Consensus Acceleration

in Multiagent Systems

with the Chebyshev Semi-lterative Method

R. L. G. Cavalcante
Fraunhofer Institute for Telecommunications,
Heinrich Hertz Institute /
Technische Universitat Berlin
renato.cavalcante@hbhi.fraunhofer.de

ABSTRACT

We consider the fundamental problem of reaching consemsus i

multiagent systems. To date, the consensus problem has beer?P

typically solved with decentralized algorithms based oapyr
Laplacians. However, the convergence of these algorittsns i
often too slow for many important multiagent applicatioasd
thus they are increasingly being combined with accelanatio
methods. Unfortunately, state-of-the-art acceleratechniques
require parameters that can be optimally selected onlynfptete
information about the network topology is available, whigharely
the case in practice. We address this limitation by deriting
novel acceleration methods that can deliver good perfoceaxen

if little information about the network is available. Thesfiris
based on the Chebyshev semi-iterative method and maxirtizes
worst-case convergence speed given that only rough bountfeo
extremal eigenvalues of the network matrix are availabtecah
be applied to systems where agents use unreliable comntionica
links, and its computational complexity is similar to thadsimple
Laplacian-based methods. This algorithm requires symiration

among agents, so we also propose an asynchronous versiorP@S€d on graph Laplacians [2

that approximates the output of the synchronous algorithm.
Mathematical analysis and numerical simulations show that
convergence speed of the proposed acceleration methodsadec
gracefully in scenarios where the sole use of Laplaciaedas
methods is known to be impractical.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent systems

General Terms
Algorithms, Theory

Keywords

Decentralized control, collective dynamics, consensus

1. INTRODUCTION

Reaching agreement (or consensus) between physicaltipdisid

A. Rogers, N. R. Jennings
University of Southampton
School of Electronics and Computer Science

{acr,nrj}@ecs.soton.ac.uk

coordination of large swarms of robots [2], distributed ttohof
modular robotic actuators [3], and others [4]. Typicallycls
proaches require the agents to update a local estimata of a
environmental or control parameter, by iteratively comioating

with a few local neighbors, such that the estimates of alhegye
converge to the same value. For example, in [3] a modulartiombo
setting is described in which agents controlling deceizl
modular actuators must reach consensus on the height of thei
actuators in order to ensure that a platform is kept levethEgent

can only infer (indirectly) the height of its neighbors, sdyolocal
control laws can be used, and the agents must reliably cgener

a consensus height. Likewise, in one of the steps of the idigor

in [1], agents with individual estimates of the location dfaaget,
iteratively exchange and update these estimates, witimteetithat

the estimates of all the agents converge to that which woane h
been reached had they been able to report their initial agtito a
center which could fuse them by taking their average.

To date, consensus problems of the type described above, hav
typically been solved with classic decentralized iteagilgorithms
—5] and other related techmique
that differ in the choice of the network matrices [6, 7]. In
these consensus algorithms, every agent produces a seqoenc
estimates using a simple two-step approach that can beybriefl
described as follows. First, agents exchange estimataliyiatith
their neighbors. Then each agent updates its current dstinya
taking a weighted average of all estimates to which it hagss;c
and the process repeats. As described above, the intenatis th
the estimates of all the agents converge to that which woanle h
been reached had the average of the agents’ initial essnbaten
taken. Unfortunately, however, it has been recently shdwanthe
convergence of these classic iterative algorithms is dfterslow
in applications where agents have to agree on initial eséisnhat
have a strong correlation with the agents’ positions [2]pidsl
scenarios in which this occurs are sensor networks and icobot
swarms because the phenomena being measured are ofteéarfanct
of the agents’ positions. In more detail, when the initidlreates
are spatially correlated, the number of iterations requiby
Laplacian-based methods to compute the average consesisias v
with good accuracy can grow proportionally with the squdrthe
network diameter [2]. This fact renders such methods imjuac
in large scale multiagent systems with sparse communitatio

agents is one of the fundamental requirements of many The convergence of these Laplacian-based algorithms can be

multiagent applications including target localizatioi distributed

Cite as: Consensus Acceleration in Multiagent Systems with the
Chebyshev Semi-Iterative Method, R. L. G. Cavalcante, Agdé®e, and

N. R. JenningsProc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 201Iumer, Yolum, Sonenberg and
Stone (eds.), May, 2—6, 2011, Taipei, Taiwan, pp. 165-172.

Copyright (C) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

165

greatly improved with acceleration techniques that filter dutput
[8-10]. In particular, efficient two-tap filters have beemrsed
for systems where agents communicate both synchronou€ly [1
and asynchronously [8]. However, these algorithms typidzdve
a free parameter that has to be chosen by the agents. Sudstibeur
choices of parameters can be avoided with the optimal pahyaio

filtering approach proposed in [9]. Unfortunately, this eggzh
requires precise knowledge of the mean value of the network
matrix, which again is unlikely to be available in many madfent
systems. In addition, this method is only stable in systernerey

the communication links are fairly reliable.

