ADAPT:
Abstraction Hierarchies to Succinctly Model Teamwork

(Extended Abstract)

Meirav Hadad' and Avi Rosenfeld?
'Research Division, Elbit Systems Ltd, Rosh Ha’'Ayin 48091, Israel

2Department of Industrial Engineering, Jerusalem College of Technology, Jerusalem 91160, Israel

Meirav.Hadad@elbitsystems.com, rosenfa@jct.ac.il

1. ABSTRACT

In this paper we present a lightweight teamwork implementa-
tion through use of abstraction hierarchies. The basis of this imple-
mentation is ADAPT, which supports Autonomous Dynamic Agent
Planning for Teamwork. ADAPT’s novelty stems from how it suc-
cinctly decomposes teamwork problems into two separate planners:
a task network for the set of activities to be performed by a specific
agent and a separate group network for addressing team organi-
zation factors. Because abstract search techniques are the basis
for creating these two components, ADAPT agents are able to ef-
fectively address teamwork in dynamic environments without ex-
plicitly enumerating the entire set of possible team states. During
run-time, ADAPT agents then expand the teamwork states that are
necessary for task completion through an association algorithm to
dynamically link its task and group planners. As a result, ADAPT
uses far fewer team states than existing teamwork models. We de-
scribe how ADAPT was implemented within a commercial training
and simulation application, and present evidence detailing its suc-
cess in concisely and effectively modeling teamwork.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
General Terms

Experimentation

Keywords

Simulation techniques, tools and environments, agent cooperation

2. TECHNIQUE DESCRIPTION

ADAPT’s model is based on decomposing teamwork problems’
task and group elements in a top-down manner from a high level
to progressively lower levels. Specifically, a given teamwork prob-
lem is converted into two hierarchical networks: a task network
to model the set of activities a given agent can perform and a sep-
arate group network for addressing organization factors. Within
both hierarchical networks, behaviors are decomposed such that
the general task and group problems are progressively redivided
into partial plans involving smaller sets of subtasks and subgroups.
ADAPT contains two novel elements designed to further reduce
the size of these hierarchies. First, as hierarchical abstraction is

Cite as: ADAPT: Abstraction Hierarchies to Succinctly Model Teamwork
(Extended Abstract), Meirav Hadad and Avi Rosenfeld, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems — Innova-
tive Applications Track (AAMAS 201 1), Tumer, Yolum, Sonenberg and
Stone (eds.), May, 2-6, 2011, Taipei, Taiwan, pp. 1177-1178.

Copyright (©) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1177

used, agents incrementally elaborate only relevant task and group
information during task execution. Second, ADAPT uses an as-
sociation algorithm to effectively perform task allocation. Agents
only check those constraints which it may possibly perform, further
adding to ADAPT’s concise nature. The net result is that ADAPT
can effectively implement teamwork problems, even in dynamic
environments, yet uses far fewer states than existing approaches.
The planning strategies of the elaboration processes of each net-
work in ADAPT are based on abstract search techniques [3]. Ac-
cordingly, the planning procedures of each elaboration process in-
volves three major steps: (1) A branching step identifies possible
candidates for expanding a partial plan; (2) A refinement step for
adding constraint information to the partial plan; (3) a pruning step
for removing unpromising candidates based on these constraints
in order to avoid failures. While abstract-search is a well known
technique for automated task planning [3], ADAPT’s contribution
stems from applying these techniques to teamwork modeling.

3. MOTIVATING EXAMPLE

Assume that a group must work as a team on a joint mission, say
to capture a flag. A group of blue agents must plan how they will
infiltrate the territory of the opposing team of red agents that are
defending the flag. In dynamic environments it is almost impossi-
ble to predict all possible event permutations that may occur while
the blue agents complete their task.

>
v ™ 0 wm >
w © 4
«
44 X
444 %
&Y ST

Four Ship',
Formation,

Capturel. s
the Flag

Setup [Next ‘::;;0 ‘NEX‘.Capmel Four:Ship

| ‘Formation

| Patrol |and| Engage | .
L L — Two Ship

“Two Ship ™ i
.Formation

- £ — | Formation
Engage [, { Engage |
Right | | Left

Figure 1: Stages in a Team Mission

Figure 1 depicts group states during the execution of the Capture
the Flag mission. At the start, a group of 4 red agents are divided
into 2 subgroups of pairs located on either side of the flag to defend
it (see the top left corner). At the same time, a group of 8 blue
agents approach the flag area. In the second stage, the blue group
splits into two subgroups of 4 agents according to their capabilities.
One subgroup splits again into two subgroups of 2 agents and each

subgroup approaches and engages the 2 red subgroups. However,
during this stage an unplanned event occurs, and one of the blue
agents is incapacitated by a red team member. Consequently, the
blue team must replan their mission with only 7 of the 8 agents. In
the final stage (top right corner), we see the group of 7 remaining
blue agents still completing the task and capturing the flag.

We depict the networks of the teamwork model formation for the
blue team in the bottom of Figure 1. ADAPT decomposes team-
work into both task and group networks. In the first stage each of
these components are only described generally as one abstract node
(the bold vertices at Figure 1). To graphically differentiate between
the two task and group abstractions, we present the task hierarchy
in rectangles, and the group hierarchy in ovals. At the beginning of
execution, one rectangular task node describes the high level “Cap-
ture the Flag” task, and the group hierarchy ‘“Package” describes
the blue agents’ attributes and capabilities that can be used to per-
form this task. In order for the blue agents can perform the team
task, “Capture the Flag”, their group and task planners must decide
exactly how they will properly connect these two hierarchies.

