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ABSTRACT
k- and t-optimality algorithms [9, 6] provide solutions to
DCOPs that are optimal in regions characterized by its size
and distance respectively. Moreover, they provide quality
guarantees on their solutions. Here we generalise the k- and
t-optimal framework to introduce C-optimality, a flexible
framework that provides reward-independent quality guar-
antees for optima in regions characterised by any arbitrary
criterion. Therefore, C-optimality allows us to explore the
space of criteria (beyond size and distance) looking for those
that lead to better solution qualities. We benefit from this
larger space of criteria to propose a new criterion, the so-
called size-bounded-distance criterion, which outperforms k-
and t-optimality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Design, Theory

Keywords
DCOP, approximate algorithm, bound, region optimality

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a popu-

lar framework for cooperative multi-agent decision making.
It has been applied to real-world domains such as sensor
networks [14], traffic control [5], or meeting scheduling [10].
In real-world domains, and particularly in large-scale appli-
cations, DCOP techniques have to cope with limitations on
resources and time available for reasoning. Because DCOP
is NP-Hard [8], complete DCOP algorithms (e.g. Adopt [8],
OptAPO [7], DPOP [10]) that guarantee global optimality
are unaffordable for these domains due to their exponen-
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tial costs. In contrast to complete algorithms, incomplete
algorithms [14, 4, 12, 9, 6] provide better scalability.

Unfortunately, an important limitation for the application
of incomplete algorithms is that they usually fail to pro-
vide quality guarantees on their solutions. The importance
of quality guarantees is twofold. First, they help guaran-
tee that agents do not converge to a solution whose quality
is below a certain fraction of the optimal solution (which
can have catastrophic effects in certain domains). Secondly,
quality guarantees can aid in algorithm selection and net-
work structure selection in situations where the algorithmic
cost of coordination must be weighed up against solution
quality (trade-off cost versus quality).

To the best of our knowledge, k-size and t-distance op-
timal algorithms [9, 6] are the only incomplete DCOP al-
gorithms that can provide guarantees on the worst-case so-
lution quality of their solutions at design time and exploit-
ing different levels of knowledge of the particular problem
instance(s). These quality guarantees exploit the available
knowledge, if any, about the DCOP(s) to solve regarding
their graph structure [9] and their reward structure [3]. Un-
like other incomplete algorithms that focus on individual
agent decisions [14, 4, 12], k-size [9] and t-distance [6] opti-
mal algorithms are based on coordinating the decisions of lo-
cal groups (neighborhoods) of agents. Thus, given a DCOP,
agents inside a neighbourhood coordinate to locally optimise
their joint decision by considering any joint assignment that
can improve their joint reward. The difference between k-
size and t-distance optimal algorithms is the criterion em-
ployed to generate neighbourhoods: k-size-optimality cre-
ates neighbourhoods of a fixed size (k), whereas t-distance-
optimality creates per each agent a neighbourhood that in-
cludes all other agents within a certain distance (t) in the
constraint graph. In both cases, we can regard a collection
of neighbourhoods as an exploration region for either a k- or
t-optimal algorithm in a constraint graph.

Although k-size and t-distance are the criteria explored
so far in the literature, it is reasonable to wonder whether
there are further local optimality criteria that can lead to
better solution qualities while providing quality guarantees.
In this paper we provide the foundations to explore this
fundamental research question. First of all, we generalise
the k- and t-optimal framework to introduce C-optimality, a
flexible framework that provides quality guarantees for local
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Figure 1: Example of (a) a DCOP graph, (b) its
2-size region and (c) its 3-size region.

optima in regions characterised by any arbitrary criterion.
Therefore, C-optimality allows us to explore the space of
local optimality criteria (beyond size and distance) looking
for those that lead to better solution qualities.

We benefit from this larger space of criteria to propose a
novel criterion to define regions, the so-called size-bounded-
distance criterion, which we design to overcome the main
drawbacks of size and distance optimality. Finally, we ex-
tend the DALO algorithm proposed in [6] to compute C-
optimal solutions. We empirically show that the size-bounded-
distance criterion indeed leads to better solution qualities,
outperforming k− and t-optimality. Therefore, the C-optimality
framework opens new research opportunities to study the
design of new local optimality criteria.

Likewise k- and t- optimality, C-optimality is algorithmic-
independent, meaning that bounds are defined over solutions
not over the algorithms to find them. Thus, although we
propose C-DALO as general purpose algorithm to find any
C-optimal for arbitrary criteria, it does not imply that there
cannot exist different region-optimal algorithms. Indeed, in
our previous work [11], we employ analogous guarantees to
provide worst-case bounds on the solutions of the loopy be-
lief propagation algorithm, a popular approximate algorithm
for finding the Maximum a Posteriori assignment in Markov
Random Fields. In contrast, this work focuses on DCOPs.
Firstly, we generalise the bounds in [11] to provide a frame-
work for regional DCOPs algorithms. Secondly, we analyse
the benefits of exploring arbitrary region criteria.