Thus, to address the above shortcomings and to make Laplacia
based methods practical in the multiagent scenarios destri
earlier, we propose low-complexity acceleration methodsed
on digital filters that require little information about tinetwork
topology and are robust against unreliable communicatits| In
more detail, the main contributions of this study are aofod:

e We derive a novel acceleration method nansgdchronous
semi-iterative consensus This algorithm filters the output of
classic consensus algorithms with a polynomial filter teafgtimal
in the sense of maximizing the worst-case mean convergence
speed when the network topology is unknown. Unlike recent
acceleration techniques [9], the proposed algorithm oatyuires
rough upper and lower bounds on the extremal eigenvalues of
the network matrix (first order statistics is not necessaayd it
is amenable to an efficient recursive implementation. Coetha
to other state-of-the-art acceleration techniques, ssctha@se in
[8, 10], our synchronous semi-iterative consensus algoribas
better convergence properties in many practical scendanesame
communication requirements, and roughly the same conipngat
complexity.

e To handle scenarios where synchronization among agents
is not possible, we further extend our approach to devise
an asynchronous algorithm, namedynchronous semi-iterative
consensus that approximates the output of the propose
synchronous algorithm. This asynchronous algorithm hasag
connection with those in [8,10], but it does not require Fstias for
parameter tuning in real applications where the networkltayy
is largely unknown. All parameters of our algorithm are igad
obtained from rough upper and lower bounds of the extremal
eigenvalues of the unknown network matrix.

The paper is divided as follows. Sect. 2 reviews classic
consensus algorithms based on graph Laplacians and othiéarsi
approaches. Sect. 3 shows the two novel acceleration ssheme
Numerical simulations in Sect. 4 evaluate the proposed odsth
in scenarios where Laplacian-based methods are imprhctica

2. PROBLEM STATEMENT

We start by briefly introducing our notation. In particulagctors
are written in lower-case, bold typeface, and matrices arten
in upper-case, bold typeface. Unless otherwise statedonrgeare
assumed to be column vectors. For every vecterRY , we define
the norm ofv by ||v|| := vVvT v, where(-)” denotes the transpose
operation. The vector of ones is denotedlhyand its dimension
is clear from the specific context. The element of kitle row and
the jth column of a matrixX € R™*" s denoted by X],. The
eigenvalues of a symmetric matriX € RY*" are denoted by
M(X),...,An(X). By D := diag(A1,...,An), we denote a
diagonal matrixD € RY*Y having\i,. .., Ax as the entries on
its main diagonal.

We now turn to the problem formulation. In this study we
assume that the multiagent system forms a network repessent
by a connected undirected gragh = {N, £}, where N/ =
{1,...,N}is the set of agents; C { {k,j} | k,7 € N} isthe
edge set, and the eddé, j} € £ is an unordered pair of agents.
For convenience, here we assume thatk} € £. Initially, at
time ¢ = 0, each agenk reports a valuer;[0] € R, and we are
interested in iterative algorithms that produce, in evaggrak <
N, sequencegx[i]} converging toz., = 1/N 3>, .\ xx[0],

d

166

the average of the initial values reported by the agents.

To be truly decentralized, the algorithms of interest stoul
respect the network topology, i.e., at time instaatN, each agent
k should exchange information only with its neighbok§ :=
{j € N|{j,k} € £}. In particular, classic algorithms having
this desired feature take the form:

zpli+1] = > [Wlillksz;lil, k€N, i €N, 1)
JENY
or, more compactly,
x[i + 1] = Wile[i], i € N, 2

wherex[i] = [z1[i] ... zx[i]]T € RY, WJi] € RN is
a properly selected sequence of (symmetric) matri€B8]:]];
is the weight associated with the edgé,;j} at time i, and
Wlilk; = 01if {i,j} ¢ £. To reach consensus, agents can
compute the weight§W [i]]; in many different ways according
to the desired characteristics of the system. In particulahe
network is deterministic, agents only know the local togglcand
links are reliable, agents can use simple Laplacian-basttads
to compute locally the weights [2,4]. When links are uniigiga
weights can be computed with the method in [5]. In systemg&vhe
the network topology is known before deployment and links ar
deterministic, the approach in [6] can be used to computeedl fix
matrix W W i] that gives better convergence than simple
heuristics based on graph Laplacians. In systems whergsagen
operate asynchronously and do not know their neighborssigos
consensus algorithms [7] can be used to determine the vgeight
Hereafter, we do not use a specific method to compute the
weights[W[i]]x;, and, for maximum generality, we only assume
that the matrice$¥ [¢] satisfy the following properties:

ASSUMPTION 1. (Properties ofW[i]:)

1. The matricedV [i] (¢ € N) in (2) are i.i.d. random matrices
with (W i]];x = 0if {j,k} ¢ G.

2. Each matrixW[i] is symmetric and satisfie®/ [¢]1
(henceW [i] is a doubly stochastic matrix).

3. ||EWI["W] — 1/N117||; < 1 (and |W —
1/N117 |2 < 1, whereW E[W[i]] denotes the mean of
Wli]).

1

The above properties are sufficient conditions to guarantee
that «[i] in (2) converges tar,,1 € RY in both the mean
sense and the mean square sense [7], lig,—o Elx[i]] =
Tavl and lim; . F[||2[i] — @av1|?] 0. Unfortunately,
irrespective of the method being used for the computation of
the weights[W[i]]x;, when agents only have local information
about the network topology, consensus algorithms solegedba
on the iteration in (2) are typically slow. In particular, &the
initial values reported by agents have a strong correlatith
their locations, Laplacian-based methods have been showe t
impractical in large multiagent systems because the cgavee
speed scales badly with the network diameter [2]. To addtess
serious drawback of consensus algorithms based on (2), veéoge
an acceleration technique that improves the convergene¢ijoin
the mean sense. Before deriving the proposed method, we first
review convergence properties of (2).

