
Programming Mental State Abduction

Michal Sindlar ∗
Intelligent Systems Group

University of Utrecht
michal@cs.uu.nl

Mehdi Dastani
Intelligent Systems Group

University of Utrecht
mehdi@cs.uu.nl

John-Jules Meyer
Intelligent Systems Group

University of Utrecht
jj@cs.uu.nl

ABSTRACT
Many multi-agent system applications involve software agents
that reason about the behavior of other agents with which
they interact in cooperation or competition. In order to de-
sign and develop those systems, the employed programming
languages should provide tools to facilitate the implementa-
tion of agents that can perform such reasoning. This paper
focuses on BDI-based programming languages and proposes
a nonmonotonic reasoning mechanism that can be incorpo-
rated into agents, allowing them to reason about observed
behavior to infer others’ beliefs or goals. In particular, it is
suggested that the behavior-generating rules of agents are
translated into a nonmonotonic logic programming frame-
work. A formal analysis of the presented approach is pro-
vided and it is shown that it has desirable properties.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents—mental state ascription,nonmonotonic reasoning

General Terms
Design, Theory

Keywords
Modeling other agents and self, Logic-based approaches and
methods, Reasoning (single and multiagent)

1. INTRODUCTION
A fundamental principle of multi-agent systems is that

they involve multiple agents, often situated in a (virtual)
environment where they interact in cooperation or compe-
tition. For implementation of individual software agents
in a multi-agent system there exists a range of agent pro-
gramming languages, such as 2APL, GOAL, Jadex and Ja-
son [5, 9], most of which find their roots in the Belief-Desire-
Intention (BDI) paradigm of agency [8, 19]. If such agents

∗This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific Re-
search (NWO) and the Netherlands ICT Research and In-
novation Authority (ICT Regie).

Cite as: Programming Mental State Abduction, M.P. Sindlar, M.M.
Dastani and J.-J.Ch. Meyer, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 301-308.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

have the ability to perceive and interpret the behavior of
others, then the principle of mental state ascription comes
into focus as a possible explanatory abstraction for reason-
ing about that behavior. This principle has solid theoretical
foundations in terms of the intentional stance [10], which is
encountered throughout A.I. literature in various guises [6,
7, 13, 21, 4]. However, there exist few principled instantia-
tions specific to BDI-based agent programming of explana-
tory reasoning about the behavior of other agents. This pa-
per presents such an instantiation, a possible application of
which is in computer games where virtual characters are to
exhibit believable interaction with other virtual characters.
Multiple requirements for character believability (as found
by Loyall [17]) are fulfilled by BDI-based software agents
(e.g. proactiveness, resource-bounded agency, adaptivity),
and some of those which are not (particularly those concern-
ing social interaction) can be met using our approach. This
is desirable as it has been shown that characters’ believabil-
ity (and players’ enjoyment) increases if characters appear
to incorporate mental state ascription into their decision-
making [16], and specifically for role-playing games user
feedback furthermore indicates that players consider char-
acters to be deficient in this regard [1].

Because the work which is the foundation of this paper is
logic-based, and because most agent programming languages
utilize logic programming, it is natural that the implemen-
tation presented in this paper is a logic program. And since
explanatory reasoning is in general defeasible, answer set
programming [12] is employed as it is the state-of-the-art
programming paradigm for nonmonotonic reasoning. Most
systems for answer set programming share their syntax with
Prolog, a language which is incorporated into several current
agent programming languages (e.g. [9]), making integration
of answer set programming natural from a syntactic point
of view. In select cases this integration already exists [18].

The work presented in this paper is based on our earlier
work on explanatory ascription of mental states to software
agents [21], and is presented in the following steps: first, the
theoretical underpinnings are briefly explained in Section 2;
second, this existing work is formalized in classical logic to
lay the foundation for our implementation (Section 3); and
third, this implementation is presented and analyzed (Sec-
tions 4–6). Sections 7 and 8 conclude with a reflection on
related work and our own, respectively.

2. PRELIMINARIES
In this section our work on mental state abduction [21] is

restated, in relation to an agent programming language that

301

contains constructs shared by most state-of-the-art agent
programming languages (cf. [5, 9]).

2.1 Agent Programming
This section describes the agent programming language

APL used in this paper. The behavior of agents is generated
by goal achievement rules of the form n : γ <-β |π, stating
that the rule with identifier n is suitable for achieving goal
γ if β is believed, in which case the plan π can be selected
by the agent. The BNF grammar of rules is given below,
where it should be noted that it concerns ground programs
(i.e. without variables), which suffices for our purposes.