The paper is organised as follows. Section 2 provides
some background on DCOPs and on the k− and t-optimality
frameworks. Section 3 introduces the notion of C-optimality
solution as a local solution for an arbitrary criterion and the
mechanisms for computing quality guarantees for C-optimal
solutions. Moreover, it also proves that the C-optimality
framework generalises k- and t-optimality. Section 4 in-
troduces a new local optimality criterion, size-bounded dis-
tance, and empirically compares the quality solutions ob-
tained by the new criterion with respect to k- and t-optimal
solutions. Finally, section 5 draws conclusions and sets paths
to future research.

2. BACKGROUND

2.1 DCOP Definition
A Distributed Constraint Optimization Problem (DCOP)

consists of a set of variables, each assigned to an agent which
must assign a discrete value to the variable: these values cor-
respond to individual actions that can be taken by agents.
Constraints exist between subsets of these variables that de-
termine rewards to the agent team based on the combina-
tions of values chosen by their respective agents, namely
relations. Let X = {x1, . . . , xn} be a set of variables over

domains D1, . . . ,Dn. A relation on a set of variables V ⊆ X
is expressed as a reward function SV : DV → R+, where
DV is the joint domain over the variables in V . This func-
tion represents the reward generated by the relation over the
variables in V when the variables take on an assignment in
the joint domain DV . Whenever there is no need to identify
the domain, we simply use S to note relations.

In a DCOP each agent knows all the relations that involve
its variable(s). In this work we assume that each agent is
assigned a single variable, so we will use the terms “agent”
and “variable” interchangeably.

Formally, a DCOP is a tuple 〈X ,D,R〉, where: X is a
set of variables (each one assigned to a different agent); D
is the joint domain space for all variables; and R is a set
of reward relations. The solution quality for an assignment
d ∈ D to the variables in X is the sum of the rewards for
the assignment over all the relations in the DCOP, namely:

R(d) =
X
SV ∈R

SV (dV ) (1)

where dV ∈ DV contains the values assigned by d to the
variables in V . With slight abuse of notation we allow to
write equation 1 as R(d) =

P
S∈R S(d).

Solving a DCOP amounts to choosing values for the vari-
ables in X such that the solution quality is maximized. A
binary DCOP (each relation involves a maximum of two
variables) is typically represented by its constraint graph,
whose vertices stand for variables and whose edges link vari-
ables that have some direct dependency (appear together in
the domain of some relation). Examples of constraint graphs
are depicted in figures 1(a) and 2(a).

2.2 Size and distance optimality
Since DCOP is NP-hard, an important line of work fo-

cuses on developing fast incomplete algorithms. Along this
direction, a significant trend is to study approaches based on
coordinating the decisions of local groups of agents, instead
of having each agent make an individual choice.

Two important local optimality criteria that establish how
to group agents to coordinate their decisions are k-size [9]
and t-distance [6] optimality. According to k-size optimality
agents form groups of k agents. For instance, figures 1(b)
and 1(c) depict the groups of 2 agents and 3 agents respec-
tively for the DCOP in figure 1(a) where boldfaced nodes
stand for agents included in the group. Given an assign-
ment x∗, it is a local optimum, k-optimum, when no group
of k or fewer agents can improve its reward R(x∗) by si-
multaneously changing their variable assignments. On the
other hand, t-optimality defines locality based on a group
of surrounding nodes within a fixed distance t of a central
node. For instance, figures 2(b) and 2(c) depict the groups of
agents at distance 1 and 2 respectively for each agent in the
DCOP in figure 2(a). Likewise k-optimality, a t-optimum
occurs when no group of agents can improve its reward.
k- and t-optimal algorithms represent an important class

of incomplete algorithms that have agents dynamically form
local groups to coordinate action choices. A significant fea-
ture of k- and t-optimal algorithms is that they provide guar-
antees on the solution quality of a DCOP as a fraction of
the global optimum, prior to the execution of the algorithm.
An algorithm has a quality guarantee δ (being 0 ≤ δ ≤ 1) if
every solution provided by the algorithm has at least quality
δ·R(x∗) where x∗ stands for the global optimum assignment.
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Figure 2: Example of (a) a DCOP graph, (b) its
1-distance region and (c) its 2-distance region.

The larger the quality guarantee, the closer the algorithm is
to providing an optimal solution to the problem.

Both k− and t-optimality have explored mechanisms for
computing bounds. Firstly, both k-size optimality and t-
distance optimality provide means for computing bounds
independently of the problem instance [9, 6], namely dis-
regarding the graph structure and reward structure. Sec-
ondly, knowledge of a problem instance can be used to ob-
tain tighter guarantees. One way is to exploit the knowledge
about the graph structure of the DCOP (e.g. star, ring) [9].
Another way is to exploit the reward structure [3]. We can
group such mechanisms based on their computational costs.