By the i.i.d. assumption of the symmetric matridds[:] (i €
N), we have thatE[W[i]] is a time-invariant symmetric matrix
(E[Wi]] = W for all i € N). Let the eigenvalue decomposition

LIn this study, we use the same notation for random variabids a
their realizations. The interpretation that should be igplgk clear
from the context.

of W be given by QAQ” W, wheregq,,...,q, are
the columns of@, and A diag (A (W), ..., An(W))
with eigenvalues arranged in non-increasing order of ntadai

[\ (W)| > ... > |An(W)|. Note that, also from Assumption 1,
we have that;1 = (1/v/N)1 and thatl = (W) > |\;(W)]
forj =2,..., N. With these definitions, we deduce:
Elz[i]] = (W)'z[0] = QA'Q" [0]
=[(1/VN)1q, ...qy]
~diag(1, A2(W))',..., An (W)
[(1/VN)L gy ... qy]" 2[0]. ®)

Therefore, by|\;(W)| < 1forj = 2,...,N, we conclude
that lim; oo Ex[i]] (1/N)1172[0] = z..1 and that the
slowest mode of convergence of (3) is giveny(W) (by taking
powers, the eigenvalues; (W) (j = 3,...,N) do not decay
slower to zero tham\o(W)). Thus, the iteration in (2) can be
particularly slow ifA>(W) is close to one and the vectsf0] has
a nonzero projection onto the subspace spanned by the egenv
corresponding to. (W).

3. THE ACCELERATION ALGORITHM

In this section, we derive our novel algorithms and compheent
with existing methods. We start by revisiting polynomialefik.

3.1 Polynomial Filtering

In our proposed method, we improve the convergence of (2) (in
the mean sense) by using polynomial filters. The idea is airol
that proposed in [9], but the size of the filters that we useciase
with the number of iterations. Later in this section we shbatt
this is amenable to implementations with very low compoti
complexity and memory requirements. In addition, our metiso
optimal in a well defined sense (c.f. (7)) even if little infeation
aboutW 7] in (2) is available.

In more detail, each age&timproves its local estimate af..
by filtering z[¢] obtained with (1):

= Ali,nlzk[n], k€N,

4
wherey[i,n] € R(: € N, n =0,...,1) arescalars to be designed
(common to all agents), angk[i] is the improved estimate af..

at time: in agentk. Stackingyi[i], ..., yn~|[¢] in a vectory|i|
[y1]i] ... yn[i]]T, we can rewrite (4) equivalently as

= i i, n]x[n
n=0

Combining (3) and (5) and using Assumption 1, we can compute
the mean value of[i]:

1= ~li,nl(W)

= Q diag (pi(1), pi(A2(W)) ...

©)

" &[0]

pi(An(W))) Q" =[0],

=[1/VN)1q, ...qy]
- diag (pi(1)7pi(>‘2(W))7 s 7pl()‘N(W)))
[(1/VN)1 g, ... qy) (0], (6)

wherep;(z) is the polynomiap; () := 3_° _, ~[i,n]z" at times.
Now we need to choose a polynomijglthat makes (6) a potentially
better estimate of.. 1 than (3).

167

3.2 The Synchronous Consensus Algorithm

By comparing (3) with (6), the slowest mode of convergence of
Elyli]] to zav 1 is faster than that of[z[¢]] if the polynomialsp;
satisfy the following properties: (see also [9], which, ikelthe
proposed method, use filters of short length.)

P1) p;(1) = 1and
NI < P (W)

Therefore, at each tim¢ we conclude that we should find
polynomials such thap;(1) = 1 and that|p;(\;(W))] is as
close to zero as possible for glle {2,...,N} and alli € N.
Unfortunately, finding an ideal polynomial having roots\a{W),
An (W) (fori > N —1) would require global information about
the network in every agent. To avoid this unrealistic reguient,
we assume that the eigenvalues W), ..., Ax (W) belong to the
interval [a, 5], but their exact values are unknown. (Assumption 1
guarantees-1 < «, 8 < 1, and the bounds can be obtained from
typical application scenarios; see Sect. 4.) With this aggion, a
reasonable choice fgr; is the normalized polynomial; (1) = 1
of degreei least deviating from zero on the intervl, 5] (see
also [11], [12, Sect. 10.1.5]). We can expect that such arpohjal
would satisfy properties P1) and P2) above without knowdeo
XN(W) (j = 2,...,N). More formally, at time: we use the
polynomial:

P2) max;c (s, vy [pi(X (W

)|},

whereS; is the set of polynomials of degré@ormalized to satisfy
pi(1) = 1. The polynomial in (7), which has been typically used
to accelerate the convergence of iterative methods sobyatems
of linear equations, is unique and given by [11], [12, Se6t15]:

“(1e25=3)

@)

p; € arg mln{arélzagﬁ Ip(

« B
pi\T) =]
(=) o)
where
-8
=1 2 8
pi=l42e—0 ®)
andc; is the Chebyshev polynomial of degree
cos(icos tz), |z|<1,i€N,
ci(fz) =9 . 4)
cosh(i cosh™), |z|>1,ieN

Chebyshev polynomials can be generated with the recursion
Cm+1(x) = 2zem(z) — em—1(2) (co(xz) = 1 andei(z) = z),
so, similarly to the original Chebyshev acceleration atgon [11],
[12, Sect. 10.1.5], we can equivalently compiitgy|i]] (with the
polynomial (7)) in the recursive form:

Elyli +1]]
= wit1[(1 = k)T + kW E[yli]] + (1 — wit1)E[yli — 1”7(9)
where E[y[1]] = [(1 — k)T + kW]z[0], y[0] = =[0], &
2/(2—a—f),and
. 1 . - . 241
Wi4+1 = wi 222, wl—l, wz—m. (10)

4p?
Unfortunately, unlesd¥V[i] is a constant matrix, the recursion
in (9) cannot be implemented in a multiagent system bectidise

not available. Therefore, we replace expectations by saugles,
and we obtain the following algorithm, which can be impleteen
in multiagent systems because the iteration in (1) (or,\vedgmtly,

(2)) can be readily implemented (using local computatiorihef
resulting matrix-vector multiplications):

ALGORITHM 1. (Synchronous Semi-lterative Consensus

Algorithm)

i+ 1) = w1 [(1 =)L + kW 2[i] + (1 = wisn)zli — 1],
1)

wherez[1] = [(1 — k)I — kW [0]]z[0] and z[0] = x[0].

