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ABSTRACT
We propose coalitional normative system (cns), which can
selectively restrict the joint behavior of a coalition, in this
paper. We extend the semantics of atl and propose Co-
ordinated atl (co-atl) to support the formalizing of cns.
We soundly and completely characterize the limitation of
the normative power of a coalition by identifying two frag-
ments of co-atl language corresponding to two types of
system properties that are unchangeable by restricting the
joint behavior of such a coalition. Then, we prove that the
effectiveness checking, feasibility and synthesis problems of
cns are ptime-complete, np-complete and fnp-complete, re-
spectively. Moreover, we define two concepts of optimality
for cns, that is, minimality and compactness, and prove that
both minimality checking and compactness checking are co-
np-complete while the problem of checking whether a coali-
tion is a minimal controllable coalition is dp-complete. The
relation between ns and cns is discussed, and it turns out
that nss intrinsically consists of a proper subset of cnss and
some basic problems related to cns are no more complex
than that of ns.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms
Theory

Keywords
normative systems, logic, model checking, complexity

1. INTRODUCTION
Normative system (ns) (or social law) was firstly proposed

by [12, 13] as an off-line approach for coordinating multia-
gent systems, and then extended by, e.g., [17, 14, 1], based
on introducing the formalisms of modal and temporal logics,
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especially Alternating-time Temporal Logic (atl) [4, 5] and
its variations, which can be used for the specification and
verification of mechanisms such as social choice procedures.
So work on this aspect is also considered as a part of the
logics for automated mechanism design research [10, 16].

Although the various approaches to nss proposed in the
literature differ on technical details, they all share the same
basic intuition that an ns is a set of constraints on the be-
havior of agents; by imposing these constraints, it is hoped
that some desirable objectives will emerge [3], corresponding
to a logic formula that is originally false to become true, or
the reverse. The idea is that the imposing of an ns will lead
to certain updating in the semantic model, and thus cause
changes in the interpretations of some formulas.

But we find that nss update the semantic model in a some-
what too coarse way, that is, when an action is forbidden in
a state, all related transitions from this state are deleted 1.
This means the task of deleting a certain set of prescribed
transitions, which corresponds to the necessary condition for
fulfilling a certain objective, may exceed the abilities of all
nss. To overcome this shortcoming, we propose coalitional
normative system (cns), which is a set of behavioral con-
straints for a coalition (i.e., agent set) that restrict its joint
actions. By adopting a cns, we can restrict the set of tran-
sitions to an arbitrary subset of it, thus we can achieve all
possible updating in the semantic model.

Intuitively, the coalition represents a system we can con-
trol (it is a distributed open system formed by several agents);
and the cns specifies in every state for the coalition which
sets of actions (that can be chosen by it) cannot be executed
simultaneously, thus should be forbidden. We assume that
the agents in the coalition will negotiate with each other
before making any decisions on action selection in order to
avoid adopting any joint actions that are forbidden by the
cns. So, compared with conventional ns, cns can more effec-
tively capture the overall effects of joint actions and prevent
the destructive interactions from taking place. In this paper,
we aim to present a framework for cns based on atl, and
study its related reasoning and computational problems.

The remainder of this paper is structured as follows. We
begin by introducing the basics of atl and ns. Next, as
the effects of cnss cannot be captured by atl directly, we
propose co-atl to support the formalizing of cns. Then for
each coalition C, by identifying the L+C and L−C fragments
of the co-atl language, we “soundly and completely” char-
acterize its limitation of normative power. Afterward, we

1When concurrent action models are adopted, an action of
an agent in a state may be related to several transitions.
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establish the computational complexity of some key prob-
lems related to cnss. Finally, we present some conclusions.

2. ATL AND NORMATIVE SYSTEMS

2.1 Alternating-time Temporal Logic
The syntax of Alternating-time Temporal Logic (atl) [4,

5] is an extension of the syntax of ctl via replacing the path
quantifiers ∀ and § with the path quantifier ty, which can
express the α-ability [15] in game theory. And the formulas
of atl are interpreted by concurrent game structures (cgss).

A concurrent game structure is a tuple S = `k,Q,Π, π, d, δe
with the following components:

• A natural number k C 1 of agents. We identify the
agents with the numbers (or IDs) 1, ..., k.

• A finite set Q of states.

• A finite set Π of propositions.

• For each state q > Q, a set π(q) b Π of propositions
true at q. The function π is called labeling function.

• For each agent a > �1, ..., k� and each state q > Q, a
natural number da(q) C 1 of actions available to agent
a at state q. We identify the actions of agent a at state
q with the numbers 1, ..., da(q). A joint action of all
the agents at state q is a tuple `j1, ..., jke such that
1 B ja B da(q) for each agent a. We write D(q) for
the set {1,...,d1(q)�� ...��1, ..., dk(q)� of joint actions.
The function D is called move function.

• For each state q > Q and each joint action `j1, ..., jke >
D(q), a state δ(q, j1, ..., jk) > Q will result from state
q if every agent a > �1, ..., k� chooses action ja. The
function δ is called transition function.

