal times, due both to
motion and sensing errors, as well as multiple factors that affect a
robot’s velocity (e.g., battery level, unknown obstacles). Solutions
that have been proposed to address these challenges include using
machine learning to better predict actual travel times under vary-
ing conditions [7, 14, 8], or other path-generation techniques that
provide estimates [3, 2].

A common thread through previous work is that it focuses on
scalar predictions; a single number that denotes the expected travel-
time for each robot. Unfortunately, scalar predictions hide impor-
tant information about the uncertainty in the predictions. In partic-
ular, a scalar denoting expected cost ignores information about the
distribution of possible costs, best- and worst-case costs, etc. As a
result, guarantees on the cost of task execution are not possible.

For instance, supposed that we must send one of two robots to a
target location X . RobotA’s path toX takes 100 seconds, through
a free corridor. But if the corridor is busy with traffic (a rare occur-
rence), it may take up to 200. In contrast, robot B’s travel time is
always 150 seconds, through a specialized service way. Since the
corridor is normally clear, we might choose robot A for the task.
But if we wanted to absolutely guarantee delivery within 150 sec-
onds, we would choose robot B. Note that if we only know the
expected (i.e., mean) travel time, we cannot make the necessary
distinction that allows this decision.

In this paper, we make several contributions that address the
challenge involved in selecting a robot to go to a target location,
given that each robot has a distribution over predicted travel times:
First, we bring to bear economic decision theory that distinguishes
between different selection policies, based on risk: risk averse, risk
seeking, risk neutral, and bounded-risk selection. Second, we show
that under some conditions, the selected robot may still not be a
reasonable choice in practice. We thus introduce the use of so-
cial regret (the difference between the actual travel time by the se-
lected robot, and the hypothetical time of another robot) to augment
decision-making. Social regret is inspired by economic notions of
regret, though the definitions differ.

Then, we carry out experiments in simulation and with real
robots, to demonstrate the usefulness of the selection procedures
under real-world settings. We empirically demonstrate that even
under static conditions of the environment, when it is completely
known to the robots, sensor and actuator errors leads to significant
variance in the execution of path-following tasks. This variance
leads to non-trivial distribution of costs, which in turn necessitates
reasoning about the different optimization criteria when making the
selection between robots. Finally, we show empirically that travel
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time distributions have repeating characteristics (specifically, they
fit extreme value distributions).

2. BACKGROUND
There have been several investigations that attempt to predict

travel time or related costs. To the best of our knowledge, none
addressed complete distributions.

Heero et al. [8] present a method for learning the shortest path in
a partially-known environment by using a rectangular grid-based
map. For each path they saved four parameters: number of re-
plans, travel time, travel distance and deviation from the originally
pre-planned path. Chaudhry [3] presented an algorithm for gener-
ating paths using matrix representation of the robot’s previous path
traversals. New paths are created by applying transformations to
the matrix, given the new path requirements. Both investigations
use previous experiences to generate travel time predictions.

Sofman et al. [13] demonstrated an approach for learning Gaus-
sian distributions associated with the local environments of the
robot, to improve navigation and the travel speed. They use the
models to generalize to new environments. They do not learn travel
time distributions, and in any case as we show, travel time distribu-
tions are not Gaussian.

A related—though inverse—problem to ours is the problem of
choosing a path, out of k possible paths, for a single robot to reach
a goal location. Haigh and Veloso developed ROGUE [7]. It learns
situation-dependent rules based on the success or failure in carrying
out its tasks, and in particular, learns to take different paths depend-
ing on the time of day, expected use of the corridor, etc. ROUGE
learns these situated-dependent cost predictions by examining the
mean costs of travel for given locations. Thurn et al. developed
MINERVA, an interactive tour guide robot for the Smithsonian mu-
seum [14]. It used POMDP methods to learn and plan its motion.
The use of POMDP is similar to the risk-neutral policy, one of a
number we present in this paper.

Our notion of regret is inspired by—but different than—notions
of regret in economics. Economic regret were introduced by
Bell [1] and by Loomes and Sugden [10], who concluded that peo-
ple do not necessarily maximize their expected utility, but also con-
sider the possible loss they are willing to accept from making a
choice. They defined regret as a symmetric function with respect
to two choices: choosing A rather than B minus the gain/loss from
choosing B rather than A. In our case we calculate the regret with
respect to all other choices, yet the comparison between the sym-
metric cases is done after the calculation (hence our regret function
is asymmetric). Foster and Vohra [5] discussed regret in online
decision-making, distinguishing between internal and external re-
gret. Our definition of regret is similar to the definition of inter-
nal regret, however we evaluate with respect to the probabilities of
costs, rather than on a limited history over time.