The proposition below shows that some convergence pregerti
of the original Chebyshev algorithm are retained, evenghowe
replaced expectations by sample values.

PrROPOSITION 1. (Properties of the
Semi-Iterative Consensus Algorithm)

Assume the conditions in Assumption 1. Then, the algorithm i
(11) satisfies the following:

a) The algorithm is average preserving, i.€1/N)17z[i] =
(1/N)172[0] = 2.y for everyi € N.

b) In the mean sense, the convergencezfpf is identical to
that of y[¢] in (5) with v[i,n] chosen as the coefficients of the
optimal polynomial in the sense of (7). In other wordgz[i]] =

Synchronous

Elyli]]. Furthermore, ifo and 8 are such that-1 < o <
minje (2, .. N} Aj(W) < max;e{2,.. N} A (W) < B <1,then
, [[[0]]
Elz]i]] — zavl| < ——, (12)
| E[=i]] =<z)

which shows that lim;_.o E[z[i]] zavl because

lim; o0 ¢; (1) = 0.

PROOF. In the following, for notational convenience, we define:
Mii] .= [(1 = r)I — kWT]i]]andM := [(1 — k)T — kW].

(@) By 1"WTi] = 17, we can check that

"M =[1-r)1"T—c1"W[i]] =17,
and the result follows by induction. More precisely, notatth
172[0] = 172[0] = Nz, and thatl” 2[1] = 17 M [0]z[0]
N z.,. Now, by assumind” z[i] = Nxz,, and1”z[i — 1]
Nzay, We obtain
172[i 4+ 1) = wir 11" Mi)z[i] + (1 — wiy1)17 2[i — 1]
= wi+1Nﬂiav + (1 — Wi+1)N$;w = NmaV7

which concludes the proof of (a).

(b) The proof can be informally shown as follows. From the i.i.d.
assumption of the matricdd/[i], we have that(:] is independent
of Wi], and thusz[i] is also independent d¥Z [:]. Now, apply the
expectation operator in both sides of (11) to obtain

Blz[i +1]] = win1 ME[2[i]] + (1 — wiy1) E[z[i — 1] (13)

where E[z[1]] = M«[0] and E[2[0]] = «[0], and we conclude
that E[z[i]] = E[yl¢]] for everyi € N (see (9)), and thus (13)
is equivalent to (6) withy[i] replaced byz[i] and withp; being
the optimal polynomial in (7). Subtraat,,1 = (1/N)117z[0]
from both sides of (6) and use the facts thgt(\)| < 1/|c;i(u)]
(o < X < B)and that| Abl|2 < ||A]|2 ||b]|2 for any matrixA and
vectorb of compatible sizes [12] to obtain (12)[1

Intuitively, Proposition 1 shows that our algorithm (wittoperly
selected parameters and) is guaranteed to converge in the
mean sense, and the convergence in the mean is typicalbr fast

168

than that of the original scheme in (2). Unfortunately, sele
the matrixW[i] is a constant matrix, the results in Proposition 1
are not enough to guarantee stability. In particular, Psjmm 1
does not guarantee mean-square convergence, but thieprabl
also present in existing acceleration techniques thatidensme-
varying network matrices [8, 9]. However, in Sect. 4 we shbat t
our method is robust in many practical scenarios. In adulitimte
that Proposition 1(a) holds even if the algorithm divergeki¢h
could be the case when the parameteis overestimated), so it
can be useful to devise hybrid schemes with stronger coenery
guarantees, but such methods are not investigated here.

3.3 The Asynchronous Consensus Algorithm

A potential limitation of Algorithm 1 is that agents shoulddw
the time instant to computew;. In some systems, such as those
with agents communicating via network gossiping [7], krogvi
precisely the time index may not be possible. This fact rende
Algorithm 1 impractical, and, to address this limitatiore propose
an asynchronous semi-iterative consensus algorithm shaésed
on the following observation:

Fact 1. [11][12, p. 517] (On the convergence af)

Letw; be asin (10) and-1 < a < B < 1. Then, fori > 1, w;
satisfies the following properties: 1) < w; < 2, ii) w; is strictly
decreasing, and iii)

2
—_— =l W
1++/1—-1/p?

Since w; is convergent (and the asymptotic convergence is
usually fast), we can try to approximate the output of Algon
1 by fixing w; t0 woo, the limit in (14). The resulting algorithm is
formally presented below.

lim w;
71— 00

(14)

ALGORITHM 2. (Asynchronous semi-iterative

algorithm)
z[i + 1] = woo [(1 — K)I + W i]] 2[i] + (1 — weo)2[i — 1],
(15)

consensus

wherez([1] = [(1 — #)T — kW[0]]2[0] and z[0] = z[0].

It is not difficult to show that that Algorithm 2 is also aveeag
preserving and converges in the mean sense.tw.