Note that, every agent set A b �1, ..., k� can be seen as
a coalition (with the agent set �1, ..., k� � A represents the
environment). The grand coalition �1, ..., k� is denoted as
Ag. In the following of this paper, we will sometimes use Ñm
to refer to a joint action `j1, ..., jke (of all the agents), use
ÑmA to refer to a joint action of the coalition A ⊂ Ag2 (called
an A-action) and use DA(q) to refer to all the possible A-
actions at the state q. Moreover, we introduce the notation
ÑmASA′ to mean the joint action of the agent set A9A′ when
the agent set A takes the joint action ÑmA.

Some important concepts with respect to concurrent game
structures are specified as follows: For two states q and q′, q′

is called a successor of q if there is a joint action Ñm > D(q)
such that q′ = δ(q, Ñm). A computation of S is an infinite
sequence λ = q0, q1, q2, ... of states such that for all positions
i C 0, the state qi+1 is a successor of the state qi. We refer to
a computation starting from state q as a q-computation. For
a computation λ and a position i C 0, we use λ[i], λ[0, i],and
λ[i,ª] to denote, respectively, the ith state of λ, the finite
prefix q0, q1, ..., qi of λ, and the infinite suffix qi, qi+1, ... of λ.
A strategy for agent a > Σ is a function fa that maps every
nonempty finite state sequence λ > Q+ to an action such
that if the last state of λ is q, then fa(λ) > �1, ..., da(q)�.
2For the joint actions of an arbitrary agent set A b Ag, we
always consider them as action vectors arranged in order of
increasing IDs of the corresponding agents in A, instead of
action sets.

And, the outcomes of a set of strategies FA, called an A-
strategy, one for each agent in A b Ag, from a state q > Q is
the set out(q,FA) of computations, such that a computation
λ = q0, q1, q2, ... is in out(q,FA) if q0 = q and there is a joint
action `j1, ..., jke > D(qi) such that (1) ja = fa(λ[0, i]) for
all agents a > A, and (2) δ(qi, j1, ..., jk) = qi+1.

The language of atl L is generated by the following gram-
mar:

ϕ ��= pS ϕSϕ1 - ϕ2StAy◯ϕStAy j ϕStAyϕ1Uϕ2,

where p > Π is a proposition, and A b Ag is a set of agents3.
As an abbreviation, we write tAyn ϕ for tAy�Uϕ.
We write S, q à ϕ to indicate that the formula ϕ holds at

state q of a cgs S. When S is clear from the context, we
write q à ϕ. The relation à is defined, for all states q of S,
inductively as follows:

• For all p > Π we have q à p iff p > π(q).
• q à  ϕ iff q à ϕ.

• q à ϕ1 - ϕ2 iff q à ϕ1 or q à ϕ2.

• q à tAy◯ϕ iff there exists a A-strategy, FA, such that
for all computations λ > out(q,FA) we have λ[1] à ϕ.

• q à tAyjϕ iff there exists a A-strategy, FA, such that
for all computations λ > out(q,FA) and all positions
i C 0, we have λ[i] à ϕ.

• q à tAyϕ1Uϕ2 iff there exists a A-strategy, FA, such
that for all computations λ > out(q,FA) there exists a
position i C 0 such that λ[i] à ϕ2 and for all positions
0 B j < i we have λ[j] à ϕ1.

2.2 Normative Systems
Given a concurrent game structure S = `k,Q,Π, π, d, δe, a

normative system (ns) is a function η such that

η(a, q) ⊂ �1, ..., da(q)�
for all agents a > Ag and states q > Q.

Intuitively, η(a, q) is the set of “forbidden” (or “illegal”)
actions for agent a in state q. The structure obtained from
a cgs S by implementing an ns η, denoted as S†η, is the
structure obtained from S by deleting all the forbidden ac-
tions. Note that, ns is defined as a proper subset of all the
available actions to guarantee every agent will has at least
one available actions in every state after having implemented
an ns. Apparently, S†η is still a concurrent game structure.

An existential and a universal sublanguage of atl, de-
noted Le and Lu, respectively, were defined in [14] by the
following grammars ε and υ respectively:

ε ��= pSε , εSε - εStAgy◯εStAgy j εStAgyεUε

υ ��= pSυ , υSυ - υSty◯υSty j υStyυUυ
where p > Π.
Suppose we have a cgs S, an ns η, a state q in S, and

formulas ε > Le, υ > Lu. Then,

3We always assume that we are studying a fixed set Ag of
agents and a fixed set Π of propositions. So, the language of
atl is a fixed set of formulas, and when we refer to “concur-
rent game structure” we actually mean a concurrent game
structure with SAgS and Π as its components.
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1. S†η, q à ε� S, q à ε;
2. S, q à υ� S†η, q à υ.
The first result tells us that the satisfaction of a Le for-

mula cannot be established by implementing a ns4. The
second result, in contrast, tells us that the satisfaction of a
Lu formula cannot be avoided by implementing a ns.

3. COALITIONAL NORMATIVE SYSTEMS

3.1 The Formal Framework
A coalitional normative system (cns) for a concurrent

game structure S = `k,Q,Π, π, d, δe is a tuple Γ = `C,ϑe
with the following components:

• A coalition C b �1, ..., k�.
• For each state q > Q, a set ϑ(q) ⊂ DC(q) of C-actions

the agents in coalition C cannot collaboratively choose.
The function ϑ is called coordination function.