〈 library 〉 : := 〈 pgrule 〉+;

〈 pgrule 〉 : := 〈n 〉“:”〈 gq 〉“ <- ”〈 q 〉“ | ”〈 plan 〉;
〈 gq 〉 : := 〈 atom 〉 | 〈 gq 〉“and”〈 gq 〉 | 〈 gq 〉“or”〈 gq 〉;
〈 q 〉 : := 〈 literal 〉 | 〈 q 〉“and”〈 q 〉 | 〈 q 〉“or”〈 q 〉;
〈 literal 〉 : := 〈 atom 〉 |“not”〈 atom 〉
〈 plan 〉 : := 〈 action 〉 | 〈 test 〉 | 〈 seq 〉 | 〈 cond 〉 | 〈 iter 〉;
〈 test 〉 : := “B(”〈 q 〉“)”|“G(”〈 q 〉“)”| 〈 test 〉“and”〈 test 〉;
〈 seq 〉 : := 〈 plan 〉“;”〈 plan 〉;
〈 cond 〉 : := “if”〈 test 〉“then”〈 plan 〉“else”〈 plan 〉;
〈 iter 〉 : := “while”〈 test 〉“do”〈 plan 〉

The semantics of rule interpretation are omitted for space
conservation and also because the above is a theoretical
agent programming language. Nevertheless, this language
is subsumed by some existing agent programming languages
and is strongly related to others, such that a substantiated
discussion of rule interpretation can be given.

In most agent programming languages interpretation of
rules occurs as part of a deliberation cycle (or ‘sense-reason-
act’ cycle), in which the applicability of rules is considered
in relation to the configuration of the agent (i.e. its beliefs,
goals, intentions, etc.). An agent has a library of rules at its
disposition, and if a rule is applicable then it can be fired
such that the accompanying plan is adopted by the agent
and becomes the agent’s active plan. A plan describes be-
havior, composing primitive and test actions by means of
standard programming constructs (sequence, choice, itera-
tion). It is assumed with regard to rule interpretation that
1) the agent executes the actions of its active plan until this
plan is finished or dropped (in which case it is not active any-
more); 2) the agent executes actions sequentially (i.e. not
concurrently); and 3) the agent has at most a single active
plan (i.e. no interleaving of actions from different plans).

2.2 Mental State Abduction
Mental state abduction [21] computes a set of explana-

tions for a software agent’s observed behavior, based on
knowledge of its rules. It employs the abductive scheme
{φ → ψ,ψ} |≈φ, which is further clarified in Section 3.1, in
inferring beliefs and goals in relation to rules, plans and ob-
served behavior. In order to do so a relation is established
between observed actions and plans, and for this purpose
a propositional language and a process language [3] are de-
fined here that allow us to formally describe the rules of the
agent program. Those languages are assumed to have a com-
mon ground with the agent program; specifically they have
shared sets of atomic actions Act and propositions Atom, re-
spectively. The propositional language L0 and process lan-

guage LΠ are then defined through φ ∈ L0 and the typical
element π ∈ LΠ, as follows, given p ∈ Atom and α ∈ Act.

φ : := p | ¬φ |φ1 ∨ φ2

π : := α |Bφ? |Gφ? |π1;π2 |π1 + π2 |π∗

The operator ? defines (unobservable) test actions which can
be composed by sequential composition, non-deterministic
choice, and iteration (;, +, and ∗, respectively), along with
observable actions α ∈ Act.

It is here assumed that for APL programming rules of
the form n : γ <-β |π holds that n ≥ 1, γ, β ∈ L0 and
π ∈ LΠ. Just like in [21], we treat such rules as implica-
tions for the purpose of abduction. The preconditions γ, β
of a rule n : γ <-β |π are considered abducible, and can
be abduced if observed actions are related to π. To relate
primitive actions to a plan, observable sequences which are
generated by this plan are considered. Given α ∈ Act the
language of observables L∆ is defined through its typical el-
ement δ : := α | δ1δ2 to consist of sequences of actions, such
that the function OS : LΠ −→ ℘(L∆) translates complex ex-
pressions (which may involve tests and looping or branching
constructs) to sets of observable sequences, as follows.

OS(α) = {α}
OS(Bφ?) = ∅
OS(Gφ?) = ∅
OS(π1;π2) = OS(π1) •OS(π2)

OS(π1 + π2) = OS(π1) ∪OS(π2)

OS(π∗) =
⋃
n∈N

OS(πn), where π0 = skip & πn+1 = π;πn

The composition operator • : ℘(L∆) × ℘(L∆) −→ ℘(L∆)
takes arguments ∆1,∆2 ⊆ L∆ and maps them to {δ1δ2 | δ1 ∈
∆1, δ2 ∈ ∆2} if ∆1 6= ∅& ∆2 6= ∅, to ∆1 if ∆2 = ∅, to ∆2 if
∆1 = ∅, or to ∅ otherwise. Note that OS(skip) = ∅.