3.4 Relation with Existing Methods

We now compare the proposed algorithms against the original
consensus algorithm with and without state-of-the-arekeration
methods. We start by rewriting (11) in the equivalent form:

zpli +1] = Z wit1 (1 — K+ &[Wi]]x;) 25[4]
JENY

+(1—wi+1)zk[i—1], k‘EN, (16)

wherez[1] = >2 .\, (1 — £ + K[W/[i]]x;)2;[0] and z,[0]
z,[0]. (Note: Algorithm 2 is obtained by fixing; in (16).)
From the above, we see that we need to keep two scalars in the
memory of each agent, instead of one as in the original ceusen
algorithm in (1). In addition, in terms of local computation
complexity per agent, Algorithm 1 is slightly more complex
than the original consensus algorithm because (16) rexjtéreer
additional sums and multiplications per iteration as comgéao
(1). However, the slightly higher computational complgxnd
memory requirements of the proposed method can be ignored
because, in a real-world implementation with wirelessdirdgents
spend most energy and time with the information exchanderat

than computation [13]. If agents implement either (1) or)(1léey
communicate with exactly the same neighbors and excharge th
same amount of information per iteration. However, to retheh
desired solution:,, within a prescribed precision, the iteration in
(16) typically requires fewer iterations than the scheméljn As

a result, the proposed methods can lead to great time andyener
savings (because less information must be exchanged).

From the equivalence betweéiz[i]] andE[y][:]] in (9) (or (6)),
which is proved in Proposition 1(b), Algorithm 1 is applyiadong
polynomial filter that is optimal in a well defined sense andtth
uses all estimates|0], z[1], ..., even though its implementation
only requiresz[i] and z[¢ — 1]. This is in stark contrast with
the implementation of the two algorithms in [9], both of winic
typically use short filters of fixed length and keep in the mgmo
of each agent more than two samples of the sequence of estimat
of z,,. One of the algorithms in [9] uses filters based on an
intuitive approach that lacks an optimality criterion. Tother
approach in [9] uses filters optimal in a well defined senséjtbu
requires precise knowledge of the eigenvalue¥1df which is an
information not required by our approaches.

We can also relate our approaches with the two-register
algorithms in [8, 10]. Assume that = —g with 3 > 0, in which
casex = 1. Therefore, (16) reduces to:

2li+ 1= Y wina[Willez[i] + (1 — wira)zli — 1],
JENG

keN, (@17)
wherez;[0] and z;[1] are as in (16). As a result, the approaches
in [8, Eq. (9)] and [10, Eqg. (28)] (this last by also fixing the
matrix W [i]) are recovered if we fixo; to any number in the
interval (1,2). Fixing w; was also the approach used to derive
Algorithm 2, which is an algorithm that gives strong argumsen
to usew; = ws and not arbitrary values within the rangg, 2)
(provided that the upper bounglis available). Note that we can
also argue that fixingu.. to an arbitrary value within the range
(1,2) is equivalent to making an arbitrary choice 8f More
precisely, giverw € (1,2) anda = —f (which was used to
derive (17)), we can use (14) to calculate the valug tiat results
in such a choice ab . In the next section we show that the choice

«a = —f3 can be too pessimistic in many cases, and, as a result, the

acceleration capabilities of the algorithm can be reduced.

A less strict reader could also argue that Algorithm 2 in utlé f
generality is also equivalent to the algorithms in [8, Eq)] éhd
[10, Eq. (28)] withW[i] replaced by(1 — k)I — kW [i]. In such
a case, these existing algorithms are accelerating theensus
algorithma[i 4+ 1] = ((1 — k)I — kWi])2[i] and not the iteration
in (2). Algorithm 2 shows how to chooge(andw..) when bounds
on the eigenvalues are available.

4. EMPIRICAL EVALUATION

We now show the superiority of our proposed algorithms over
existing methods, and we also evaluate the stability of tbpgsed
algorithms in practical scenarios.In particular, as in [£2¢ place

N agents uniformly at random in a square of unit area, and treen w
connect agents within distande= /log(N)/N from each other
(unless otherwise stated), which is a distance that gusgarnhat
the resulting grapld = (N, £) is connected with high probability
[14]. We discard graphs not fully connected. In all simwaas,
each agent initially reports values [0] = 50v/2- ||[Xx Vi) T || +

ny, wheren;, is a sample of a Gaussian random variable with mean

169

zero and unit varianceand X, and)),, are the Euclidean spatial
coordinates of agerit in the unit grid. (Note that agents start with
values strongly correlated with their positions as is comiimathe
multiagent systems described earlier [2].)

We consider cases where agents exchange information not
only with reliable communication links, but also with unadlle
communication links because practical algorithms shoaltbbust
against link failures (a common occurrence in wirelessdiawing
to the presence of jammers, obstacles, etc.). Thereforesafcth
scenario, the following network matric®¥ [:] are used:

e (Reliable links) For simulations using reliable links, we set
the network matrix toW[i] = I — eL (i@ € N), whereL is
the Laplacian matrix of the grapg ande > 0 is a properly
selected scalar that guarantees Wafi| satisfies the conditions in
Assumption £ In particular, in this study we set= 0.05 because
it guaranteed the conditions in Assumption 1 in all our setiohs.
For agraplG = (N, £), the Laplacian matri, € RY* is given
by L := D — A, whereD := diag(|[Ni| — 1,...,|Nn| — 1) is
the degree matrix (| denotes the cardinality of a set) adAdis the
1, if {k,j} €& andk #j
0, otherwise.