Sometimes we call a cns Γ = `C,ϑe as a C-norm. When
cnss are taken into consideration, certain joint action choices
and computations will be ruled out. As in [17], we adopt the
prefix “Γ-conformant” to mean “permitted by Γ”:

• A joint action Ñm >D(q) is called a Γ-conformant joint
action iff ¨ ÑmC > ϑ(q) such that ÑmSC = ÑmC .

• A state q′ is called a Γ-conformant successor of state
q if there is a Γ-conformant joint action Ñm >D(q) such
that q′ = δ(q, Ñm).

• A Γ-conformant computation of S is an infinite se-
quence λ = q0, q1, q2, ... of states such that for all posi-
tions i C 0, the state qi+1 is a Γ-conformant successor
of the state qi.

• In each state q > Q, an A-action ÑmA for the agent
set A b Ag, is called a Γ-conformant A-action in q iff
§ ÑmC ¶ ϑ(q) such that ÑmASA 9C = ÑmC SA 9C.

• A set FA = �faSa > A� of strategies, one for each agent
in A, is called a Γ-conformant A-strategy iff for all
nonempty finite state sequences λ > Q+, the A-action
ÑmA, given by FA, is a Γ-conformant A-action.

• Finally, the Γ-conformant outcomes of a Γ-conformant
A-strategy from a state q > Q is the set outΓ(q,FA),
such that, a Γ-conformant computation λ = q0, q1, q2, ...
is in outΓ(q,FA) if q0 = q and there is a Γ-conformant
joint action Ñm > D(qi) such that (1) ja = fa(λ[0, i])
for all players a > A, and (2) δ(qi, Ñm) = qi+1.

Similarly, we can define the structure obtained from S
by implementing a cns Γ = `C,ϑe, denoted as S†Γ, as the
structure obtained from S by deleting all the joint actions
forbidden by Γ. Notice that, in most cases S†Γ is not an
ordinary concurrent game structure any longer – agents in
C will “discuss” in advance on which C-action should be
selected, so a kind of “coalitional coordination” is explicitly
represented in the structure.

4As result 1 is equivalent to S, q à  ε� S†η, q à  ε.
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Figure 1: Implementing a CNS

CNS vs. NS: Coalitional normative system extends the
concept of normative system by enabling selective restricting
a coalition’s joint behavior. It is not difficult to discover
that every ns is intrinsically a special cns. Suppose that an
action i of agent a is ruled out by an ns η, it actually means
all the joint actions of the grand coalition that adopting i
as a member are ruled out. So, for an arbitrary ns η we can
always find an equivalent cns Γη = `Ag,ϑηe for the grand
coalition, just let ∀q > Q � ϑη(q) = η(1, q)� ...�η(k, q). That
is, the following result hold.

Proposition 1. Given a cgs S. For every ns η, there
exists a cns Γ such that S†η = S†Γ.

But apparently there are some cnss without equivalent
ns. This means ns can be seen as a proper subset of cns.
Notice that although we can modify the original cgs in more
ways by using cnss, the resulting structure remains a cgs if
and only if the cns has an equivalent ns.

Example 1. Consider a cgs S depicted as Figure 1(a),
that is, S = `k,Q,Π, π, d, δe where k = 2; Q = �q0, ..., q4�; Π =
�P1, ..., P4�; π(qi) = Pi for all 1 B i B 4; d1(q0) = d2(q0) = 2;
d1(qi) = d2(qi) = 1 for all 1 B i B 4; and δ(q0,1,1) = q1;
δ(q0,1,2) = q2; δ(q0,2,1) = q3; δ(q0,2,2) = q4; δ(qi,1,1) = qi
for all 1 B i B 4. The following statements hold:

1. An ns η such that η(1, q0) = �1�; η(2, q0) = �2�; η(i, qj) =
g for all i > �1,2� and j > �1, ..., 4� has the same effect
with the cns Γ = �C,ϑ� where C = �1,2�; and ϑ(q0) =
�`1,1e, `1,2e, `2,2e�; ϑ(qi) = g for all i > �1, ..., 4�.

2. A cns Γ′ = `C′, ϑ′e, where C′ = �1,2�; and ϑ′(q0) =
�`1,2e�, ϑ′(qi) = g for all i > �1, ..., 4�, can transform
S to the structure depicted as Figure 1(b), but there
doesn’t exist any ns which can achieve this transfor-
mation.

3. The structure depicted as Figure 1(b)cannot be modeled
by any cgs.

3.2 Coordinated ATL
Consequently, in the presence of a cns, we need to refine

the interpretation for the atl formulas. We call this new
logic Coordinated atl (co-atl), which directly inherits the
atl syntax but assumes slightly different semantics.
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CO-ATL Semantics: We write S,Γ, q à ϕ to indicate
that the formula ϕ holds at state q of a concurrent game
structure S under the cns Γ. When S and Γ is clear from
the context, we write q à ϕ. The relation à is defined, for
all states q of S, inductively as follows:

• For all p > Π, we have q à p iff p > π(q).
• q à  ϕ iff q à ϕ.

• q à ϕ1 - ϕ2 iff q à ϕ1 or q à ϕ2.