Market-based methods are sometimes used to assigning robots
to tasks (e.g., a goal location to be reached; see [4] for a survey). In
general, these methods rely on scalar cost estimates, and do not uti-
lize information about travel cost distributions. However, they do
address self-interest on the part of the robots, while in our work we
assume robots are cooperative and truthful. Koenig et al. [9] uses a
regret function, different from ours, to improve such auctions.

3. SELECTING A ROBOT
The problem is to select a robot Ri, out of a group of N robots

R1, . . . RN , to carry out a task, while minimizing the cost. We
assume that each robot can estimate its cost of task execution with
some discrete probability distribution over k cost values c1, . . . , ck.

Each robot Ri has a vector of size k, < pi1, p
i
2, . . . , p

i
k > such that

pij is the probability that the cost of task execution (travel time,
in our case) by robot Ri is cj and

Pk
j=1 p

i
j = 1 (note that pij

can be equal to 0). We use this discrete distribution formalization
for simplicity, in lieu of the continuous distribution case which is
more natural for estimated travel times. Note also that each robot’s
travel time is an independent random variable, i.e., the probability
of robot Ri having actual cost of cj does not depend on the proba-
bility of some other robot having this or other cost.

Figure 1: Three robots in ex-
ploration task. Map was gener-
ated using laser-based SLAM.

We use the following run-
ning example throughout this
section. Figure 1 shows three
robots {R1, R2, R3}. One of
these robots is to be sent to
explore a new frontier, F1,
shown in the bottom right cor-
ner (circled). Each robot con-
structs a path (not shown) to
the new location, and reports
a distribution over estimated
travel times. As we show in
the experiments (Section 4.1),
even in a completely static en-
vironment (let alone in dynamic environments), sensor and motion
uncertainties cause some variance in this distribution.

Suppose the travel time distributions reported by the 3 robots are
as given in Table 1. Each row shows the distribution of a differ-
ent robot, with different columns denoting different costs. The last
column shows the mean (expected) cost for each robot. Given dif-
ferent decision objectives, we would choose different robots to go
to F1. For instance, R2 is most likely to reach F1 faster (has a 87%
chance of reaching F1 in 86 seconds). But R2 may also take up to
134 seconds for the same path. If we wanted to guarantee arrival
within 2 minutes, we would choose R3.

c1 =
86

c2 =
98

c3 =
110

c4 =
122

c5 =
134

E(C)

R1 p1
1 =

0
p1

2 =
0.6

p1
3 =

0.23
p1

4 =
0.17

p1
5 =

0
104.84

R2 p2
1 =

0.87
p2

2 =
0.03

p2
3 =

0
p2

4 =
0

p2
5 =

0.1
91.16

R3 p3
1 =

0.6
p3

2 =
0.22

p3
3 =

0.1
p3

4 =
0.08

p3
5 =

0
93.92

Table 1: Possible cost distribution for R1,2,3 for arriving to F1.

3.1 Risk-based selection
Choosing the robot Rc ∈ {R1, . . . , RN} to perform the given

task is dependent on a decision policy, which prefers robots—all
else being equal—based on the risk involved. For instance, if we
have a fixed amount of time to explore a given area, we may want
to select a robot that will definitely reach its target within the time
allotted. On the other hand, we may decide to take more risks,
hoping to reach the target faster than expected.

Such decision policies are well known in economic decision the-
ory. We distinguish four well-defined policies, and outline the se-
lection algorithm for each:

1. Minimize the expected travel time (risk neutral selection).

2. Minimize the expected maximal travel time (risk averse se-
lection).
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3. maximize the expected minimal travel time (risk seeking se-
lection).

4. Bound the travel time by a constant A (bounded risk).

Risk-Neutral Selection. Risk-neutral selection implies that
we select the robot that minimizes the expected (mean) travel time.
To do this, we compute the mean of every robot’s distribution, and
choose the robot whose mean is minimal

MinExpC = argmin
1≤a≤N

{
kX
i=1

pai ci}

where in case of a tie, we choose arbitrarily.

Risk-Averse Selection. In some cases we want to make sure
that the worst-case scenario is addressed first, and that we have an
absolute guarantee that the task will be carried out within a given
amount of time. To do this, we need to look at the robots whose
greatest time of arrival is minimal. Of course, the probability of
actually taking this long time must also be taken into account. Thus
what we want is to find the robot which minimizes the expected
maximal cost. This is done in Algorithm 1.

Algorithm 1 MinExpMaxCost(R)
Require: C = {c1, c2, . . . , ck}, R = {R1, R2 . . . , Rn}
v ← k
Robotslist ← {R1, R2, . . . , Rn}
while ∃pjv = phv , Rj , Rh ∈ Robotslist do
Robotslist ← argminRi∈Robotslist{piv}
v ← v − 1

return : argminRi∈Robotslist
{pi

v}

Note that ties can be broken in different ways. For instance, we
can choose the robot with the lower expected time among those that
are returned.