e (Unreliable links) For this scenario, we use the model of
unreliable links proposed in [5]. In more detail, we starthnéa
connected grap8 = (\, £) obtained as described above. At each
time instanti, we copy all edges frond to a new edge sef|i],
and then we remove with probabilityeach edgdk, j} (k # j)
from £[i]. The edge sef[i] defines a new grap@i[i] = (N, £]i]),
and we uséV [i] = I — eL[i], whereL[:] is the Laplacian matrix
associated witl§[i{] = (N, E[i]). The physical interpretation of
this model is that communication links, each of which cquoesls
to an edge ir€, can fail with probabilityp. As in the case with
reliable links, we chose the value= 0.05.

adjacency matrix [2, 4)A];

All acceleration methods in this section use the matridég]
described above. For convenience, we use the acronyms SSCA
for the synchronous semi-iterative consensus algorithnAe8CA
for the asynchronous semi-iterative consensus algorithfie
proposed acceleration schemes are compared with Laplacian
based methods without acceleration [2, 5] and with the fahig
acceleration techniques:

e The two-register eigenvalue shaping filter (ESF) in [10] {gth
is also the algorithm in [8] when the matricdd[i] are designed
for consensus via network gossipingye showed in the discussion
after (17) that this algorithm is equivalent to Algorithm &lwo =
—fBandws € (1,2). Our results are useful to help with the choice
of wos When an upper bound on the second largest eigenvalue of
the network matrix is available.

e The optimal short-length polynomial filtering in [9] (algtiim
denominated “polynomial” in the figures).This algorithm uses
more information than that available to the proposed sckeame
the ESF acceleration method.

As in [8, 9], the performance metric of interest is the (abs)l
squared errofjo[i] — ., 1||?, whereo[i] € R" is the output of a
given consensus algorithm at timée.g.,o[i] = z[i] in the case
of our proposed acceleration schemespi = «[i] in the case
of the original consensus algorithm in (2)). In simulatiovisere
the network matrix is deterministic, all algorithms are gudeed

’The samples;. are different in different runs of the simulation
¥The matriced¥ [i] are fixed and deterministic in this scenario, so
we can simply ignore the expectation operator in Assumption

to converge if the eigenvalues of the network matrix (exdept
the eigenvalue 1) fall into the intervaty, 3]. Therefore, we
plot the average squared error performance of the algositinm
such scenarios. However, unless otherwise stated, we di®w t
(sample) 99th-percentile squared error performance wbends

on the eigenvalues are not exactly known. By plotting peileen
curves, we identify algorithms that consistently provideod
performance, and we also give less emphasis to rare sigatio
where acceleration algorithms may not converge (see also th
discussion after Proposition 1). Sample average and piecen
curves are calculated from the results of 1,000 simulatieash

of which use different initial conditions.

4.1 Networks with Reliable Links

Having described the basic setup of the simulations, we now
study the performance of the algorithms in specific settinge
begin with an ideal scenario where the topology is fixed,diake
reliable, and the minimum and second largest eigenvaludbeof
network matrix are precisely known. This scenario is usébul
show the maximum acceleration gain that can be achieved with
the algorithms because the minimum and second largesiaigen
are simple to compute. The network under consideration is
depicted in Fig. 1. For simplicity, denot&/ Wi
(because in this scenario the network matrices are fixed and
deterministic), Amax = max;je(2,...,n} Aj (W) (Amax > 0in
all our simulations), an@,in = min;ca .. N} Aj(W). We use
the following parameters for the proposed acceleratioreses:
SSCA @ = Amin, 8 = Amax) @nd ASCA (v = Amin, 5 = Amax)-
The parameter in [10, Eq. (28)]is sette = 1 — weo, Wherews
is computed according to (14) with = —a = A\nax (See the
discussion after (17) for the justification of this choichlote that
the ESF algorithm is basically the ASCA algorithm with= —a.
We use filters of length eight for the method in [9] (this valae
also used in [9]). Fig. 2 shows the performance of the algorit

As thoroughly discussed in [2], Laplacian-based algorgimave
poor performance if the initial values reported by agentgeha
a strong correlation with their positions, and this factnseaed
observed in Fig. 2. However, dramatic performance gainsbean
obtained by combining Laplacian-based methods with acatsbe
techniques. In particular, the SSCA and ASCA algorithms are
able to provide in every agent values extremely closexto
in very few iterations (as compared to the network size).
performance of the asynchronous algorithm ASCA closelip¥zs
that of its synchronous counterpart, the SSCA algorithmickvh
is optimal in a well defined sense. This result is not sumpgsi
because the asymptotic convergence o fast. The performance
advantage of the ASCA and SSCA algorithms over the ESF
algorithm is explained by the fact that the former two altoris
use information about the lower bound on the eigenvaluesief t
network matrix. In contrast, the ESF algorithm, a particaekse of
the proposed method (see the discussion in Sect. 3.4), ubes o
information about the second largest eigenvalue (in madajt
and the minimum eigenvalue is largely underestimated with t
conservative lower boundv —3, which adversely affects
the performance. The polynomial filtering scheme in [9], ebhi
requires precise knowledge 9 has performance comparable to
the ESF algorithm. However, note that the scheme in [9] regui
more information about the network matr®% and has higher
computation complexity than all other acceleration scremiés
performance is inferior to that of the SSCA and ASCA alganish
because the proposed acceleration schemes are basedrsmitlte
increasing length.

We now study the stability of our proposed schemes when upper

The

170

o o
o

Coordinate Y
ul

-, L
0.4 0.6
Coordinate X

Figure 1: Network with 50 agents distributed uniformly at
random in a square with unit area. Agents are represented by
circles, and lines indicate communication links.