• q à tAy◯ϕ iff there exists a Γ-conformant A-strategy,
FA, such that for all Γ-conformant computations λ >
outΓ(q,FA) we have λ[1] à ϕ.

• q à tAyjϕ iff there exists a Γ-conformant A-strategy,
FA, such that for all Γ-conformant computations λ >
outΓ(q,FA) and all positions i C 0, we have λ[i] à ϕ.

• q à tAyϕ1Uϕ2 iff there exists a Γ-conformantA-strategy,
FA, such that for all Γ-conformant computations λ >
outΓ(q,FA) there exists a position i C 0 such that
λ[i] à ϕ2 and for all positions 0 B j < i we have
λ[j] à ϕ1.

Model Checking CO-ATL: Because of its significance
both in theory and practice, model checking is an impor-
tant computational problem for any modal or temporal logic.
The model checking problem for co-atl is defined as follows.

co-atl model checking:
Given: cgs S = `k,Q,Π, π, d, δe, cns Γ = `C,ϑe,

state q > Q, and co-atl formula ϕ.
Question: Is S,Γ, q à ϕ?

The lower bound of co-atl model checking is trivial,
for we can reduce the atl model checking problem, which is
ptime-complete [5], to it in polynomial time.

To show the upper bound, we can find a polynomial time
algorithm for this problem. The algorithm is obtained from
the atl model checking algorithm proposed in [5] by rewrit-
ing the Pre function which given a set A b Σ of agents and a
set ρ b Q of states, returns the set of states q such that form
q the agents in A can cooperate and enforce the next state
to lie in ρ. Formally, in the algorithm for co-atl, Pre(A,ρ)
contains state q > Q if there exists a Γ-conformant A-action
ÑmA in q such that for all Γ-conformant joint actions Ñm in q

satisfying ÑmSA = ÑmA, we have δ(q, Ñm) > ρ. Finally, we can
prove that this algorithm for co-atl is still a polynomial
time algorithm.

Theorem 2. co-atl model checking is ptime-complete,
and can be solved in time O(m ċ l) for a cgs with m tran-
sitions and a co-atl formula ϕ of length l. The problem is
ptime-hard even for a fixed formula.

Proof. We follow the steps of the proof for the atl
model checking complexity given by Alur et al. [5]. We re-
duce games played on cgss with the constraint of a cns
to games played on turn-based synchronous game struc-
tures. The only difference is in building the correspond-
ing 2-player turn-based synchronous game structure SA =
`2,QA,ΠA, πA, σA,RAe with respect to a cgs S, an ns Γ,
and a set of agents(players) A > Σ. The components in SA
are defined as usual, but we have to redefine some related
basic concepts based on the semantics of co-atl: For a state
q > Q, an A-move c at q is a Γ-conformant A-action defined

in this paper; An state q′ > Q is a c-successor of q if there
is a Γ-conformant joint action Ñm such that (1) ÑmSA = c, and
(2) q′ = δ(q, Ñm). It is easy to see that the aforementioned
changes add no additional complexity to the structure of SA,
that is, if the original game structure S has m transitions,
the turn-based synchronous structure SC has O(m) states
and transitions. This means we can find an algorithm for
co-atl model checking which requires time O(m ċ l).

So, with respect to the computational complexity of co-
atl model checking we get the same result with that of atl
model checking.

CO-ATL vs. ATL: By adopting the empty cns ΓCg =
`C,ϑge where ϑg(q) = g for all q > Q, we can identify the
following relation between co-atl and atl.

Proposition 3. Given a cgs S = `k,Q,Π, π, d, δe, then
for all q > Q, C b Ag and ϕ > L, we have

S,ΓCg , q à ϕ� S, q àATL ϕ.

Remark that, compared with atl, co-atl can represent
and reason about α-abilities in a wider range of structures,
that is, the class of structures obtained from concurrent
game structures by implementing cnss5. To differentiate
between the two semantics, we use “àATL” to denote the
satisfaction relation in atl.

3.3 Objectives and Effectiveness
We define the concept of objective for expressing the aim

of the designer in cns synthesis. Formally, an atomic ob-
jective is a state-formula pair, e.g. `q,ϕe, indicating that
in state q the co-atl formula ϕ should be satisfied; Then
objectives are generated by the following grammar o:

o ��= `q,ϕeS oSo1 , o2So1 - o2
where q is a state and ϕ is a co-atl formula. That is,
an objective is a Boolean combination of atomic objectives
which can express complex requirements about the system.

We adopt the expression “S†Γ   o” to mean the cns Γ
is effective for the objective o (in the cgs S), where the
relation “ ” is inductively defined as follows:

• S†Γ  `q,ϕe iff S,Γ, q à ϕ;

• S†Γ   o iff not S†Γ  o;

• S†Γ  o1 , o2 iff S†Γ  o1 and S†Γ  o2;

• S†Γ  o1 - o2 iff S†Γ  o1 or S†Γ  o2.

Intuitively, an effective cns is a cns that can fulfill the
aim of the cns designer, which is expressed as an objective.

3.4 Concepts of Optimality
Usually, there might be more than one effective cnss for

an objective. So it would be helpful if we can define some
concepts of optimality for selecting among effective cnss.