On the one hand, a tight bound on the quality of every k-
or t-optimum can be computed using a linear program (LP)
[9, 6]. In this method, rewards on the relations in the DCOP
are treated as variables in a program whose goal is to min-
imise the quality guarantee. When the program is solved,
the decision variables are instantiated with the values that,
if used as relation rewards, would produce the DCOP whose
local optimum has the lowest reward with respect to the
global optimal solution. For example, for k-optimality and
for a specific graph structure, after running the program we
obtain (1) a quality guarantee δ for any k-optimal solution
on any DCOP having the specific constraint graph and (2) a
DCOP having the specific constraint graph and a k-optimal
solution xk whose quality is equal to the bound, namely
R(xk) = δ ·R(x∗)

On the other hand, there are methods that are computa-
tionally cheaper and can compute bounds in constant time
[9, 6]. Despite the computational savings of these methods,
with respect to the LP-based approach, in general tightness
is not guaranteed.

3. GENERALIZING SIZE AND DISTANCE
OPTIMALITY

In this section we generalize the concept of size and dis-
tance optimality to C-optimality, which allows us to charac-
terize any local optimum in a region C characterized by an
arbitrary criterion.

Notice that given a DCOP both k− and t− local optimal-
ity criteria define a region, namely a family of neighbour-
hoods (subsets of variables) C. For instance, in figure 2(b),
we show the neighbourhoods in the 1-distance region of the

DCOP in figure 2(a), where boldfaced nodes in the con-
straint graph stand for variables included in the neighbour-
hood. Given some assignment x, we say that it is optimal
in a neighbourhood Cα ∈ C if its reward cannot be improved
by changing the values of some of the variables in the neigh-
bourhood. For instance, the first graph on the left in fig-
ure 2(b) represents a neighbourhood. An assignment x is
optimal in that neighbourhood if any other assignment that
maintains the values of x2, x4 and x5 receives at most the
same reward as x. Then, we can claim optimality for x in a
region C (noted as xC) whenever it is optimal in each neigh-
bourhood in the region. For instance, an assignment x will
be optimal in the region depicted in figure 2(c) if it is op-
timal in each of its neighbourhoods. Therefore, in general,
for both k-size and t-distance based optimality, we observe
that:

• each criterion is based on the definition of a region over
the constraint graph; and

• given any assignment, checking for either k-size or t-
distance optimality amounts to checking for optimality
in that region.

Hereafter we propose a general notion of region optimal-
ity, the so-called C-optimality, and describe how to calculate
bounds for a C-optimal assignment, namely an assignment
that is optimal in an arbitrary region C.
3.1 Region optimality

Next, we introduce the concepts of neighbourhood and re-
gion so that we can formally define C-optimality. After that,
we analyse the way in which neighbourhoods relate to each
others by formalizing the idea that a larger neighbourhood
covers a smaller one.

Formally, a neighbourhood is a subset of variables of X .
Given two assignments x and y, we define D(x, y) as the
set containing the variables whose values in x and y differ.
Given a neighbourhood A, we say that x is a neighbour of y
in A iff x differs from y only in variables that are contained
in A.

A region C is a multi-set1 of subsets of X , namely a multi-
set of neighbourhoods of X . Given a region C, we say that
x is inside region C of y iff x differs from y only in variables
that are contained in one of the neighbourhoods in C, that is,
if there is a neighborhood Cα ∈ C such that x is neighbour
of y in Cα.

An assignment x is C-optimal if it cannot be improved by
any other assignment inside region C of x. That is, for every
assignment y inside region C of x, we have that R(x) ≥ R(y).

Relations among neighbourhoods
Given two neighbourhoods A,B ⊆ X we say that B com-
pletely covers A if A ⊆ B. We say that B does not cover
A at all if A ∩ B = ∅. Otherwise, we say that B covers A
partially.

As an example of these relations, consider neighbourhoods
(1) and (4) in figure 2(b), noted as A = {x0, x1, x3} and
B = {x2, x4, x5} respectively, and neighbourhood (1) in fig-
ure 2(c), noted as C = {x0, x1, x2, x3, x4}. Then, we have
that A covers C partially (it contains some variables in C)
whereas C covers A completely (C contains all variables in

1A multi-set is a generalisation of a set that can hold mul-
tiple instances of the very same element.

135



A). Moreover, A does not cover B at all and vice versa
because these neighbourhoods do not have any variable in
common.

Then, we say that A ⊆ X is covered by C if there is a
neighbourhood Cα ∈ C such that Cα completely covers A.
For example, neighbourhood (1) in figure 2(b) is covered by
the region of neighbourhoods in figure 2(c), because, among
others, neighbourhood (1) in this region covers it completely.

For each neighbourhood Cα we can classify each relation
S in a DCOP into one of three disjoint groups, depend-
ing on whether Cα covers S completely (T (Cα)), partially
(P (Cα)), or not at all (N(Cα)).