50

Laplacian

Polynomial

-50

-100

Average squared error [dB]

-150

~200
0 20 40 60 80

Iteration i

100

Figure 2: Transient performance of the algorithms. Every run
of the simulation uses the topology in Fig 1.

and lower bounds of the eigenvalues of the network matrix are
imprecisely estimated. For visual clarity, we use the netwo

Fig. Lin all runs of the simulation, and we plot only resulisasned
with the original Laplacian-based algorithm (for referenand

the following versions of the SSCA algorithtn: SSCA-under

(B = 0.9Amax, @ = Amin) and SSCA-overf = Amax, @ =
Amin + 0.05). Note that SSCA-under underestimates the upper
bound, whereas SSCA-over overestimates the lower bouigd 3Fi
shows the performance of the algorithms.

From Fig. 3 it is clear that, for the proposed algorithms,
underestimating the upper bound is not so problematic as
overestimating the lower bound. In contrast, neither cayemece
nor boundedness effi] is guaranteed if is overestimated because
Ip; (z)| grows fast outsidga, 1]. This last fact explains the
divergence of the SSCA-over algorithm.

In the simulations above, we have assumed exact knowledge of
Amax and Anmin, Which is rarely the case in practice. Therefore,

“We omit the performance curves of the asynchronous algosith
because they are similar to those of the corresponding synchs
algorithms.

250

200r 8
)
o,
= SSCA-over
o
@ 150F ,
kel
e
<
>
7
o 100 4
[=))
o
2 Laplacian
< SSCA-under
50F 1
N

° 20 40 60 80

Iteration i

100

Figure 3: Stability of the algorithm with wrongly estimated
bounds. Every run of the simulation uses the topology in Figl.

to evaluate the algorithm in more practical settings, wes®r a
scenario where the topology changes at every run of the ationl
In such a casey and3 should be set to appropriate values based
on likely bounds on the eigenvalues. Given that the proposed
algorithms are robust against underestimated upper bpumels
can set3 to a value expected to be greater tHan(W[i])| with
fairly high probability. However, we should take a conséimea
approach to choosing because, as discussed above, overestimated
values can render the proposed algorithms unstable. Bylaimg
100,000 different networks with the geometric approactcidesd
above, |\2(W[i])| < 0.994 occurred in less than 1.32% of the
simulations, so we choosé@ = 0.994 for both the SSCA and
ASCA algorithms because we do not need to be overly consesvat
on the choice of3. As for the parametety, we usea = —0.5
because eigenvalues less that.5 have not been observed in our
simulations. Therefore, we can expect that the proposexditigs
usinga = —0.5 converge with high probability. Fig. 4 shows
the 99th-percentile squared error performance of the idhgos
obtained by randomizing the network (and also the initidlea
reported by the agents) at each run of the simulation. In this
figure, we once again set the parametein [10, Eq. (28)] to
¢ = 1—weo, Wherews, was computed by using994 = 8 = —a.
We do not show the results of the polynomial filtering aldorit
in [9] because, as in Fig. 2, its performance is worse thah tha
obtained with other acceleration methods. In additiongduires
precise information about the network matrix in every rurthof
simulation, a very strong assumption in many multiagentesys.
With the settings in Fig. 4, the performance of Laplaciardh
consensus methods is also poor, and all acceleration neetzod
greatly improve the convergence. The ASCA and SSCA algosth
were stable in all runs of our simulations, which is not sisipg
given the conservative choice af The ESF algorithm is basically
the ASCA algorithm with an unduly underestimated parameter
and this fact explains the worse performance of the ESF igthgor
as compared to the SSCA and ASCA algorithms.

4.2 Networks with Unreliable Links

To study the stability of the acceleration algorithms wilime-
varying matricesW [i], we consider in Fig. 5 a scenario similar to
that in Fig. 2, but with the difference that the communicatioks
fail with probability p = 0.2 at each iteration (see the discussion
in the beginning of this section). The parameters of all algms

171

50

Laplacian\

40

30

ESF
201

101

99th—percentile squared error performance [dB]

_50 1 Il Il 1
0 20 40 60 80

Iteration i

100

Figure 4: Transient performance of the algorithms. Network
matrices W [i] are fixed and deterministic, but they change in
every run of the simulation.

60 T

Laplacian

99th—percentile squared error performance [dB]

-80 I I I I
20 40 60 80

Iteration i

100

Figure 5: Transient performance of the algorithms. The
network topology is the one in Fig. 1, but communication links
fail with probability p = 0.2 at each iteration of the algorithms.

are the same as those in Fig. 2. We do not use exact bounds on the
eigenvalues oWV to choosex and because we want to illustrate

a situation where the topology is supposed to be fixed and know
but the communication links are subject to failures thancare
predicted (a common scenario in wireless networks). We ondé

again the performance of the polynomial filtering approackoi
because it did not converge in most runs of our simulations.

We can see in Fig. 5 that, with failing links, the proposed
acceleration schemes (the ESF being a particular case@ptable
because all agents are close to reach consensus,oin few
iterations. In addition, the proposed algorithms convergeall
runs of the simulation, which shows the good stability pripe
of our algorithms, even though Proposition 1 has only proved
convergence in the mean sense. The relative performandeeof t
algorithms is similar to that obtained in previous simwas, and
the reason is the same as before.