Minimality: The idea of minimality was firstly proposed
in [6, 7], attempting to minimize the amount of constraints

5All concurrent game structures are in this class, because an
arbitrary concurrent game structure S is also the structure
obtained from S by implementing an empty cns.
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set on the agents and as such, capture the notion of maximal
individual flexibility. We are going to transplant this idea
to coalitional normative systems.

Given two cnss Γ1 = `C,ϑ1e and Γ1 = `C,ϑ2e. Γ1 is said
to be less restrictive than Γ2, denoted as Γ1 l Γ2, if and
only if ∀q > Q ϑ1(q) b ϑ2(q). Γ1 is said to be strictly less
restrictive than Γ2, denoted as Γ1 h Γ2, if and only if Γ1 l Γ2

and §q > Q ϑ1(q) ⊂ ϑ2(q). And Γ is a minimal cns if and
only if ¨Γ′ such that Γ′ is effective and Γ′ h Γ.

So a minimal cns is one of the effective cnss that put the
least amount of constraints on the coalition.

Compactness: Notice that, in our framework the agents
in the coalition have to negotiate with each other before
selecting any joint actions. Basically, this process requires
agents in the coalition sending messages to each other until
an agreement on action selection has been reached. Obvi-
ously, more agents in the coalition means more complex the
process is and more prone to cause error.

In this sense, with respect to an objective o if both Γ =
`C,ϑe and Γ′ = `C′, ϑ′e are effective coalitional normative
systems, Γ is better than Γ′ if C is a proper subset of C′

(that is C ⊂ C′) – we say Γ is more compact than Γ′. An cns
Γ = `C,ϑe is a compact cns if and only if it is an effective cns
and there doesn’t exist any effective cns Γ′ which is more
compact than Γ, and in this case, we say C is a minimal
controllable coalition.

In other words, the key idea of compactness is minimizing
the amount of agents in the coalition in order to minimize
the communication cost in the system.

4. COALITIONAL NORMATIVE POWER
AND ITS LIMITATION

Intuitively, the normative power of a coalition C is mani-
fested by its ability of changing properties in cgss by imple-
menting C-norms. But very naturally the class of C-norms
is not omnipotent, for we can show that some properties
are inevitably beyond the reach of all the C-norms. In other
words, the normative power of a coalition has its limitations.
It is interesting to show what exactly the limitation is.

Power Limitation Characterization: For all formulas
ϕ > L, we say ϕ’s satisfaction cannot be established by (im-
plementing) a C-norm if and only if for all cnss S, there
doesn’t exists any C-norm Γ, such that there is a q > Q sat-
isfying S,ΓCg , q à ϕ and S,Γ, q à ϕ; we say ϕ’s satisfaction
cannot be avoided by (implementing) a C-norm if and only
if for all cnss S, there doesn’t exists any C-norm Γ, such
that there is a q > Q satisfying S,ΓCg , q à ϕ and S,Γ, q à ϕ.
Then the power limitation of the class of C-norm can be
characterized by answering the following two questions:

1. which fragment of L is the set of formulas whose sat-
isfaction cannot be established by a C-norm?

2. which fragment of L is the set of formulas whose sat-
isfaction cannot be avoided by a C-norm?

We then define two fragments of the co-atl language,
L+C and L−C , which are generated by the grammars ϕ and ψ
below respectively.

ϕ ��= pSϕ1 , ϕ2Sϕ1 - ϕ2StC+y◯ϕStC+y j ϕStC+yϕ1Uϕ2S ψ

ψ ��= pSψ1 , ψ2Sψ1 - ψ2StC−y◯ψStC−y j ψStC−yψ1Uψ2S ϕ
where p > Π, C b C+ b Ag, g b C− b Ag �C.

In the following, we will show that L+C and L−C are exactly
the answers to the above two questions respectively. That is,
by L+C and L−C we can soundly and completely characterize
the the limitation of the normative power of coalition C.

Soundness and Completeness: First of all, we prove
the following two lemmas, which implies that a C-norm can-
not add any thing new to the strategic ability of a coalition
that consists of a superset of C, and cannot avoid any strate-
gic ability of a coalition that consists of a subset of Ag �C.

Lemma 4. Given an arbitrary cgs S, a state q0 in S and
an arbitrary C-norm Γ. If C+ is a set of agents satisfying
C b C+ b Ag and FC+ is a Γ-conformant C+-strategy, then
there is a C+-strategy F ′

C+ such that

out(q0, F ′
C+) = outΓ(q0, FC+).

Proof. Always, we can define F ′
C+ = FC+ . And in all

states q, after the agents in C+ selected a C+-action, the
available joint actions and available Γ-conformant joint ac-
tions for the agents in Ag �C+ are the same, that is, all the
joint actions in DAg�C+(q), as Γ put no constraint on the
agents in Ag �C+.

Lemma 5. Given a cgs S, a state q0 in S and an ar-
bitrary C-norm Γ. If C− is a set of agents satisfying g b
C− b Ag � C and FC− is a C−-strategy, then there is an
Γ-conformant C−-strategy F ′

C− such that

outΓ(q0, F ′
C−) b out(q0, FC−).

Proof. As Γ actually cannot put any constraints on the
behavior of the agents in C−, all the C−-strategies are Γ-
conformant joint strategies for C−. So, we can define F ′

C− =
FC− . And in all states q, for the agents in Ag �C−, the set
of Γ-conformant joint actions is a subset of the joint actions,
because of the effect of Γ.