4. MODELING ADAPT’S NETWORKS

ADAPT contains many similarities to previous Hierarchical Task
Network (HTN) planning approaches [3]. Formally, we define an

atomic task in ADAPT as an action act(?) that can be directly ex-
ecuted by the agents (e.g., FlyTo(origin, dest)). A (higher-level)
complex task ¢(v) is one that cannot be executed directly and is
decomposed into subtasks. To execute a high-level complex task

(), agents must identify a method which encodes all constraints
for how this task including key information about who and how it
can be performed. We define a method, m, as a 5-tuple containing:
(name(m), task(m), constr(m), subtasks(m), relation(m)), where
name(m) is the name of the method, and task(m) is the name of
the complex task. We define subtasks(m) as the sequence of tasks
and constr(m) as the set of constraints {p1 . .. pp } that may apply
when using the method m. Each constraint pj, involves a subset
of variables and specifies all combinations of values for these vari-
ables. We define these variables as the set of {X1 ... X, } where
each value X is taken from a given domain D; with a set of pos-
sible values. Constraints may include specific required capabilities
that a certain number of agents perform a specific subtasks(m).
The relationship between subtasks, relation(m), contains con-
straints on the execution of the subtasks(m) and may be one of
the following: (i) AND:; (ii) OR; and (iii) NEXT.

In parallel to the task hierarchy, ADAPT also deconstructs team-
work into a group component to model constraints about which
agents can perform given tasks. We refer to the hierarchy about the
entities’ combined capabilities as the group. Parallel to our task
definitions, we decompose the hierarchy as per the group decom-
position into higher levels of complex entities and atomic entities
which cannot be divided into further levels.

We define two separate networks diqsx and dgroup. A network
d; =[G}, ps] is defined as a collection of items 4 that have to be ac-
complished under constraints p; (the item 7 denotes the type of the
network, i.e., group/task). Network d; is represented by an acyclic
digraph G; = (V;, E;) in which V; is node set, E; is the edge
set, and each node v € V; contains an item ¢. The Planning do-
main D; = (M, A) consists of library methods M, and library
A of atomic items. A task planning problem is defined as a triple
Prask = (diask, B, Diask), where diqsi is the task network to be
executed, BB is the initial state and Dysi is the planning domain.
A task plan is a sequence act; . .. act, of atomic actions. A group
planning problem is defined as a triple containing Py, defined
as (dgroup, B, Dgroup) Where dgroup is the group network to be

1178

executed, B is the set of agents with their concrete capabilities and
Dgroup 18 the planning domain. A group plan assigns agents to the
appropriate nodes in the group network based on their capabilities
in such a way that all the constraints are satisfied. Given either task
or group planning problem instance, the planning process of each
of them involves the branching, refinement and pruning steps.

The branching step is defined by retrieving the entire set of meth-
ods in M; which may be applied to the required item. Refinement
then has each local agent check its constr(m) and sends what it
considers to be its best option to the mediator agent within the
DCOP solver. In ADAPT’s pruning stage, the mediator uses the
OptAPO algorithm (see [2]) to search for this teamwork solution.
If a solution for M cannot be constructed the mediator agent asks
each agent to iteratively selects its next possible method until a so-
lution is found. This process can either result with a plan being
found, or a NULL plan in failure.

5. IMPLEMENTATION AND RESULTS

We have implemented ADAPT within a commercial training and
simulation system at Elbit Systems Ltd. Specifically, we applied
the general technique in Section 3 regarding the Capture the Flag
problem to scenarios involving fighter jets attempting to destroy
an enemy target. Each scenario involved a target that needed to
be destroyed, as well as groups of attacking and defending planes.
We relied on a group of professional fighter pilots to provide de-
tails about how they would perform theoretical missions. We then
encapsulated this information to form ADAPT’s networks.

BITE ADAPT max | ADAPT average
of Agents | Task | Group | Task | Group | Task | Group
5 561 18 44 5 37.1 3.67
8 624 146 53 8 39.65 6.29
12 829 400 68 8 56.86 6.17

Table 1: Comparing the number of task and group teamwork
states in ADAPT versus BITE teamwork models

To study the savings in the number of states within ADAPT ver-
sus other previous BITE static approaches [1], we focused on mis-
sions with groups of 5, 8 and 12 blue planes which needed to de-
stroy one target on the red team guarded by a fixed number of 5
jets. We recorded the number of task and group nodes required to
encode teamwork within ADAPT throughout the task’s execution
versus BITE. As Table 1 demonstrates, we found that ADAPT’s use
of abstraction yielded an enormous savings in the number of team-
work states needing to be stored and represents a radical depar-
ture over previous models which need to exhaustively describe all
possible interactions prior to task completion [1]. ADAPT builds
teamwork models incrementally during task execution, thus allow-
ing agents to apply refinement and pruning steps in order to limit
the size of the teamwork model which needs to be stored. This
fundamental difference not only yields teamwork models that are
smaller by several orders of magnitude, but allows agents to quickly
find their optimal behavior within this smaller model.

6. REFERENCES

[1] G. A. Kaminka and I. Frenkel. Integration of coordination
mechanisms in the BITE multi-robot architecture. /CRA-07,
pages 2859-2866, 2007.

[2] R. Mailler and V. Lesser. Using Cooperative Mediation to
Solve Distributed Constraint Satisfaction Problems. In
AAMAS 04, pages 446-453, New York, 2004.

[3] D. Nau, M. Ghallab, and P. Traverso. Automated Planning:
Theory & Practice. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