For each relation SV ∈ R we define cc(SV , C) = |{Cα ∈
C s.t V ⊆ Cα}|, that is, the number of neighbourhoods in
C that cover the domain of SV completely. We also define
nc(SV , C) = |{Cα ∈ C s.t V ∩Cα = ∅}|, that is, the number
of neighbourhoods in C that do not cover the domain of SV
at all.

3.2 Quality guarantees for region optima
After its formal definition, we are interested in providing

a bound on the quality of any C-optimal assignment in a
DCOP with non-negative rewards. We say that we have
a bound δ when we can state that the quality of any C-
optimal assignment xC is larger than δ times the quality
of the optimal x∗. Hence, having a bound δ means that for

every xC we have that R(xC)
R(x∗) ≥ δ. For a given set of relations

R, let xC− be the C-optimal assignment with smallest reward,

then
R(xC−)

R(x∗) provides a tight bound on the quality of any C-
optimal assignment for the specific rewards R.

We are interested in defining bounds that are independent
of the particular reward values of the DCOP. In that setting,
a simple way to provide a bound on the quality is to directly
search the space of reward values to find the set of rewards

R∗ that minimizes
R∗(xC−)

R∗(x∗) .

More formally, this can be encoded as:
Find R, xC and x∗ that

minimize R(xC)
R(x∗)

subject to xC being a C-optimal for R
Applying some transformations detailed in [13], we can

simplify this program into the following linear program (LP)
with x and y being vectors of positive real numbers:

minimize
P
S∈R xS

subject toP
S∈R yS = 1

and for each neighbourhood C covered by C subject toP
S∈R xS ≥

P
S∈T (C) yS +

P
S∈N(C) xS

where T (C) contains the relations completely covered by C
and N(C) the relations that are not covered by C at all.

After solving this LP, δ =
P
S∈R xS provides a tight

bound on the quality of a C-optimal solution for the graph
structure represented by R. Let M be the number of vari-
ables of the largest neighbourhood in C. The LP has 2 · |R|
variables and O(2M · |C|) constraints, and hence it is solvable
in time polynomial in |R| and in 2M · |C|.

3.3 Faster quality guarantees
The computational complexity of the previous LP can be

high as the number of relations |R|, the number of neigh-
bourhoods |C| or its size M grows. In this section we show
that we can compute a bound in time O(|R||C|). Further-

more, the result will prove as a very valuable tool for fu-
ture theoretical developments. As a counterpart, we lose
the tightness of the bound.

Proposition 1. Let 〈X ,D,R〉 be a DCOP with non-negative
rewards and C a region. If xC is a C-optimal assignment then

R(xC) ≥ cc∗
|C| − nc∗R(x∗) (2)

where cc∗ = minS∈R cc(S, C), nc∗ = minS∈R nc(S, C), and
x∗ is the optimal assignment.

Proposition 1 directly provides a simple algorithm to com-
pute a bound. Given a region C and a graph structure, we
can directly assess cc∗ and nc∗ by computing cc(S, C) and
nc(S, C) for each relation S ∈ R and taking the minimum.
This will take time O(|R||C|), that is linear in the number
of relations of the DCOP and linear in the number of neigh-
bourhoods in the region.

As an example, now we turn back to figure 2 to assess
the bounds for a C-optimal assignment using equation 2.
First, we assess the bound for the 1-distance region C1 in
figure 2(b). Given the relation S = R{x0,x1}, we assess the
number of neighbourhoods that completely cover {x0, x1}
as cc(S, C1) = 2 (the two first neighbourhoods on the left-
hand side) and the number of neighbourhoods that do not
cover {x0, x1} at all as nc(S, C1) = 2 (the fourth and fifth
neighbourhoods). After repeating the process for the rest of
relations in the constraint graph, we obtain that cc∗ = 2 and
nc∗ = 2, and hence cc∗

|C1|−nc∗ = 2
6−2

= 1
2
. Notice that this

leads to a better bound than the one we obtain following
the result in [6], since m+t−1

n
= 1

3
. This is due to the fact

that we are computing the bound specifically for this graph
structure, whilst the bounds provided in [6] are independent
of the graph structure. If now we consider the 2-distance
region C2 in figure 2(c), we obtain that cc∗

|C2|−nc∗ = 4
6−0

= 2
3
.

Again, this leads to a better bound than the one reported
in [6] since m+t−1

n
= 1

2
. Note that the bounds provided

as example are tight. However, despite these examples, the
bound assessed by proposition 1 is not guaranteed to be tight
and can return worse bounds than the ones provided by the
LP-based mechanism.

Both the LP and proposition 1 assess bounds that depend
on the graph structure but are independent of the specific
reward values. We can always use them to assess bounds in-
dependently of the graph structure by assessing the bound
for the complete graph, since any other structure is a par-
ticular case of the complete graph with some rewards set to
zero.

The proof for proposition 1 is a generalization of the one
in [9] for k-optimality.