Then, soundness of our characterization can be estab-
lished by the following theorem.

Theorem 6. Given an arbitrary cgs S, an arbitrary C-
norm Γ and an arbitrary state q in S. Then

1. ∀ϕ > L+C , we have S,Γ, q à ϕ� S,ΓCg , q à ϕ.
2. ∀ψ > L−C , we have S,ΓCg , q à ψ� S,Γ, q à ψ.
Proof. By induction on the structure of ϕ and ψ. For

the case of propositions the conclusion trivially hold. For the
other cases, suppose for all ϕ > L+C and ψ > L−C the conclusion
holds. Then the satisfaction for the cases of ϕ1,ϕ2, ψ1,ψ2,
ϕ1 - ϕ2, ψ1 - ψ2,  ϕ and  ψ are immediate.

Moreover, for all C b C+ b Ag and g b C− b Ag �C:
S,Γ, q à tC+y◯ϕ � (by the co-atl semantics) there is a

Γ-conformant C+-strategy FC+ such that for all Γ-conformant
q-computations λ > outΓ(q,FC+), S,Γ, λ[1] à ϕ � (by the
induction hypothesis) for all λ > outΓ(q,FC+) , S,ΓCg , λ[1] à
ϕ � (by lemma 4 and proposition 3) there is a F ′

C+ such
that for all λ′ > out(q,F ′

C+) we have S,λ′[1] àATL ϕ � (by
the atl semantics and proposition 3) S,ΓCg , q à tC+y◯ϕ.
S,ΓCg , q à tC−y◯ψ � (by proposition 3 and the atl se-

mantics) there is a C−-strategy FC− such that for all λ >
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out(q,FC−), S,λ[1] àATL ψ � (by lemma 5) there is a Γ-
conformant C−-strategy F ′

C− for all λ′ > outΓ(q,F ′
C−) we

have S,λ′[1] àATL ψ � (by proposition 3 and the induction
hypothesis) for all λ′ > outΓ(q,F ′

C−) we have S,Γ, λ′[1] à ψ
� (by the co-atl semantics) S,Γ, q à tC−y◯ψ.

Analogously, we can prove that the conclusion hold for
tC+y j ϕ, tC+yϕ1Uϕ2, tC−y j ψ, and tC−yψ1Uψ2.

Finally, we can justify the completeness of our character-
ization by the following theorem.

Theorem 7. (1) If ϕ ¶ L+C , then the satisfaction of ϕ
can be established by a C-norm. (2) If ϕ ¶ L−C , then the
satisfaction of ϕ can be avoided by a C-norm.

Proof. We are only going to prove the first part of this
theorem, as the proof for the second part is similar.

To show the satisfaction of all the formulas in L�L+C can
be established by implementing a C-norm. Our method is
mainly based on constructing the required concurrent game
structure for each such formula.

Let A b Ag and A 9 C x C (i.e., A is not a C+). For
all formulas of the form tAyγ where γ is of the form ◯ϕ,
jϕ, or ϕ1Uϕ2, and ϕ,ϕ1, ϕ2 are arbitrary co-atl formu-
las, we can construct a concurrent game structure S with
a state q in its state space, satisfying S, q àATL tAyγ, but
S, q àATL tA 8Cyγ. So, in such S, agents in the set A 8C
have a joint strategy FA8C such that all computations in
out(q,FA8C) satisfy ψ. According to [5, 11], FA8C can be
a set of “memory-free” strategies that map states to A 8C-
actions. We construct the C-norm Γ to restrict the joint
actions of the agents in set A 9 C to only those are con-
sistent with FA8C . Then, by Γ, we have S,Γ, q à tAyγ.
That is, the satisfaction of tAyγ can be established by im-
plementing a C-norm. Proving the result “if ϕ ¶ L−C then
the satisfaction of  ϕ can be established by implementing
a C-norm” can be transformed to proving “if ϕ ¶ L−C then
the satisfaction of ϕ can be avoided by a implementing a
C-norm”.

Moreover, it is straightforward to prove that if the satis-
faction of ϕ can be established by a implementing C-norm,
then the satisfaction of ϕ , ϕ′, ϕ - ϕ′, tAy◯ϕ, tAy j ϕ,
tAyϕ′Uϕ, tAyϕUϕ′,  tAy◯ϕ,  tAy j ϕ,  tAyϕ′Uϕ, and
 tAyϕUϕ′, where A b Ag and ϕ′ is an arbitrary co-atl for-
mula, can also be established by implementing a C-norm.

Interesting Corollaries: It is easy to show that all
the co-atl formulas are beyond the normative power of an
empty coalition, and the power limitation characterization
for ns given by [14] is not complete.

Corollary 8. (1) The limitation of the normative power
of coalition g can be characterized by L+g and L−g, where both
L+g and L−g are the class of co-atl formulas generated by the
following grammar ϕ (i.e., all the co-atl formulas):

ϕ ��= pSϕ1 , ϕ2Sϕ1 - ϕ2StAy◯ϕStAy j ϕStAyϕ1Uϕ2S ϕ
where p > Π, and g b A b Ag.