We use Table 1 to illustrate. The algorithm creates a list of all the
robots that available to execute the task {R1, R2, R3}, and starts
the run with the highest cost (134). It looks for two robots with
the same probability to arrive the goal in cost 134. In this example
R1 and R3 have the same probability (p1

5 = p3
5 = 0), so the loop

will be entered. The algorithm choose the robots with the minimal
probability to execute the task in cost 134 by argmin. By doing it,
all the robots with probability higher than 0 will be removed from
the list, i.e. robotR2. The algorithm then examines the next highest
cost, 122. While looking on the remaining robots {R1, R3}, their
probability to arrive the target is different, therefor the loop will not
be entered and the robot with the lowest probability to use this cost
will be returned: R3 (p1

4 = 0.17 > p3
4 = 0.08).

Risk Seeking Selection. The opposite policy to being risk
averse is to be risk seeking; to hope for the best possible travel time
of any of the robots. Here the selection is exactly the inverse of the
above: We select the robot that maximizes the expected minimal
cost. Algorithm 2 is thus the inversion of Algorithm 1.

We again use Table 1 to illustrate. The algorithm starts the run
with the lowest cost, i.e. 86. It looks for two robots with the same
probability to arrive the goal in cost 86. In this example, there is
no two such robots, and so it does not enter the loop and return the
robot with the highest probability to arrive the goal in this cost, R2

(p1
1 = 0 < p3

1 = 0.6 < p2
1 = 0.87).

Algorithm 2 MaxExpMinCost(R)
Require: C = {c1, c2, . . . , ck}, R = {R1, R2 . . . , Rn}
v ← 1
Robotslist ← {R1, R2, . . . , Rn}
while ∃pjv = phv , Rj , Rh ∈ Robotslist do
Robotslist ← argmaxRi∈Robotslist{piv}
v ← v + 1

return : argmaxRi∈Robotslist
{pi

v}

Bounded-Risk Selection. Finally, we may want to choose the
robot that maximizes the probability of reaching the target within
some limited amount of time. This is different from guaranteeing
arrival within this time; it would still be possible that in the worst
case, travel time will be longer. Nevertheless, we want to improve
its chances of success within the time allotted.

Suppose we are given a time limit T . We can then calculate for
each robot the cumulative probability that its travel time be smaller
than T , and choose the robot that maximizes this probability.

For each robot Ra, we will calculate the following probability:

P [C <= T ] =
X

ci<=T,ci∈C
pai ci

We will choose the robot that maximize the result of this equation.
Note, that if only one robot have distribution of cost bellow the con-
stant, then it will be chosen with probability of 1. If there is more
than one robot that fits this, then we can select based on any of the
other criteria (e.g., the best risk-seeking robot out of the candidates
that fit the bound T ).

3.2 Regretting the Selection
Despite the economic elegance of the selection policies de-

scribed above, choosing the robot according to the risk type will
not always give us a reasonable selection in practice. To see this,
consider the following case (Table 2). Here, we apply the risk-
averse policy, and select R2: It is guaranteed to reach the goal in
199 seconds. However, unless this risk-averseness is somehow ex-
tremely strict, R1 would have been a more reasonable choice: 90%
of the time it would have reached the goal in 1 second. And even
when it fails, it would do it in 200 seconds, a mere 1 second more
than R2.

c1 = 1 c2 = 199 c3 = 200 E(C) ESoR
R1 p1

1 = 0.9 p1
2 = 0 p1

3 = 0.1 20.9 0.1
R2 p2

1 = 0 p2
2 = 1 p2

3 = 0 199 178.2

Table 2: Robots distributions of costs to arrive at a goal. Ex-
pected cost and expected SoR are shown. Selecting R1 over R2

makes sense in practice.

Note that this is not always the case: It depends very much
on the values ci. If the ci would have been 1, 2, 200 rather than
1, 199, 200, our deliberation would not have reached the same con-
clusion, and the selection of R2 would have held.

To conduct this deliberation formally, we define the social re-
gret function, which measures, intuitively, the post-hoc payment
(in travel time) that we make, given the selected robot.

Social Regret SoR is defined as the difference between the actual
cost cr of the task executed by robot Ra and the minimal cost of
task execution in case some other robot would have executed the
task in lower cost. In other words, looking at it from the team’s
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perspective: How bad did the team do by choosing robot Ra to
perform the task, given Ra’s actual cost was cr . Formally, SoR of
robot Ra executing a task with actual cost cr is SoR(Ra, cr) =
maxj 6=i(cr − cj , r > j).