In this paper we focus on the case of complete observation,
in which all actions of an agent are observed. The relation
characterizing this condition is the prefix relation on observ-
able sequences 4 = {(δ, δ), (δ, δδ′) | δ, δ′ ∈ L∆}, because if
all actions are observed then an observed sequence must be
the prefix of the observable sequence of some plan. Mental
state abduction under the assumption of complete observa-
tion is then functionally implemented by msaR, defined as
follows, based on a set R of APL rules.

msaR(δ) = {(γ, β) | ∃(n : γ <-β |π) ∈ R∃δ′ ∈ OS(π) : δ 4 δ′}
In the next section mental state abduction is cast in the mold
of classical abduction, which is introduced in Section 3.1.

3. MENTAL STATE ABDUCTION VIEWED
AS CLASSICAL ABDUCTION

This section presents an account of mental state abduc-
tion in terms of classical logical abduction, focusing on the
relating between rule application on the one hand, and ac-
tion sequences and the agent’s mental state on the other.

3.1 Classical Abduction
Abduction in classical logic is typically considered in the

context of explanation [2]. Given a logical theory Θ and an
observed fact O, under certain conditions a hypothesis H
can be abduced which explains the observation. The fact

302

that H is abduced as explanation for O with respect to Θ is
denoted Θ, O |≈H, and defined as follows in terms of clas-
sical entailment |=, where cl(Φ) denotes the consequential
closure of the set Φ; i.e. all facts logically following from Φ.

Θ, O |≈H iff Θ ∪H |= O& Θ 6|= O&H 6|= O& Θ ∪H 6|= ⊥
&¬∃H ′ : (cl(H ′) ⊂ cl(H) & Θ ∪H ′ |= O)

The definition of |≈ varies per context, but the above is
often encountered [2]. Note that the last clause expresses
the minimality of H: there should not exist a hypothesis H ′

such that the consequential closure of H ′ is a strict subset
of that of H, where H ′ also accounts for O. Also note that
the term ‘theory’ is used without requiring closure under cl.

An example of abductive explanation which is regularly
found in literature [2, 15] goes as follows. Let Θ = {r →
w, s → w} be a logical theory stating that the grass is wet
(w) both if it rains (r) and if the sprinklers are on (s). The
grass being wet as such is not accounted for by the theory
(i.e. Θ 6|= w) but it would be accounted for if it were the case
that it rains or that the sprinklers are on, i.e. Θ, {w} |≈ r
and Θ, {w} |≈ s. Note, though, that Θ, {w} 6|≈ r ∧ s under
the above definition of |≈, because the hypothesis r∧s is not
minimal. Also note that |≈ is nonmonotonic: if it is learned
at some point that it rains, such that if Θ′ = Θ ∪ {r}, then
it is evident that Θ, {w} |≈ s and Θ ⊆ Θ′, but Θ′, {w} 6|≈ s.

3.2 Translating Rules
As stated earlier, we (informally) treat APL rules of the

form n : γ <-β |π as implications ‘γ, β ⇒ π’ for the sake of
employing the classical abductive syllogism. However, this
is formally not correct because it need not hold that the
agent selects plan π if it has goal γ and belief β. The reason
for this lies in the fact that rules cannot be fired if the agent
has an active plan, even if they are in principle applicable.
A more precise implicative treatment of rules of the above
form is therefore ‘n ⇒ γ, β, π’, to be interpreted as stating
that the application of the rule implies that the agent has a
particular mental state and has selected a particular plan.
Thus, ‘mental state abduction’ is better viewed as ‘applied
rule abduction’, where the abduced rule implies a particu-
lar mental state. A logical description of rules can then be
provided that allows for treating mental state abduction as
a case of classical abduction, which is done in the present
section by formulating a logical theory that describes rule
application by the agent in relation to its mental state and
behavior. It is noteworthy in this respect that a single rule
is accompanied by a single plan, but that a single plan can
give rise to multiple observable sequences. Specifically, if a
plan gives rise to multiple observable sequences then it also
gives rise to multiple computation sequences [14] (although
not necessarily vice versa). Let CS : LΠ −→ ℘(LΠ) be the
function that computes computation sequences of plans, and
be defined like the function OS except for

CS(Bφ?) = {Bφ?} CS(Gφ?) = {Gφ?}
For technical simplicity, and without loss of generality, it is
assumed that individual actions in computation sequences
are separated by sequential composition (i.e. the symbol ‘;’)
and are therefore in the language LΠ. The translation from
APL program to logic uses the following predicates:

• r(n, c): The agent has applied rule with number n and
performs the computation sequence identified by c.

• b(ψ): The agent’s belief base entails ψ.

• g(ψ): The agent’s goal base entails ψ.

It is assumed that the background theory Θ is a subset of
ground predicate logic, and that the predicates b/1 and g/1
take as argument the result of a function τ defined as follows,
where atoms of the set Atom are available as constants.