Proof. For every Cα ∈ C, consider an assignment xα

such that xαi = xCi if xi 6∈ Cα and xαi = x∗i if xi ∈ Cα. Since
xC is C-optimal, for all Cα ∈ C, R(xC) ≥ R(xα) holds, and
hence

R(xC) ≥
P
Cα∈C R(xα)

|C| . (3)

Now for each xα, we have that R(xα) =
P
S∈R S(xα).

We can split the sum into completely covered (T (Cα)),
partially covered (P (Cα)), or not covered at all (N(Cα)) re-
lations, havingR(xα) =

P
S∈T (Cα) S(xα)+

P
S∈P (Cα) S(xα)

+
P
S∈N(Cα) S(xα).

Then, by setting partially covered relations to the min-
imum possible reward (0 assuming non-negative rewards),
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R(xα) ≥ P
S∈T (Cα) S(xα) +

P
S∈N(Cα) S(xα). Now, by

definition of xα, for every variable xi in a relation com-
pletely covered by Cα we have that xαi = x∗i , and for ev-
ery variable xi in a relation not covered at all by Cα we
have that xαi = xCi . Hence, R(xα) ≥ P

S∈T (Cα) S(x∗) +P
S∈N(Cα) S(xC). To assess a bound, after substituting this

inequality in equation 3, we have that

R(xC) ≥

P
Cα∈C

P
S∈T (Cα)

S(x∗) +
P

Cα∈C

P
S∈N(Cα)

S(xC)

|C| . (4)

We need to express the numerator in terms of R(xC) and
R(x∗). Grouping the sum by relations and reminding that
cc∗ = minS∈R cc(S, C), the term on the left can be expressed
as: X

Cα∈C

X
S∈T (Cα)

S(x∗) =
X
S∈R

cc(S, C) · S(x∗) ≥

≥
X
S∈R

cc∗ · S(x∗) = cc∗
X
S∈R

S(x∗) = cc∗ ·R(x∗).

Furthermore, recalling that nc∗ = minS∈R nc(S, C), we
can do the same with the right term:X

Cα∈C

X
S∈N(Cα)

S(xC) =
X
S∈R

nc(S, C) · S(xC) ≥

≥
X
S∈R

nc∗ · S(xC) = nc∗
X
S∈R

S(xC) = nc∗ ·R(xC).

After substituting these two results in equation 3 and re-
arranging terms, we obtain equation 2.

In the next two sections we show that the constant-time
reward-independent bounds provided for size and distance
optimality in [6, 9] are particular cases of proposition 1.

3.4 Size-optimal bounds as a specific case of
region-optimal bounds

Now we present the main result in [9] as a specific case of
C-optimality. An assignment is k-size-optimal if it can not
be improved by changing the value of any group of size k or
fewer variables.

Proposition 2. Let 〈X ,D,R〉 be a DCOP with non-negative
rewards and m the maximum relation arity. Then, for any
k-optimal assignment xk:

R(xk) ≥
`|X|−m
k−m

´`|X|
k

´− `|X|−m
k

´R(x∗) (5)

Proof. This result is just a specific case of our general
result where we take as region all subsets of size k, that is
C = {Cα ⊆ X | |Cα| = k}. The number of neighbourhoods

is |C| =
`|X|
k

´
. The number of neighbourhoods that com-

pletely cover S is cc(S, C) =
`|X|−|S|
k−|S|

´
, where |S| stands for

the cardinality of S (take the variables in S plus k − |S|
variables out of the remaining |X | − |S|). Because cc(S, C)
reaches the minimum value with the maximum value of |S|,
cc∗ =

`|X|−m
k−m

´
. The number of neighbourhoods in C that do

not cover S at all is nc(S, C) =
`|X|−|S|

k

´
(take k variables

out of the remaining |X | − |S| variables). Because nc(S, C)
reaches the minimum value with the maximum value of |S|,
nc∗ =

`|X|−m
k

´
. Finally, we obtain equation 5 by using |X |,

cc∗ and nc∗ in equation 2, and simplifying.

3.5 Distance-optimal bounds as a specific case
of region optimal bounds

Now we present the main result in [6] as a specific case
of C-optimality. First, let us notice that the bound in [6]
can be more easily proved if the graph is assumed to be
connected. After that, we will see that the bound can be
improved in the case that the graph is composed of a set of
connected components. Consider a connected DCOP with
n variables, minimum constraint arity m, non-negative re-
wards, and globally optimal assignment x∗. It is easy to see
that whenever m + t − 1 > n, the length of the shortest
path between any two nodes is smaller than t, and hence
any t-distance optimal assignment will in fact be globally
optimal.