In the last simulation, we study the impact of the networle siz
on the convergence properties of the algorithms. In moraildat
Fig. 6 we show the (sample) median number of iterations theth e

1800) :
=©-Laplacian

16001 -B-ssca |
—A- ASCA

1400+ —“¥—ESF H

1200F : : 1

1000F 1

800 1

Median number of iterations
[o2]
o
o
7
i

40(¢ 1

0 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50
Network size

Figure 6: Median number of iterations required to reach the
precision ||o[i] — «[0]]|/|l=[0]]] < 0.001 as a function of the
network size. The network topology changes at each run of the
simulation, and communication links can fail with probability
p = 0.2 at each iteration of the algorithms.

algorithm requires to reach the precisipmfi] — x[0]||/||x[0]|| <
0.001. In this figure, the network topology is randomized in
every run of the simulation, and we decrease the connecioger
between agents td = 0.7/log(XN)/N to stress further the
limitations of Laplacian-based methods and the gains néthivith
acceleration algorithms. In addition, links fail with padility

p = 0.2 at each iteration of the algorithms. If links are reliable,
by keeping other conditions the same, the valug99 is a good
estimate of the second largest eigenvalue of networks vizgss
ranging from 10 to 50, so we uge= 0.999. More precisely, for
networks of size 50, the second largest eigenvalue of theankt
matrix is greater thag = 0.999 with (empirical) probability less
than 2% (with smaller networks, the probability is lowerprfhe
minimum eigenvalue, eigenvalues less thaf.1 have not been
observed in the simulations, so we use= —0.1. The parameters

« and 8 have thus been adjusted to accommodate eigenvalues of

(reliable) networks of different sizes and topologies. éNitiat the
simulations in Fig. 6 use networks with unreliable linksg ave did
not try to estimate the eigenvalues¥af because the probability of
failures cannot be usually predicted in real-world appiaes. The
parameter in [10, Eqg. (28)] was once again setd¢o= 1 — woo,
wherews is given by (14) with = —a.

As proved in [2] and also observed in Fig. 6, Laplacian-
based methods scale badly with the network size. However, al
acceleration techniques are relatively insensitive to rieeavork
size, so they can be good alternatives to Laplacian-bas#tboee
in spatial computers. The compared acceleration schemes ha
similar performance because the precision, althoughyfiidh,
can be achieved in few iterations by all acceleration sclsefime
previous simulations we can see that differences are ysomte
pronounced when we show 99th-percentile curves). Thexefor
choosing parameters based on expected bounds on the digenva
of the network matrix (as proposed in this study) makes smpl
consensus algorithms practical in applications whereapmate
averages have to be computed with few iterations.

5. CONCLUSIONS

Laplacian-based methods for consensus have been idesfied
slow to be practical in many multiagent applications, e&gsc

172

those involving large-scale systems [2]. However, in thislg

we have demonstrated that such methods can still be useful in
large systems if they are combined with acceleration tegles.

In particular, the convergence speed of our two novel algos

is fast and decreases gracefully with the network size inates
where the sole use of Laplacian-based methods are known to be
impractical. Our first algorithm requires agents with syoclized
clocks, and it is optimal in a well defined sense. The second
algorithm is an asynchronous method that is able to provide
performance very close to that of the optimal synchronous
algorithm. Unlike existing acceleration methods, we haug/ o
assumed that rough bounds on the extremal eigenvalues of the
network matrix are available (those bounds can be readibiodd
by considering typical application scenarios).

6. REFERENCES

[1] R.L.G. Cavalcante, A. Rogers, N. R. Jennings, and |. Y@ma
“Distributed multiagent learning with a broadcast adaptiv
subgradient method,” iRroc. of the 9th Int. Conf. on
Autonomous Agents and Multiagent Syster0s0, pp.
1039-1046.

N. Elhage and J. Beal, “Laplacian-based consensus diakpa
computers,” irProc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systenvay 2010, pp. 907-914.
C.-H. Yu and R. Nagpal, “Sensing-based shape formatiomodular
multi-robot systems: A theoretical study,” Proc. of the 7th Int.
Conf. on Autonomous Agents and Multiagent Systerag
2008, pp. 71-78.

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensnod a
cooperation in networked multi-agent systent¥foc. IEEE

vol. 95, no. 1, pp. 215-233, Jan. 2007.

S. Kar and J. M. F. Moura, “Sensor networks with randonkgin
Topology design for distributed consensu&EE Trans. Signal
Processingvol. 56, pp. 3315-3326, July 2008.

L. Xiao and S. Boyd, “Fast linear iterations for distrted
averaging,’Systems and Control Letteksl. 53, pp. 65-78, Sept.
2004.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomigessip
algorithms,”IEEE Trans. Inform. Theoryol. 52, no. 6, pp.
2508-2530, June 2006.

M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip
algorithms for distributed computation,” fForty-Fourth Annual
Allerton ConferenceSept. 2006, pp. 952-959.

E. Kokiopoulou and P. Frossard, “Polynomial filtering fast
convergence in distributed consensUEEE Transactions on
Signal Processingrol. 57, no. 1, pp. 342-354, Jan. 2009.

D. Scherber and H. C. Papadopoulos, “Distributed caatmn of
averages over ad hoc networkE2EE Journal on Selected Areas
in Communicationsvol. 23, no. 4, pp. 776-787, Apr. 2005.

G. H. Golub and R. S. Varga, “Chebyshev semi-iterativethuds,
successive overrelaxation iterative methods, and secatet o
Richardson iterative methoddlumerische Mathematiko. 3, pp.
145-156, 1961.

G. H. Golub and C. F. V. Loarlatrix Computations3rd ed.
Baltimore, MD: The Johns Hopkins Univ. Press, 1996.

G. J. Pottie and W. J. Kaiser, “Wireless integrated mekwsensors,”
Communications of the ACMol. 43, no. 5, pp. 51-58, 2000.
P. Gupta and P. R. Kumar, “The capacity of wireless neta
IEEE Transactions on Information Theorgl. 46, no. 2, pp.
388-404, Mar. 2000.

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