Since we do not know SoR for any specific selection (it is by def-
inition hypothetical), we compute the expected SoR for each robot
Ra, given all other robots, and all possible outcomes. The expected
social regret from choosing Ra, ESoR(Ra), is the probability that
some other robot will execute the task with lower cost multiplied
by the difference between the costs. We denote the probability that
the actual minimal cost of task execution by some robot other than
Ra is ci by PMi(Ra). Note that by minimal cost we mean that
there is no other robot that executed the task with cost cj , j < i,
and that at least one robot executed the task with cost ci. There-
fore, ESoR(Ra) = pa1 × 0 + pa2 × PM1(Ra)(c2 − c1) + pa3 ×
[PM1(Ra)(c3 − c1) + PM2(Ra)(c3 − c2)] + . . ., and formally

ESoR(Ra) =

kX
i=2

pai ×
i−1X
j=1

PMj(Ra)(ci − cj)

In order to complete the definition, it is necessary to determine
PMj(Ra), i.e., the probability that some robot Ro, 1 ≤ o ≤ N ,
o 6= a will have minimal cost of cj . This is the probability that all
robots have minimal cost higher than cj−1 minus the probability
that all robots have minimal cost higher than cj , i.e., ESoR(Ra) =

kX
i=2

pai {
i−1X
j=1

(ci − cj)[
N,h6=aY
h=1

(

kX
l=j

phl )−
N,h6=aY
h=1

(

kX
l=j+1

phl )]}

3.2.1 When Should We Overrule The Selection?
Intuitively, ESoR(Ra) measures the potential cost of selecting

Ra to carry out a task, given the estimated costs of its peers. Sup-
pose that we have two robots Ri andRj . What we want, is to com-
pare the difference in the expected SoR of the two robots, to the
gain from choosing one over the other. If this gain is smaller than
the difference in expected SoR, then we should consider switching
between them.

To illustrate, suppose Ri has been selected by some policy, and
has a predicted travel time ci (this is, for instance, its maximal
time). Suppose we want to consider switching to a different robot
Rj , with predicted cost cj . In order to compute the profit form
switching two robots we will calculate the distance between the
expected SoR of Ri and Rj , ESoR(Ri) − ESoR(Rj). We com-
pare this value to the difference in costs between Ri andRj , which
is (cj − ci), using the following function.

The Switch function SwF is defined as follows:

SwF =


1 if (ESoR(Ri)− ESoR(Rj)) > (cj − ci)
0 otherwise

If the SwF is 1, the social regret of using Ri is greater than the
expected gain of using it, and we should consider switching our se-
lection to Rj instead. We examine this in different selection poli-
cies below.

Minimize the expected maximal cost. Table 2 above de-
scribes the cost distributions for two robots, R1 and R2. As pre-
viously discussed, strict risk-averse policy would select R2 for the
task, since it is guaranteed to reach the target in 199 seconds. How-
ever, by risking just one additional second, we actually have much
better average performance if we choose R1.

SwF identifies this opportunity. The difference between c3 (R1’s
cost) and c2 (R2’s cost) is 1, while the distance between the

ESoR(R2) and ESoR(R1) is 178.1. Thus SwF is 1, and we should
consider switching our selection to the other robot.

Switching in the case of a bounded risk. Using a bounded-
risk policy, we normally select the path that is most likely to carry
out the task within the time allotted. But by bounding the cost, we
are not bounding the regret function. In other words, choosing the
best robot given the bound T , does not reduce our expected SoR for
the bounded cost, and we can still choose to switch based on SwF.

For example, table 3.2.1 shows distributions of costs of two
robots, R1 and R2. A bound of T = 7, yields selection R1 (with
cumulative likelihood 0.2), over R2 (cumulative likelihood 0). But
the expected SoR of R1 is much higher that the expected SoR of
R2. Indeed, using the SwF we might consider to change the con-
stant T to be higher. By changing the constant T from 7 to 10,
R2 will have higher probability than R1 to execute the task under
the new bound. We will pay 3 in the bound but gain 70.6 in the
expected regret (ESoR((R1)) − ESoR(R2)). The SwF will be 1
(70.6 > 3).

c1 = 1 c2 = 5 c3 = 10 c4 = 100 ESoR
R1 p1

1 = 0.1 p1
2 = 0.1 p1

3 = 0 p1
4 = 0.8 72

R2 p2
1 = 0 p2

2 = 0 p2
3 = 1 p2

4 = 0 1.4

Table 3: The bounded cost does not minimizes the expected
SoR. When should we replace

3.2.2 Minimal Expected Cost is Safe Selection
For one of the policies we introduced, it turns out that we do not

need to consider regret. We prove that by minimizing the expected
cost, the expected social regret function, SoR, is minimized as well,
and thus we would not want to switch to a different robot.

First, we show in Lemma 1 that for a pair of robots, minimizing
the expected cost leads to minimization of the expected SoR. We
then complete the proof for N robots in Theorem 2.