Proposition 3. Let 〈X ,D,R〉 be a connected DCOP with
non-negative rewards. Then, whenever m + t − 1 ≤ n, we
can bound the quality of any t-distance optimal assignment
xt as

R(xt) ≥ (m+ t− 1)

n
R(x∗) (6)

Proof. This result is just a specific case of our general
result where we take as region the t-distance neighbourhoods
for each variable x ∈ X , that is C = {Ωt(x)| x ∈ X}. The
number of neighbourhoods in the region is |C| = n. Next, we
show that for every relation S, we have that the number of
neighbourhoods in C that completely cover S, cc(S, C) is at
least m+t−1. The only variables that do not have S in their
t-neighbourhood are those variables that are at distance t
or more from every variable in S. If no such variables exist,
then cc(S, C) = n > m + t − 1. Otherwise, let x′ be one
of these variables. There is a shortest path connecting x′

to its closest variable in S (say x). The path must have
length at least t, that is x, x1, . . . , xt−1, . . . , x

′. Now, it is
clear that S is in the t-neighbourhood of the t− 1 variables
{x1, . . . , xt−1}. Note that since we are taking the shortest
path to any variable in S, no xi can be in S. Since S is also
in the t-neighbourhood of every variable in S and there can
be no intersection between S and {x1, . . . , xt−1}, we have
cc(S, C) = |S|+ t−1 ≥ m+ t−1. Hence cc∗ ≥ m+ t−1. By
definition, nc∗ ≥ 0. Finally, we obtain equation 6 by using
|C|, cc∗ and nc∗ in equation 2, and simplifying.

If the DCOP is not connected, we can obtain a better bound
by simply applying equation 6 to each connected component

and taking the minimum. That is R(xt) ≥ (m+t−1)
n∗ R(x∗)

where n∗ is the number of elements of the largest connected
component, which is always smaller than n.

4. EMPIRICAL EVALUATION
In this section we show how we can benefit from the

larger space of criteria for defining regions provided by C-
optimality. We start by analyzing the regions generated by
k-size and t-distance on DCOPs with different structures,
to conclude that k-size generates a potentially huge number
of neighborhoods of limited size and t-distance generates
a limited number of potentially huge neighborhoods. To
keep under control the amount and size of neighborhoods
we introduce a new type of regions, namely size-bounded
distance regions, that include a limited number of limited
size neighborhoods. Finally, we empirically show that al-
gorithms for approximate DCOP solving can benefit from
using size-bounded distance regions.
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We start by analyzing k-size and t-distance regions in sec-
tion 4.1, to motivate the introduction of size-bounded dis-
tance regions in section 4.2. The DALO algorithm was pro-
posed in [6] to find either k- or t- optimal solutions. In
section 4.3 we show how we can extend it to find an optimal
in any region C. Finally, in section 4.4 we compare the per-
formance of size, distance and size-bounded distance regions
on DCOPs with different graph structures using DALO.

4.1 Analysis of size and distance regions
We are interested in analyzing the regions generated by

k-size and t-distance on DCOPs with different structures.
More concretely, we want to assess the number of differ-
ent neighbourhoods as well as the size (number of variables)
for each neighbourhood, since both parameters strongly in-
fluence the amount of computation needed to obtain a k,
t-optimum. The worst case time for checking optimality in
a neighbourhood is exponential in its number of variables.
Furthermore, if an agent has to consider a large number of
neighbourhoods, it will have to share its time among them.
Hence, in terms of computational effort, it is of interest to
find regions that have a limited number of neighbourhoods
of limited size. In k-size optimality the size is limited by
k but the number of neighbourhoods grows as

`|X|
k

´
, which

can turn out prohibitively large. In t-distance optimality
the number of neighbourhoods is O(|X |) but the size of the
neighbourhoods is not limited. For example, the 1-distance
region of a complete graph contains a single neighbourhood
with all the variables, and hence finding a 1-distance optimal
in a complete graph is as hard as finding a global optimum.

For a more detailed empirical analysis, we have computed
statistics of the maximum neighbourhood size in a region
(MaxS) and the number of neighbourhoods per agent (#)
over randomly generated constraint graphs. We have used
three different types of graph structures: G(n,M) random
graphs [2], Barabasi-Albert (BA) scale-free graphs [1], and
non-linear preferential attachment (NLPA) graphs based on
the BA model, but with a larger emphasis on many nodes
having fewer connections. All the graphs have 100 nodes
with a density of four meaning that on average each node has
four neighbours. We compare the results of three different
criteria: 5-size (K5)2, 1-distance (T1) and 2-distance (T2).
The first three rows in table 1 present the averages over 50
DCOPs of MaxS and # for each criteria and each type of
graphs. From these statistics we observe that T1 and T2 dis-
tance criteria result in very large neighbourhoods, especially
on scale-free and NLPA graphs due to the presence of hub
agents with a large number of neighbours. We also observe
that K5 criterion generates a large number of neighbour-
hoods, specially in scale-free and NLPA due to the presence
of hub nodes (e.g. the average number of neighbourhoods
per agent in NLPA graphs is 11366).

From this analysis we can conclude that k-size generates
a potentially huge number of neighborhoods of limited size
and t-distance generates a limited number of potentially
huge neighborhoods. To overcome this, we introduce a new
type of regions, namely size-bounded distance regions, which
include a limited number of bounded size neighborhoods.