τ(p) = p, if and only if p ∈ Atom

τ(¬φ) = neg(τ(φ))

τ(φ ∨ φ′) = disj(τ(φ), τ(φ′))

τ(φ ∧ φ′) = conj(τ(φ), τ(φ′))

The function τ thus maps (ground) APL terms from a log-
ical form to a functional representation, which is left as-is
for now. At a later point (in Section 5.1) this functional
representation is utilized in order to regain the truth func-
tion of logical connectives, but up to then it can simply be
regarded as a string that points to a particular belief/goal
precondition (i.e. τ(γ) points to γ). It is more convenient,
though, to already define and employ the translation now,
in order to save space and effort in later sections.

The translation of a set of rulesR of the form n : γ <-β |π
to a logical theory ΘR is then given below in Formula 1,
where ι is a function that assigns a unique numerical iden-
tifier to its argument.

∀(n : γ <-β |π) ∈ R ∀π′ ∈ CS(π) :

r(n, ι(π′))→ (g(τ(γ)) ∧ b(τ(β))) ∈ ΘR
(1)

In order to abduce the applied rule on grounds of observed
actions, action observability must be formalized as part of
the theory. This is realized using the following predicate:

• o(α, n): Action α is observable as the n’th action.

The theory ΘR relates rule application to action observabil-
ity, and it should be noted in this respect that the ‘position’
at which an action is observable is reified in instances of
the predicate o/2 which are coupled to rule application by
means of the relation expressed below.

∀(n : γ <-β |π) ∈ R ∀π′ ∈ CS(π) :

OS(π′) = {α1 · · ·αm} =⇒
r(n, ι(π′))→ (o(α1, 1) ∧ . . . ∧ o(αm,m)) ∈ ΘR

(2)

The set of rules R is here assumed to be fixed, and for
any action αi which is part of some observable sequence, let
i ∈ N denote that action’s position in the sequence. The
translation of the set of rules R into the theory ΘR then
allows for abductively inferring instances of r/2 based on
observations, which are defined in the next section.

3.3 Observables and Abducibles
The definition of abductive explanation |≈ in Section 3.1

does not explicitly specify the domain of the hypothesis H,
which is common in treatises concerning logical abduction.
However, in computational approaches to abduction the hy-
potheses are typically restricted to a set of abducibles [15].
This approach is adopted here, and ABD = {r(n, c) | c, n ∈
N & c, n ≥ 1} is introduced as the set of abducibles. Further-
more, the set OBS = {s(α, n) |α ∈ Act &n ∈ N &n ≥ 1} of
observables (i.e. possible observations) is introduced, based
on the following predicate.

303

• s(α, n): The action α is seen as the n’th action.

Because the theory ΘR generated from the set R of APL
rules, as defined in the previous section, specifies only the ac-
tions which are observable (as opposed to actually observed,
or seen), a relation is made between observation and observ-
ability using the operator ω, defined as follows.

ω({s(α, n), . . . , s(α′, n′)}) = o(α, n) ∧ . . . ∧ o(α′, n′)

The rationale behind the ω-operator is that if some actions
have been observed then those actions naturally must be
observable, and this latter fact can be utilized to abduce,
with respect to some ΘR, the pair of rule and computation
sequence (i.e. some instance of r/2) which accounts for the
observability of those particular actions.1

In order to treat mental state abduction (Section 2.2) as
a case of classical abduction, some further refinements to
the background theory must be made. This is illustrated
with the following example, in which the set of APL rules
R = {1 : p <- p′ | a; b, 2 : q <- q′ | c; d} and theory ΘR is as
follows, based on Formulae 1 and 2.

ΘR = {r(1, 1)→ (g(p) ∧ b(p′)), r(2, 2)→ (g(q) ∧ b(q′)),

r(1, 1)→ (o(a, 1) ∧ o(b, 2)), r(2, 2)→ (o(c, 1) ∧ o(d, 2))}
Observe that for observation O = {s(b, 2) ∧ s(d, 2)} holds
ΘR, ω(O) |≈{r(1, 1), r(2, 2)}, such that application of both
rules 1 and 2 and execution of two computation sequences
of the corresponding plans is the minimal explanation for
this observation. This O states different actions to be ob-
served as the second action, whereas our assumption is that
observation is sequential such that only a single observation
can occur at any moment. For this reason some restrictions
are imposed on any actual observation O ⊆ OBS, as follows.

∀α ∈ Act ∀n ∈ N :

[(s(α, n) ∈ O) & (n > 1) =⇒
(∃α′ ∈ Act : s(α′, n− 1) ∈ O)] &

[∀α′ ∈ Act : (s(α, n), s(α′, n) ∈ O) =⇒
(α = α′)]

(3)

The constraint of Formula 3 ensure that instances of s/2 in
O are numbered consecutively, starting with 1, and that for
each n at most a single action is observed.