LEMMA 1. For two robotsR1 andR2 with discrete probability
distribution {p1

1, p
1
2, . . . , p

1
k} and {p2

1, p
2
2, . . . , p

2
k} (respectively)

over possible costs c1, . . . , ck of a given task , ci < ci+1, if the
robot minimizing the expected cost of the task execution is chosen,
then the expected social regret function SoR is minimized.

PROOF. Assume, without loss of generality, that robot R1 min-
imizes the expected cost of the task execution, i.e.,

Pk
i=1 p

1
i ci <Pk

i=1 p
2
i ci, i.e.,

Pk
i=1 cip

2
i −cip2

i > 0. We therefore need to show
that ESoR(R2)− ESoR(R1) > 0.

First, note that since N = 2 then PMj(R1) = p2
j ,

and similarly PMj(R2) = p1
j , therefore ESoR(R2) =Pk

i=2 p
2
i ×
Pi−1
j=1 p

1
j (ci− cj) (similarly ESoR(R1) =

Pk
i=2 p

1
i ×Pi−1

j=1 p
2
j (ci − cj) ).

By opening the formula of ESoR(R2) we get that
ESoR(R2) = p2

2{p1
1(c2−c1)}+p2

3{p1
1(c3−c1)+p1

2(c3−c2)}+

p2
4{p1

1(c4 − c1) + p1
2(c4 − c2) + p2

3(c4 − c3)}+ . . .
= c1{−p1

1p
2
2 − p1

1p
2
3 − p1

1p
2
4 − . . .}+ c2{p1

1p
2
2 − p1

2p
2
3 − p1

2p
2
4 −

. . .}+ c3{p1
1p

2
3 + p1

2p
2
3 − p1

3p
2
4 − . . .}+ . . .

ThereforeESoR(R2) can be represented as
Pk
j=1 cj [

Pj
i=1 p

2
jp

1
i−Pk

i=j+1 p
2
i p

1
j ] =

Pk
j=1 cj [

Pj
i=1 p

2
jp

1
i − p1

j (1 −
Pj
i=1 p

2
i )]

= −Pk
j=1 cjp

1
j +

Pk
j=1 cj [

Pj
i=1(p2

jp
1
i + p1

jp
2
i )]. Similarly,

ESoR(R1) = −Pk
j=1 cjp

2
j +

Pk
j=1 cj [

Pj
i=1(p1

jp
2
i + p2

jp
1
i )],

therefore ESoR(R2) − ESoR(R1) =
Pk
j=1(cjp

2
j − cjp

1
j ) +
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Pk
j=1 cj [

Pj
i=1(p2

jp
1
i + p1

jp
2
i )− (p1

jp
2
i + p2

jp
1
i )] =

Pk
j=1(cjp

2
j −

cjp
1
j ) and by initial assumption this is greater than 0, which com-

pletes the proof.

THEOREM 2. Given a team of N robots {R1, . . . , RN}
each with a discrete probability distribution over possible costs
v1, . . . , vk for a given task, if we choose a robot Rc that mini-
mizes the expected cost for the task, then the expected social regret
function SoR is minimized.

PROOF. (Sketch). By induction on the number of robots N .
Assume, without loss of generality, that robot R1 minimizes the
expected cost of the task execution. For the induction base case
N = 2, the theorem holds based on the Lemma 1. For the inductive
step, suppose the theorem holds for N − 1 robots, where N ≥ 3.
We will show that if we choose Rc that minimizes the expected
cost, then ESoR(RN ) is minimized.

Let {R1, ..., RN} be a team of N robots. We will assume, with-
out loss of generality that R1 minimizes the executed cost of the
task execution. Therefore in particular, R1 minimizes the expected
cost for all the possible couples of robots in the environment, i.e.,
for any given pair of robots (R1, Ri) where 1 ≤ i ≤ N , the se-
lection of R1 results in a minimal cost compared to the selection of
Ri. We will prove by contradiction thatR1 minimizes the expected
SoR for N robots.

We assume for contradiction that exist robot Ri, where R1’s
expected cost is smaller than Ri’s expected cost (EC(R1) <
EC(RN )). But according to lemma 1, Let R1 and Ri be a team
of two robots, if EC(R1) < EC(Ri) then the expected social re-
gret function SoR is minimized, R1’s expected SoR is bigger than
Ri’s expected SoR (ESoR(R1) > ESoR(Ri)). In contradiction
to the assumption. Therefore, the theorem holds for N robots,
N ≥ 2.

Table 2 gives travel times distributions of two robots to a goal.
As it shows in the table, if we will choose robot R1 by minimizing
its expected cost, we will minimizes the ESoR as well.