4.2 Size-bounded distance optimality
Our aim at formulating the size-bounded distance crite-

2As in [6, 9] neighbourhoods of 5 variables that are not
connected in the graph are discarded.
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Figure 3: Example of (a) a DCOP graph, and (b)-
(g) the set neighboorhods for the 5-size-distance
bounded region.
rion is to provide an alternative trade-off to size and dis-
tance, being more aware of the complexity of the regions
they generate.

Let T (xi, xj) be the distance between two variables in the
constraint graph. Let Ωt(xi) = {xi|T (xi, xj) ≤ t} be the
t-distance neighbourhood centered on variable xi. Then,
the s-size-bounded-distance neighbourhood is the largest t-
distance region whose number of variables does not exceed
the limit s. Formally, let t(xi) = max {t s.t. |Ωt(xi)| ≤ s}
be the largest value for t such that |Ωt(xi)| ≤ s. The s-size-
bounded-distance neighbourhood centered on variable xi is
defined as Φs(xi) = Ωt(xi)(xi).

Figure 3 (b)-(g) depicts 5-size-bounded distance neigh-
bourhoods for agents x0 to x5 for the DCOP in figure 3
(a). Observe that agents can end up exploring different dis-
tance levels in their neighbourhoods as a result of bounding
their size to s. In our example, agents x0, x2, x3 and x5

explore their 2-distance neighbourhood with size 5 (figures
3 (b)(d)(e)(g)), whereas agents x1 and x4 are restricted to
1-distance neighbourhood with size 4 (figures 3 (c)(f)).

Now, the s−size-bounded distance region includes the s-
size-bounded-distance neighbourhood of each agent xi ∈ X .
Moreover, in order to ensure that all relations are covered,
the s-size-bounded-distance region also includes a neigh-
bourhood for every edge in the graph.

Note that in size-bounded distance optimality both the
number of neighbourhoods and their size are limited. Now
we can go back to table 4, to compare the number of regions
and its size with the state-of-the-art criteria. In the last row
we show the averages over 50 constraint graphs of MaxS
and # for 5-size-bounded-distance optimality (S5) for each
type of graph. We can see that S5 is the only criterion that
manages to keep the size of the region limited (to 5 agents)
together with a reasonable number of neighbourhoods per
agent (between 3 and 10 depending on the graph structure).

4.3 DALO for region optimality
The DALO algorithm is an asynchronous algorithm that

starts with a random initial assignment and monotonically
increases the solution quality by independently optimizing
in each of the neighbourhoods that are created. As described
in [6], DALO has three phases: initialization, optimization,
and implementation.

During the initialization phase agents distributedly create
a set of neighbourhoods and assign each neighbourhood to a
leader agent (the central node to minimize communication)
that will be in charge of its optimization. After initialization,
agents run in parallel the optimization and implementation
phases for each assigned neighbourhood until stabilization.
During the optimization phase, each leader agent optimises
by searching for a joint assignment of the variables in its
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neighborhoods that improve their reward. After optimiz-
ing, the leader agent runs the implementation phase try-
ing to implement the new joint assignment found. Because
neighbourhoods are optimised in parallel and a variable can
appear in multiple neighbourhoods, DALO implementation
phase uses an asynchronous protocol based on a standard
lock/commit pattern to ensure stability.

To use DALO with an arbitrary region, we focused on the
initialization phase to modify how agents create the groups
over which they optimise. Concretely to allow DALO to
search for a C-optimal, agents will distributedly generate
the neighbourhoods in region C. For example, to use DALO
in the s-size-bounded distance region each agent will iterate
through various t-distance neighbourhoods, by broadcasting
at distance t, to determine the largest t-distance neighbour-
hood whose size does not exceed s. After initialization, for
the specific region, optimization and implementation phases
are ran as specified in [6], independently of the used region.

4.4 Empirical results
In this section we compare the results obtained by DALO

using four different criteria: 5-size (K5), 1-distance (T1),
2-distance (T2), and 5-size bounded distance (S5) criteria.

We ran similar experimental settings to Kiekintveld et
al. [6]. We measured the performance of the extension of
the DALO algorithm3 described in section 4.3 when running
over each one of the regions generated by the four criteria
described above. Thus, we tested DALO for the four cri-
teria over the different types of graphs described in section
4.1. All the graphs have 100 nodes, each one with density 4,
meaning that on average each node has 4 neighbours. More-
over, variables’ domain size is 10, and rewards are integers
sampled from a distribution U [0, 10000].

Besides graph types, we also considered different Com-
putation/Communication Ratios (CCR) [6]. The CCR set-
ting defines the number of constraint assignments that may
be evaluated at each communication step. For example,
CCR = 0.01 allows each node to process up to 100 checks
in a time step. We vary the setting of CCR in our ex-
periments to test DALO in two settings with different rel-
ative cost for sending messages and computation, namely
CCR = 0.01 and CCR = 0.1. In general, the larger the
value of CCR, the higher the computation cost. Notice that,
with respect to the experimental settings in [6], we discarded
using CCR = 0. The rationale is that if CCR = 0, com-
munication is infinitely more costly than computation and
hence the best strategy is computing the optimal by means
of a fully centralized algorithm.