However, consider O′ = s(a, 1) ∧ s(d, 2) and verify it to
respect the constraint of Formula 3, yet observe that again
ΘR, ω(O′) |≈{r(1, 1), r(2, 2)}. In order to rule out such ex-
planations, it must be explicitly assumed that the agent’s
observed behavior stems from a single computation sequence
of some plan belonging to a single rule, as follows.

1An interesting insight, provided by the effort to reformu-
late mental state abduction as a case of classical abduction,
is that mental states can be treated as observables, on par
with actions. In the case where actions are the observable
input to abductive explanation, rules are abduced which ac-
count for those actions. Given an input of a mental state
as observable — on grounds of the agent communicating its
goals and/or beliefs to the observer, for example — rules are
abduced which could be applied by the agent given that par-
ticular mental state. And, taking this train of thought yet
a station further, nothing withstands having both actions
and beliefs/goals as observable input, such that abduction
of rules which account for the observed actions, given that
particular (fragment of the) agent’s mental state, occurs.

∀(m : γ <-β |π), (n : γ′ <-β′ |π′) ∈ R
∀i ∈ {ι(π′′) |π′′ ∈ CS(π)}, j ∈ {ι(π′′′) |π′′′ ∈ CS(π′)} :

(m 6= n) =⇒ ¬(r(m, i) ∧ r(n, j)) ∈ ΘR &

(i 6= j) =⇒ ¬(r(m, i) ∧ r(n, j)) ∈ ΘR

(4)

Given the above, the following holds.

Theorem 1. Let R be a set of APL rules, theory ΘR
the smallest set closed under Formulae 1, 2, and 4. Then
∀H ⊆ ABD : ΘR, ω(O) |≈H =⇒ H is a singleton (set).

Proof. Consider any two distinct h, h′ ∈ ABD, and let
H ⊆ ABD such that ΘR, ω(O) |≈H. If {h, h′} ⊆ H but
¬∃(h→ ψ) ∈ ΘR or ¬∃(h′ → ψ) ∈ ΘR, then ΘR, ω(O) 6|≈ H
because H is not minimal. If ∃(h → ψ) ∈ ΘR and ∃(h′ →
ψ) ∈ ΘR, then ¬(h ∧ h′) ∈ ΘR and ΘR, ω(O) 6|≈ H because
ΘR∪H |= ⊥. Thus, H cannot contain two distinct elements
and must be a singleton H = {h} for some h ∈ ABD.

3.4 Proof of Correspondence
In this section correspondence is shown between the func-

tional approach of mental state abduction by means of msaR,
as restated in the previous section, and the classical abduc-
tive approach based on the theory ΘR, as put forward in
the current section.

Theorem 2. Let R be a set of APL rules, and theory ΘR
the smallest set closed under Formulae 1, 2, and 4. Then,
given l(δ) = {s(α1, 1), . . . , s(αn, n)} iff δ = α1 · · ·αn,

∀δ ∈ L∆ ∀γ, β ∈ L0 : (γ, β) ∈ msaR(δ) ⇐⇒
∃H ⊆ ABD : ΘR, ω(l(δ)) |≈H & ΘR ∪H |= g(τ(γ)) ∧ b(τ(β))

Proof. (⇒) Choose any δ ∈ L∆ and (γ, β) ∈ msaR(δ),
and note that ∃(i : γ <-β |π) ∈ R∃δ′ ∈ OS(π) : δ 4 δ′ must
hold. Choose any such i : γ <-β |π and let δ′ = α1 · · ·αn, so
that ∃(r(i, j)→ o(α1, 1)∧. . .∧o(αn, n)) ∈ ΘR on grounds of
Formula 2. Let δ = α1 · · ·αm and note that o(α1, 1) ∧ . . . ∧
o(αn, n)→ ω(l(δ)), so ΘR ∪{r(i, j)} |= ω(l(δ)) holds. Thus
ΘR, ω(l(δ)) |≈{r(i, j)}, observing that the requirements of |≈
are met and {r(i, j)} ⊆ ABD. On grounds of Formula 1
holds ∃(r(i, j) → g(τ(γ)) ∧ b(τ(β))) ∈ ΘR, such that ΘR ∪
{r(i, j)} |= g(τ(γ)) ∧ b(τ(β)).