3.2.3 A Short-Cut to Determining SwF
The computation of ESoR for each robot, which is necessary

whenever we select robots based on a policy different from risk-
neutral selection, is tedious, and potentially time-consuming if the
distribution’s domains are large, or there are many robots.

Thankfully, it turns out that we do not need to compute ESoR
directly. To compute SwF, we want the difference ESoR(Ri) −
ESoR(Rj) for the two robotsRi, Rj . It turns out that a corollary of
Lemma 1 is that this difference is exactly the difference in expected
costs of the two robots, which is much easier to compute:

COROLLARY 3. From Lemma 1, it follows that the difference
between the expected costs of any two robots in a given team of N
robots {R1, . . . , RN} (each with a discrete probability distribution
over possible costs c1, . . . , ck) is equal to the distance between the
expected SoR of the same robots.

PROOF. Omitted for lack of space.

4. PATH TRAVEL IN PRACTICE
We experimented with simulated and physical robots, to exam-

ine the travel time distributions in practice. We use the results to
demonstrate in Section 4.1 that even under ideal conditions, robots
do indeed have variance in the time that it takes them to travel a
given path, and that this variance needs to be taken into account as
described above. In Section 4.3 we show that the travel time distri-
butions have distinctive shapes, and in general fit the Generalized

Extreme Value family of distributions, and thus the distributions
can be estimated in principle.

4.1 Experiments with Robots
We used our laboratory as the environment for the experiments.

First, we used a popular open-source laser-based SLAM package,
GMapping [6], to allow the robots to construct a map of the envi-
ronment. The results of the exploration and mapping process were
used as the basis for the experiments; this is to make sure that all
path-planning and movements were carried out using a map with
realistic quality. For path planning, we used A∗ with a fixed 4-
neighbor grid laid out over the map. If the robot discovered an
unknown obstacle on the way, it tried to go around the obstacle un-
til a timeout occurred, in this case a new path was planned from the
current location to the goal, given the new information about the
discovered obstacle.

Physical Robot Experiments. We utilized the RV-
400 differential-drive robots (see Figure 2) for exper-
iments in our lab. The RV-400 was equipped with
a Hokuyu UTM-30LX laser, with nominal range of

Figure 2: RV400 robot.

30m (though in practice effective
range was slightly smaller). The
RV-400 robot has an approximate
size 40× 40 (width, length), and
so this was used as the grid cell-
size. We kept the environment
static, with no obstacles or other
changes to the environment that
are unknown to the robot.

Figure 3 shows the environ-
ment used for the experiments, as
mapped by the robot. We tested
three paths: A short 6.4m path
(2 to 3), with a narrow pass; an
8m path (1 to 2), through open
space; and a 14.6m path which
combined both (1 to 3). We mea-
sured the travel time in each of these paths 10 times.

Figure 3: The mapped lab
used in the robotics experi-
ments.

Figures 4(a), 4(b), and 4(c)
show the distribution, in his-
togram form, of travel time
that were measured in these
experiments, for the 6.4m,
8m, and 14m paths. For each
of the settings, the planned
path was identical, and the en-
vironment kept strictly static.
The associated figure shows
the path traversal time (X

axis) versus its probability (Y Axis). Despite these ideal condi-
tions, the robot took varying amount of time getting to the target
locations. This variance is caused because of inaccuracies in the
movement and sensing, which lead to actual execution of the path
to differ between runs. In addition, changes to battery power also
affect the robots linear and angular velocities. Indeed, Figure 4(b)
does not include four data points that were removed from the data,
because in their associated runs the robot operated with a faulty
battery, and was almost twice as slow as in the other runs.

Simulation Experiments. We also conducted ex-
periments in simulation, where we scaled up the
number and complexity of the paths. We utilized
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Figure 4: RV-400 Travel Time Distributions.

the Webots 3D physics-based robotics simulator [11]

Figure 5: The mapped simu-
lated environment.

to create the virtual world
which the robots mapped and
navigated as part of the exper-
iments (see Fig. 5 for the re-
sulting map). Webots has high
fidelity, and models realistic
sensor and motion errors, as
we demonstrate below. In the
simulation experiments, we
simulated three RV-400 robots
and their Hokuyu lasers. The
openings between the rooms
are doors which were open or close according to the evaluated cri-
teria. Minor obstacles (boxes to be bypassed) are not shown. The
doorway between the rooms is 1.2m wide.

The following configurations were used in the simulation exper-
iments: From every robot location, to targets location A,B,C (9
combinations), and robots R1, R3 to target location D. we tested
4 obstacle settings: (i) static world (i.e., conforming to the map);
(ii) with an unknown obstacle (a box placed on the planned path,
that can be avoided and bypassed); (iii) an unexpected closed door
blocking the original path (if the path was through an opening); and
(iv) two unexpected closed doors blocking the original path, then
a re-planned path. Each of the configuration (11 initial-target lo-
cation pairs, 4 obstacle settings) was repeated 30 times. In all the
experiments the robot had a path to the last target.