Figures 4 (a)-(f) plot the normalized solution quality of
each algorithm along global time for each graph structure
and CCR metric. The normalized solution quality is com-
puted by: (1) subtracting the initial reward, as assessed
by DALO for a given criterion, from the reward at a given
global time; and (2) dividing the result by the best known
reward obtained by DALO out of the four criteria. All re-
sults are averaged over 25 sample instances. In what follows,
we compare the four criteria along two dimensions: (1) the
final normalised solution quality; and (2) the convergence
speed required to reach a good solution quality.

Regarding solution quality, the results vary depending the
value of CCR and graph structure. On the one hand, in

3We used the DALO code provided by the authors at http:
//teamcore.usc.edu/dcop/.

Random Scale-free NPLA
MaxS # MaxS # MaxS #

K5 5 167 5 963 5 11366
T1 10 1 27 1 63 1
T2 38 1 82 1 99 1
S5 5 3 5 3 5 10

Table 1: Statistics for regions generated by k5, t1,
t2 and s5 criteria for 100 agents. MaxS stands for
the maximum size of a neighbourhood and# for the
average number of neighbourhoods per agent.

scenarios where computation is more costly (CCR = 0.1),
overall S5 outperforms the rest of criteria. Although T1 is
very competitive and its solution quality comes very close
to that of S5 over random and scale free graphs, S5 signifi-
cantly outperforms T1 on NLPA graphs. Moreover, both S5
and T1 largely outperform K5. The reason of the poor per-
formance of K5 is that it generated neighbourhoods of fixed
size. On the other hand, in scenarios where computation
is cheaper (CCR = 0.01), the differences of final solution
qualities between S5, T1, and K5 are not significant. There
is an aspect though that deserves special attention. Notice
that for all the test cases, the performance of DALO over T2
regions is much worse than the performance over the regions
generated by the rest of criteria. We can explain this result
by analysing the complexity of T2 regions as shown in table
1. Thus, we observe that T2 generates very large neighbour-
hoods that can not be optimised within the maximum global
time (1000 global time steps). The solution quality degrada-
tion when handling T2 regions is particularly significant on
scale-free and NLPA graphs because the criterion generates
neighbourhoods whose size is close to the size of the original
problem (99 variables on average in NLPA graphs).

Regarding convergence speed, S5 regions help DALO con-
verge to a high solution quality faster. Likewise our analysis
about solution quality above, T1 is again competitive with
respect to S5, though S5 largely outperforms T1 on NLPA
graphs. This is because, as observed in [6], NLPA graphs are
characterized by large hub nodes with many connections that
results in large neighbourhoods that take long for agents to
optimise. Regarding K5, convergence speed is slower than
that of S5 and T1 because each leader in DALO coordinates
a neighbourhood of size 5, whereas the neighbourhoods for
S5 and T1 may be smaller.

To summarise, our experimental results show that criteria
that produce regions with large number of neighbourhoods
or/and large neighbourhood sizes are not guaranteed to out-
perform criteria that produce less complex regions. In fact,
overall the size-bounded distance criterion proposed in sec-
tion 4.2 was able to outperform the rest of criteria by limiting
the complexity of the regions that it generates.

5. CONCLUSIONS
In this paper we generalise the k- and t-optimal frame-

works [9, 6] to introduce C-optimality, a flexible framework
that provides quality guarantees for local optima in regions
characterised by any arbitrary criterion. With this aim,
we provide: (1) a formal definition of C-optimality, namely
of local optimality in some arbitrary region; and (2) qual-
ity guarantees for region optimal solutions that exploit the
knowledge about the graph structure. Regarding quality
guarantees, we defined two methods with different compu-
tational costs: (1) a first one, based on solving an LP, that
guarantees tightness; and (2) a second one that requires lin-
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Figure 4: Experimental results comparing DALO for K5, T1, T2 and S5 regions.

ear time but does not ensure tightness. Moreover, we prove
that the bounds provided for size and distance optimality
are particular instances of the C-optimal bounds.

To illustrate how the C-optimality framework allows us to
explore the space for arbitrary criteria, we proposed a novel
criterion to generate regions, the so-called size-bounded-
distance criterion. This new criterion has been designed to
overcome the main drawbacks of size and distance optimal-
ity. Moreover, we extend the DALO algorithm [6] to com-
pute C-optimal solutions. Our empirical analysis of the size-
bounded-distance criterion shows that it outperforms both
size and distance criteria by providing a more fine-grained
control of the complexity of the regions to explore.

As future work, we plan to extend the C-optimal bounds
to exploit some a-priori knowledge of the reward structure of
the problem, if available, along the lines of [3]. Furthermore,
since a critical issue in the design of any C-optimal algorithm
is the choice of regions, we will focus on defining techniques
that allow us to explore the space of regions in search for
regions with limited complexity and high quality guarantees.
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