(⇐) Take some δ ∈ L∆ and assume ∃H ⊆ ABD∃γ, β ∈
L0 : ΘR, ω(l(δ)) |≈H& ΘR ∪ H |= g(τ(γ)) ∧ b(τ(β)). It
has been proven in Theorem 1 that H must be a single-
ton, say H = {r(i, j)} for some i, j ≥ 1. Then ∃(r(i, j) →
g(τ(γ)) ∧ b(τ(β))) ∈ ΘR such that ∃(i : γ <-β |π) ∈ R,
because ΘR is the smallest set closed under Formula 1, 2
and 4. Because it is given that ΘR, ω(l(δ)) |≈{r(i, j)} it
must be the case that ∃(r(i, j) → ψ) ∈ ΘR such that ψ →
ω(l(δ)). Let ψ = o(α1, 1) ∧ . . . ∧ o(αn, n), and observe that
∃π′ ∈ CS(π) : ι(π′) = j such that OS(π′) = {α1 · · ·αn}
must then be the case. Let δ = α1 · · ·αm with m ≤ n,
such that ω(l(δ)) = o(α1, 1) ∧ . . . ∧ o(αm,m) and, because
any output of the function l respects the constraint of For-
mula 3, it holds that δ 4 α1 · · ·αn. If that is the case, then
(γ, β) ∈ msaR(δ).

4. IMPLEMENTATION
This section presents the implementation of a logic pro-

gram, based on the logical theory presented in Section 3,
assuming use of the grounder Lparse [22] and the solver
clasp [11], winner of several recent competitions.

304

4.1 Answer Set Programming
ASP (answer set programming, or Answer Set Prolog [12])

is a logic programming language with answer set semantics,
whose main programming construct are rules of the form

li : − li+1, . . . , lj , not lj+1, . . . , not lk.

m{l1, . . . , li}n : − li+1, . . . , lj , not lj+1, . . . , not lk.

where each l denotes a literal (i.e. an atom or its strong nega-
tion), li or m{l1, . . . , li}m is the head and li+1, . . . , not lk
the body of the rule. Negation in literals −p is referred to
as strong negation, and negation in extended literals not l as
default negation. Rules of the above form can be interpreted
(informally) as stating that the head should be satisfied if
the body is, where the head is either a single literal or a
choice literal of the form m{l1, . . . , li}n stating that a min-
imum of m and maximum of n literals of {l1, . . . , li} should
be in candidate answer sets if the body of the rule is satis-
fied [22]. If the head of a rule is omitted then it is a constraint
rule, which (informally) states that a candidate answer set
which satisfies the body should be discarded. A rule with
an empty body is called a fact and is always satisfied.

The crux of ASP semantics is the generation of minimal
sets that satisfy a program [12]; cf. the minimality criterion
in the definition of |≈. Essentially, those sets are models of
the logic program, and if every answer set of a program P
satisfies some φ it is written P |= φ. The above introduction
to ASP is, by necessity, incomplete and superficial. However,
literature abounds with practical and theoretical expositions
on ASP: a concise and recent overview with pointers to fur-
ther reading is given by Gelfond [12].

4.2 From Theory to Program
The logical theory ΘR presented in Section 3 can be trans-

lated to a logic program quite straightforwardly. First of all,
implications occurring in the theory are translated as choice
rules, stating that each of the conjoined literals in the con-
sequent of the implication should be in the answer set if the
antecedent is. Translation to the program PR is then as
follows, where ΘR is a theory based on some set of rules R,
i.e. the smallest set closed under Formulae 1, 2, and 4.

φ→ (ψ1 ∧ . . . ∧ ψn) ∈ ΘR =⇒
n{ψ1, . . . , ψn}n : − φ. ∈ PR (5)

The translation on grounds of Formula 5 is illustrated below,
given R = {1 : p <- p′ | a; b, 2 : q <- q′ | c; d} and ΘR as in
Section 3.3, such that program PR is as follows.

2{g(p), b(p′)}2 : − r(1, 1).

2{o(a, 1), o(b, 2)}2 : − r(1, 1).

2{g(q), b(q′)}2 : − r(2, 2).

2{o(c, 1), o(d, 2)}2 : − r(2, 2).

This program as such does not yet implement mental state
abduction under complete observation, though, because there
is neither mention of abducibles nor of observables.

4.2.1 Abducibles
In contrast to Section 3, which takes a constructive ap-

proach in the sense that a hypothesis H is abduced if it
meets the requirements of the relation |≈, the implementa-
tion takes a deconstructive approach in the sense that each
hypothesis is considered as possible explanation and ruled

out if it does not meet those requirements. Consideration of
abducibles as possible explanations is reflected in program
PR by the following relation with the theory ΘR.

ΘR = {r(m, i)→ ψ, . . . , r(n, j)→ ψ′,

¬(r(m, i) ∧ r(n, j)), . . .}
=⇒ 1{r(m, i), . . . , r(n, j)}1. ∈ PR

(6)

Informally, this means that single distinct instances of r/2
are considered as explanations. Theorem 1 shows that an
abduced explanation H must be a singleton subset of the ab-
ducibles ABD because of the constraint of Formula 4, which
is reflected in the numerical bounds on the choice literal
1{r(m, i), . . . , r(n, j)}1 stating that only a single instance of
r/2 is considered as explanation. The condition under which
some candidate answer sets are discarded is implemented in
the following section in relation to observables.