A small subset of the results from the simulation experiments are
shown in Figures 6(a)–6(c). These are the results for one robot R1,
and for a single target point A (results for point B are shown later;
other robots and points omitted for lack of space). Our intent is to
demonstrate the variance that exists even under idealized simulated
conditions.

Figure 6(a) shows the distribution of traversal times of R1 for
arriving at target A in a static world. As seen in the figure, even
for a static world, and even under the relative noise-free world of
simulation, there is variance in traversal time, due to motion and
sensing uncertainties.

Of course, when choosing a robot for executing a task the world
cannot typically be assumed to be static. These increase the vari-
ance in the actual travel times. Figure 6(b) shows the wider distri-
bution of traversal times when an obstacle was added to the path of
the robot, in 50% of 60 cases (the X axis scale is 80 to 350). This
obstacle could be locally avoided (bypassed), and thus only a minor
change was required to the pre-planned path. Note, that all the dis-
tribution of the static environment become a part of the first bin of
the new distribution. Figure 6(c) shows the even wider distribution

when we also take into account a door that was closed in a third of
90 cases, and which blocked the original path. This requires a new
path to be planned and executed from the point where the closed
door was discovered, to the target location.

The results above are similar to the distributions collected for
the other experiment configurations, i.e., for other robots and other
target locations. In all cases, even for paths that involve very few
heading changes, and no obstacles or narrow passages, we see dis-
tributions that require reasoning about which robots to select, given
the decision-maker’s policy towards risk.

4.2 Selection Based on Experiment Data
We use the collected data to execute the decision-making policies

described earlier, in both the simulated and physical world. To do
this, we discretized the collected data into bins of approximately 25
seconds, and chose the robots according to the different decision
policies.

Simulation Experiments. Robots {R1, R2, R3} compete on
reaching targets A,B,C, and robots {R1, R3} on target D. Table
4 shows the chosen robot using each of the decision policies.

MinExpC MinExpMaxC MaxExpMinC
(risk-neutral) (risk-averse) (risk-seeking)

A R3 R3 R1

B R3 R3 R2

C R2 R2 R2

D R1 R3 R3

Table 4: Selected robots for targets, according to each policy.

We find that indeed, the selected robot is not always the closest
one to the target. For instance, R3 is closest to point A. But when
selecting a risk-seeking policy, R1 is chosen. Likewise, R3 is clos-
est to point B, and yet R2 is selected when a risk-seeking policy.
R3 is also closer to D, yet R1 is selected in the risk-neutral pol-
icy. This is a direct result of the uncertainty inherent in the robots’
movements.

We note that the selected robots for points {A, B, C} in the
risk-averse MinExpMaxC criteria were the same as the robots
with the minimal expected cost. This is because the robots were in
the same rooms with the target locations, and thus the closing and
opening of doors–which would otherwise create large worst case
travel times (and therefore large expected maximal times)–did not
affect the ability of the robots to reach these targets.

Table 5 shows a case where an overruling of the selected robot is
recommended by the SwF function. When selecting which of the
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(a) Static environment. The X axis scale is 80 to
100.

(b) Avoidable obstacle in 50% of trials. The X axis
scale is 80 to 350.

(c) Moving in a static environment, facing occa-
sional avoidable obstacles, and sometimes needing
to re-plan a path. The X axis scale is 80 to 1050.

Figure 6: R1 Travel Time Distributions.

robots should reach target A through a risk-seeking policy, both
robots R1, R2 have a minimal cost of 88. However, robot R1 is
chosen because its probability for this cost is a bit higher.

p88 ESoR
R1 0.438679 84.5507
R2 0.433333 49.2834
R3 0 29.0444

Table 5: The robots expected minimal cost, and expected SoR
for the minimal cost of 88, while competing on point A.

But looking at the ESoR of the robots, it is clear that R2 has
lower expected regret than R1. Plugging these values into the SwF
function yields the following:

(ESoR(R1)− ESoR(R2)) = 84.5507− 49.2834 (1)
= 35.2673 (2)
> 0 (3)
= 88− 88 (4)
= min

C
(R2)−min

C
(R1) (5)

In this case, SwF returns 1, and we should consider selecting R2

despite its slightly higher expected minimal traversal time.

Physical Robot Experiments. We utilized the RV-400 data
in similar experiments. Abstracting away from the map, we used
the distributions for traversal times of 6.4m, 8m and 14.6m paths,
for three robots: RV1 positioned 6.4m away from a target point,
RV2 positioned 8m away from the same point, and RV3 which is
positioned 14.6m away. Table 6 shows the chosen robot in each of
the decision policies.