(2) The limitation of the normative power of coalition Ag
can be characterized by L+Ag and L−Ag, which are the classes
of co-atl formulas generated by the following grammars ϕ
and ψ respectively:

ϕ ��= pSϕ1 , ϕ2Sϕ1 - ϕ2StAgy◯ϕStAgy j ϕStAgyϕ1Uϕ2S ψ

ψ ��= pSψ1 , ψ2Sψ1 - ψ2Sty◯ψSty j ψStyψ1Uψ2S ϕ
where p > Π.

As the set of nss is a strict subset of the class of Ag-norms.
We can conclude that L+Ag and L−Ag soundly characterize the
limitation of the power of nss. Although the completeness
result doesn’t hold for L+Ag and L−Ag with respect to nss, we
are sure that L+Ag and L−Ag is a more comprehensive char-
acterization for the power limitation of nss compared to Le
and Lu given by [14], because Le ⊂ L+Ag and Lu ⊂ L−Ag.

Moreover, we can compare the normative power of differ-
ent coalitions. We say coalition C1 is more powerful than
coalition C2 if and only if L+C1

b L+C2
and L−C1

b L−C2
. Then

immediately we can show that for two arbitrary coalitions
C1 and C2 if C1 b C2 then C2 is more powerful than C1.
Hence, with respect to normative power, g is the weakest
coalition and Ag is the strongest coalition.

5. COMPLEXITY

5.1 Basic Computational Problems
The basic computational problems related to cnss may in-

clude checking whether a cns is effective, checking whether
there is an effective cns, and finding an effective cns. We
formalize them respectively as follows:

cns effectiveness:
Given: cgs S, cns Γ and objective o.
Question: Is Γ effective for o?

cns feasibility:
Given: cgs S, coalition C and objective o.
Question: Is there a C-norm which is effective for o?

cns synthesis:
Given: cgs S, coalition C and objective o.
Output : A C-norm Γ that is effective for o.

Note that, similar problems have been proposed for ns
in [14]. It has been established that the effectiveness problem
for ns is in ptime and the feasibility problem for ns is np-
complete. For cns, we have the following results.

Theorem 9. cns effectiveness is ptime-complete, and
can be solved in time O(m ċ n ċ l) for a cgs with m transi-
tions, and an objective of length n, where the max length of
the co-atl formulas in the objective is bounded by l.

Proof. To see whether an objective is effective we can
firstly determine the effectiveness of all the atomic objec-
tives which requires time O(m ċ l ċ n), then the remain work
equals verifying an assignment for a Boolean formula, which
requires time O(n). So the overall time complexity is O(mċlċ
n). Thus this problem is in ptime. With respect to the lower
bound, ptime-hardness is trivial, for verifying S,Γ, q à ϕ can
be directly reduced to verifying S†Γ  `q,ϕe.

While cns effectiveness is tractable, cns feasibility
is possibly intractable according to the following theorem.
Note that, our result is based on the atl assumption that the
agent number, i.e., k, is a constant. But the state number
SQS, and the max available action number of every agent in
every state, i.e., d, are considered as variables.

Theorem 10. cns feasiblity is np-complete, even for
concurrent game structures with only one agent.
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Figure 2: The reduction from sat to cns feasibility

Proof. Membership in np can be seen by the following
nondeterministic algorithm:

(1) guess a C-norm Γ;
(2) verify that Γ is effective for o.
Since step (1) can be done in non-deterministic polynomial

time O(dk ċ SQS), and step (2) requires only polynomial time.
To see np-hardness we reduce sat to it. Given a sat in-

stance φ(x1, ..., xn). We create a cgs S depicted as Figure 2.
That is, Sφ = `k,Q,Π, π, d, δe where k = 1; Q = �q0, ..., qn+1�;
Π = �X1, ...,Xn�; π(qi) = �Xi� for all i > �1, ..., n�; d1(q0) =
�1, ..., n�, d1(qi) = �1� for all i > �1, ..., n�; and δ(q0, i) = qi
for all i > �1, ..., n�, δ(qi,1) = qi for all i > �1, ..., n�. Let φ� be
the result of systematically substituting for every Boolean
variable xi in φ the co-atl expression t1y◯Xi. Then it
is easy to see that φ is satisfiable if and only if there is a
�1�-norm which is effective for the objective `q0, φ�e.

The synthesis problem for cns is a function problem that
requires an answer more elaborate than “yes” or “no”.

Theorem 11. cns synthesis is fnp-complete, even for
concurrent game structures with only one agent.

Proof. Membership in fnp: Let L be the language for
the cns feasibility problem. By Theorem 10 we know that
for all string x, to decide whether x > L is np-complete. And
we can define a relation RL such that RL(x, y) if and only if
x > L and y is an output of cns synthesis given the instance
x. It is easy to check that RL is polynomial-time decidable
and polynomially balanced.

To see fnp-hardness we reduce fsat to it. The reduction
is similar to that of Theorem 10. Given a boolean formula
φ(x1, ..., xn) we can create the cgs Sφ and the co-atl for-
mula ϕ�. Then we can see that x1, ..., xn satisfy φ if and
only if the cns Γ = `�1�, ϑe, where ϑ(q0) = �iS0 B i B n and
xi = 0�, ϑ(qi) = g for all i > �1, ..., n�, is effective for the
objective `q0, φ�e.