4.2.2 Observables
The translation from theory to program discussed in the

previous section shows that instances of o/2 are entailed on
grounds of instances of r/2. In Section 3.3 it was explained
how abduction takes place on grounds of a set O ⊆ OBS of
observations, respecting the constraints of Formula 3. The
predicate s/2 was defined to denote observed (seen) actions,
and instances of this predicate are assumed to be facts in
the answer set. This is achieved in relation to observations
as follows, where PR is the program derived from theory ΘR
(the smallest set closed under Formulae 1, 2 and 4 in relation
to a set of APL rules R), and O ⊆ OBS is an observation
respecting the constraint of Formula 3.

∀s(α, n) ∈ O : s(α, n). ∈ PR (7)

Note that the constraints of Formula 3 could be implemented
as constraints in the answer set program as well, but that
this is unnecessary if instances of s/2 are derived from O.

As said, the implementation presented in this paper takes
a deconstructive approach by ruling out invalid candidate
answer sets. Elimination of candidate answer sets takes
place on grounds of the single following constraint, which
expresses that a candidate answer set with one or more ac-
tions that have been seen but are not deemed observable at
that particular step, should be discarded.

: − s(A, T), not o(A, T). (8)

In Section 3.3 the function ω was defined to consider ob-
served actions in terms of their observability for the sake
of abduction; in effect, Formula 8 is the (deconstructive)
counterpart of that function.

Theorem 3. Let R be a set of APL rules, ΘR the small-
est set closed under Formulae 1, 2, and 4, O ⊆ OBS a non-
empty observation, and program PR as derived from ΘR and
O with Formulae 5, 6, 7, and 8. Then

∀H ⊆ ABD : (ΘR, ω(O) |≈H) ⇐⇒
PR has an answer set S, such that S |=

∧
H ∧

∧
O

Proof. (⇒) Assume the antecedent to be the case, and
observe that for each possibly abducible H a candidate an-
swer set exists on grounds of Formula 6. Let H = {h}, and
note that if ΘR, ω(O) |≈H then ∃(h → ψ) ∈ ΘR such that

305

ψ → ω(O). Note that, on grounds of Formula 5, ψ is rep-
resented in the candidate answer set S for which

∧{h} ∈ S,
and, since ψ → ω(O), that Formula 8 does not rule out S,
which means that S is a valid answer set of PR.

(⇐) Assume the antecedent to be the case, and note that,
on grounds of Formula 6, a single h ∈ ABD is in the an-
swer set S. Because S is not ruled out on grounds of For-
mula 8, it holds that this constraint does not apply. Thus, if
O = {s(α1, 1), . . . , s(αm,m)}, then on grounds of Formula 5
holds ∃(n{o(α1, 1), . . . , o(αn, n)}n : − h.) ∈ PR for some
m ≤ n. If that is the case, then (h→ o(α1, 1), . . . , o(αn, n)) ∈
ΘR must hold, and ΘR, ω(O) |≈{h}.

Corollary 1. Given the conditions of Theorem 3,

∀H ⊆ ABD∀φ, φ′ ∈ L0 :

(ΘR, ω(O) |≈H & ΘR ∪H |= g(τ(φ)) ∧ b(τ(φ′)))⇐⇒
PR has an answer set S, s.t. S |= g(τ(φ)) ∧ b(τ(φ′))

Proof sketch. Observe that H entails a single instance
of b/1 and g/1 in both ΘR and S (also cf. Theorem 3).

Corollary 2.

∀δ ∈ L∆ ∀γ, β ∈ L0 : ∃(γ, β) ∈ msaR(δ) ⇐⇒
PR has an answer set S, s.t. S |= g(τ(γ)) ∧ b(τ(β))

Proof. From Theorems 2 and 3, and Corollary 1.

5. ASCRIPTION OF MENTAL STATES
This section builds upon previous sections, focusing on

ascription of particular goals and beliefs.

5.1 Ascription of Rule Preconditions
In Section 3.2 the function τ was defined to translate APL

terms — consisting of atoms composed by means of conjunc-
tion, disjunction, or negation — to a logical theory. Terms
were translated to a functional representation, and given as
arguments to predicates g/1 and b/1. The truth conditions
of those connectives are lost in this translation, but they
can be regained by decomposition of the functional argu-
ments to constants, as shown below. It should hereby be
noted that the Lparse grounder requires particular syntac-
tic conditions to hold with respect to the program, such that
recursion cannot be used the same way as in, say, Prolog;
for our implementation this means that decomposition must
be specified for each level of nesting. This is not problem-
atic, though, since the translation derives from some fixed
set of APL rules for which the maximum level of nesting
is known. Below are the ASP rules for decomposition of
conj/2 and disj/2 based on the semantics of ∧ and ∨, as
well as elimination of double negation and DeMorgan’s laws.
It is here assumed that the predicate form/1 denotes that
its argument is a valid formula, and it should be noted that
the definition below is given for b/1 but is likewise for g/1.