MinExpC MinExpMaxC MaxExpMinC
(risk-neutral) (risk-averse) (risk-seeking)
RV1 RV2 RV1

Table 6: Selected physical robot, according to each policy.

The results show that in the physical world as well, the closest
robot is not always the robot to choose. Due to the narrow pass
in the 6.4m path, the worst case travel time for RV1 was worse
(though less likely) than the worst case of RV2 (which traveled 8m
through open space).

4.3 Parametric travel time distributions
The experiments conducted reveal repeating characteristics of

the emerging distributions, in particular their sharp lower bound

and long tail. This is a result of having a clear lower bound on path
traversal time (there’s a limit as to how quickly a path can be tra-
versed), and the increasingly rare (but still occurring) long arrival
times, due to getting stuck by unforeseen obstacles, decreasing bat-
tery levels, etc. On such occasions, robots would re-plan their path
several times on the way to the goal, and would sometimes need to
traverse long distances to bypass a closed door.

We thus hypothesized that in fact known (parametrized) heavy-
tailed continuous distributions may fit the data, allowing for im-
proved prediction. We began experimentally, by fitting familiar
distributions to the data, and using the Kolmogorov-Smirnov and
Anderson-Darling fitness tests to determine the best-fitting distri-
butions.

The fitness results for the best three distributions are shown in
Table 7. The table shows the average matching functions, for all
the paths that were followed, for the top three matching functions
that were found.

Gen. Log-
Logistic

Gen. Extreme
Value

Frechet (3P )

Kolmogorov-
Smirnov

0.132 0.135 0.136

Anderson-
Darling

1.051 1.512 0.69

Table 7: The average fitness of the top three matching distribu-
tions using Kolmogorov-Smirnov & Anderson-Darling tests.

The three best-fitting functions were found to be the General
Log-Logistic (also called the 3-parameter Log-Logistic distribu-
tion), the General Extreme Value, a limit distribution of the max-
imum of a sequence of independent random variables which are
identically distributed. and Frechet (3P ), a special case of the
General Extreme Value distribution. The table shows that The
General Log-Logistic distribution has the best average fitness using
Kolmogorov-Smirnov test, and Frechet (3P ) has the best average
fitness using Anderson-Darling test. Both of them, however, are
strongly related (special cases) of the General Extreme Value dis-
tribution. Figures 6(a), 6(b), 6(c) show a curve which is the best-fit
Log-Logistic continuous probability distribution fitting the simula-
tion experiments data. In addition, Figure 7 shows the travel times
distribution of robot R1, traveling to point B in a static environ-
ment, 132 times. As seen is the figure, although the number of
experiments grow the log-logistic distribution is a good fit.

We focused on the General Log-Logistic distribution. It has
three parameters: shape, scale and shift. The shift parameter was
found to be almost perfectly linearly correlated with the the min-
imal travel time of each one on the paths that were traveled. Fig-
ure 8 shows the relation between the minimal execution time of
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Figure 7: Distribution of R1’s travel times to point B in a static
environment, over 132 path following experiments. The line
shows the fitted log-logistic distribution.

all the paths that were traveled, and the shift parameter of the Gen-
eral Log-Logistic distribution that was fitted to the histogram of the
path travel times. It is clear from the figure that there exist a direct
relation between the two.

Figure 8: Measured minimal travel time versus fitted shift.

Looking on the other parameters, we found that the shape param-
eter was quite steady on values between 0.89304 to 3.3684 while
its declaration is (−∞,∞). We did not find a consistent value for
the scale parameter.

5. DISCUSSION AND FUTURE WORK
The techniques developed in this paper allow robot selection that

maintains bounds and guarantees as to travel times, even under un-
certainty. We showed that even under static environment condi-
tions, it takes the robots varying amount of time getting to a target
location. Due to this variance, choosing a robot to preform a task
cannot be done based on greedy selection (shortest path).

Thus, we introduced a decision making technique, inspired by
economic decision theory, to distinguish between different poli-
cies based on risk. The experiments in simulated and physical
robots demonstrated that different robots were chosen according to
the different policies because of time travel variance: And indeed
sometimes the closest robot is not the one to be selected, given
the decision-making policy. Furthermore, we have shown that un-
der some conditions, choosing the robot according to the selection
policies will not always give a reasonable selection in practice. We
defined the social regret function SoR which measure the cost of
choosing specific robot over all other robot, and allow us to eval-
uate the gain from switching the chosen robot to a robot that will
preform better. In our future work we plan to expand this tech-
niques for allocating teams of N robots to K tasks.

While examining the experiments’ data, we found that the data
distributions had a good fit to the family of General Extreme Value
distributions, and specifically to the General Log-Logistic distribu-
tion. We plan to explore this fit and learn to predict the parameters
of the distributions for future real world paths and obstacles.
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