It is easy to see that the synthesis problem for ns is also
fnp-complete. So now we can conclude that the effective-
ness, feasibility and synthesis problems of cns are no more
complex than the corresponding problems of ns.

5.2 Complexity of Minimality Checking
The problem of Checking whether a cns is a minimal cns

is a basic problem related to the concept of minimality.

minimal cns checking:
Given: cgs S, cns Γ and objective o.
Question: Is Γ a minimal cns for o?

Theorem 12. minimal cns checking is co-np-complete.

Proof. We can show that the complement problem to
minimal cns checking is np-complete. That is, given a
cgs S, a cns Γ, and an objective o, determining whether
there is a cns such that Γ′ h Γ and Γ′ is effective for o. Note
that, an arbitrary cns feasibility instance is an instance
of this problem that taking Γ to be all the transitions in the
cgs. So this problem subsumes cns feasibility and thus
is np-hard. And the membership in np is trivial.

5.3 Complexity of Compactness Checking
With respect to compactness, there are two basic decision

problems, that is, deciding whether a cns is a compact cns,
and deciding whether a coalition is a minimal controllable
coalition. We define them formally as follows:

compact cns checking:
Given: cgs S, cns Γ and objective o.
Question: Is Γ a compact cns for o?

minimal controllable coalition checking (mcc):

Given: cgs S, coalition C and objective o.
Question: Is C a minimal controllable coalition for o?

Theorem 13. compact cns checking is co-np-complete.

Proof. The problem complement to compact cns check-
ing is as follows: given a cgs S, a cns Γ = `C,ϑe and an
objective o, is it true that Γ is not effective for o or there is
a C′ such that C′ ⊂ C and there is an effective C′-norm for
o? We can show this problem is np-complete: np-hardness
is immediately, for it subsumes cns feasibility; and since
the amount of agents is a constant, the amount of subsets of
C is bounded by a constant. So we can guess a cns for ev-
ery subset of C respectively in nondeterministic polynomial-
time, and then verify that every cns is an effective cns in
polynomial-time. This establishes the np upper bound .

The problem of deciding whether a coalition is a minimal
controllable coalition seems a harder problem, we can show
that it is a problem that complete for the class dp6.

Theorem 14. minimal controllable coalition check-
ing is dp-complete.

Proof. Membership in dp can be seen from the following
algorithm using an oracle for cns feasibility:

(1) query the oracle to see whether C is effective for o;
(2) query the oracle to see whether there is an agent a > C

such that C � �a� is effective for o;
(3) if step (1) returns “yes” and step (2) returns “no” then

return “yes”, otherwise return “no”.
To prove dp-hardness we reduce sat-unsat [9] to it. Given

a sat-unsat instance (φ(x1, ..., xm), φ′(y1, ..., yn)), we can
create a cgs S depicted as Figure 3.

Let Ψ be the formula ty◯(PX ,φ�)-(PY ,φ′�), where φ�

is the result of systematically substituting for every Boolean
variable xi in φ the co-atl expression t1,2y◯Xi, and φ′�

is the result of systematically substituting for every Boolean
variable yi in φ′ the co-atl expression t1,2y◯Yi. Then
we can prove that (φ,φ′) is a “yes” instance of sat-unsat if

6dp is a complexity class “between” np and pspace, and
consists of all languages that are intersections of a language
in np and a language in co-np (see [9] for the details of dp).
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Figure 3: The reduction from sat-unsat to mcc

and only if �1,2� is a minimal controllable coalition for the
objective `q0,Ψe.

For the � direction, we can define a �1,2�-norm that
delete all the transitions from q0 to q2, and delete some
transitions started from q1 to make Ψ satisfied in state q0.
But for any �1�-norm or �2�-norm the transitions from q0
to q2 cannot be completely deleted at the same time, and
since φ′ is unsatisfiable, Ψ cannot be true in state q0.

For the
 direction, the existence of effective �1,2�-norms
requires φ or φ′ is satisfiable. And the fact of Ψ cannot be
satisfied in state q0 by implementing any �1�-norm or �2�-
norm means φ′ is unsatisfiable, otherwise we can delete the
transition from state q0 to state q1 and delete some transi-
tions started from state q2 by a �2�-norm to make Ψ satisfied
in state q0. So, φ is satisfiable and φ′ is unsatisfiable.

6. CONCLUSIONS AND FUTURE WORK
We have proposed the framework for coalitional normative

systems in this paper. Three aspects of theoretical work
have been done: firstly, we have extended the semantics
of atl and proposed Coordinated atl (co-atl) to support
the formalizing of cnss; secondly, we have proved that the
limitation of the normative power of an arbitrary coalition
C can be soundly and completely characterized by the co-
atl fragments L+C and L−C ; and thirdly, we have established
the computational complexity of some key problems related
to coalitional normative systems.

One opportunity for further research is to more systemat-
ically investigate the related computational complexity. As
our current results are built on the conventional assump-
tion that the amount of agents k is a constant. So it may
be interesting to study the complexity when k is considered
as a variable (as in [8]). Another possible further research
is modeling the problem of finding an optimal cns as an
optimization problem (as the work in [2]).
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