1{b(F1), b(F2)}2 : − form(F1;F2), b(disj(F1, F2)).

2{b(F1), b(F2)}2 : − form(F1;F2), b(conj(F1, F2)).

b(F) : − form(F), b(neg(neg(F))).

b(disj(neg(F1), neg(F2))) : −
form(F1;F2), b(neg(conj(F1, F2))).

b(conj(neg(F1), neg(F2))) : −
form(F1;F2), b(neg(disj(F1, F2))).

(9)

As expected, in case of conjunction of two formulae, both
conjuncts should be satisfied. The logical connective ∨means
that either or both of two disjuncts should be satisfied; this
interpretation is adhered to here in decomposition of disj. If
a criterion of minimality is maintained then it could alterna-
tively be stated that either single disjunct must be satisfied
in order for the disjunction to be satisfied (i.e. 1{. . .}1).

It is recognized in the literature that a drawback of ASP
is that it is not well suited for reasoning with complex logi-
cal formulae [12]. The approach sketched above is therefore
not computationally efficient if APL terms are complex, but
because having single instances of b/1 and g/1 that point to
particular β and γ does allow for straightforward proofs in
preceding sections, this approach is preferred for technical
simplicity. An alternative approach, left unexplored here be-
cause of lack of space, is to perform translation of compound
formulae outside of ASP by bringing APL terms to a normal
form and translating this directly to ASP representation.

5.1.1 Negation
In translation of negated atoms it should be noted that an-

swer set programming offers two kinds of negation: default
negation and strong (or classical) negation [12]. In principle,
both can be used for interpretation of the function symbol
neg where it pertains to constants. The informal semantics
of default negation of p are that not p is the case in absence
of the atom p, whereas strong negation of p holds true only
if the literal −p is in the answer set. Because presence of
b(neg(F)) or g(neg(F)), for some constant F , in the answer
set occurs on grounds of evidence (observed actions), the
use of strong negation is warranted for expressing that F
is known not to be in the agent’s belief/goal base; even if
APL utilizes negation-as-failure (cf. [9]). Since ultimately
our interest is in facts which are, or are not, ascribed to the
agent as goals or beliefs, the predicates bel/1 and goal/1
are introduced which in contrast to b/1 and g/1 accept only
fluents as argument (the term ‘fluent’ is preferred over ‘con-
stant’ because valuation is fixed using these predicates).

bel(F) : − fluent(F), b(F).

−bel(F) : − fluent(F), b(neg(F)).
(10)

Similarly, goal/1 is defined in relation to g/1. Thus, ob-
served actions warrant ascription of some fact not being the
agent’s goal or belief, opposed to warranting mere absence
of ascription that it is. The predicates bel/1 and goal/1
denote fluents being (or, if negated, being not) the observed
agent’s belief or goal, respectively.

5.2 Plan-Based Ascription
The function CS was mentioned in Section 3.2, and de-

fined to generate computation sequences and preserve test
actions (as opposed to OS). Knowledge of successful test ac-
tions gives information about the agent’s mental state, which
can be informally characterized as follows: if the agent is
presumed to have applied some rule and is observed to per-
form some action, then if this observed action is preceded
by a test action, this test must have been successful.

Incorporating presumption of successful test actions into
ascription requires a notion of dynamics, because tests are
performed in a state which may change as a result of ac-
tions. Consider, by means of example, a plan that states
that if a certain device is believed to be on, then it should
be switched off. The test which succeeds before the action of

306

switching off the device might not succeed after performing
the action. For this reason a state argument is added to the
predicates b/1 and g/1. It should be noted in this regard
that all occurrences of b/1 and g/1 in Section 4 pertain to
the abduced preconditions of the observed agent’s rule, such
that those hold in the state preceding all observed actions.
This state is given the number 0, such that all b(F) and
g(F) in Section 4 are extended to b(F, 0) and g(F, 0).

The expressions in Formula 9 and 10 describe general re-
lations, such that occurrences of b/1 and g/1 (and, corre-
spondingly, of bel/1 and goal/1) in those expressions can
simply be extended with a state variable S, in regard to
which the predicate st/1 is defined to refer to valid states.
Instances of this predicate can be derived from o/2 by means
of rules, or specified as facts. For example, in Formula 10
bel(F) : − fluent(F), b(F) then becomes

bel(F, S) : − fluent(F), st(S), b(F, S).

The above formulation employing a state argument is strongly
reminiscent of the situation calculus [20], the main differ-
ence being that bel/2 and goal/2 refer to fluents ascribed
as belief or goal to an observed agent, whereas in approaches
based on the situation calculus the predicate holds/2 refers
to an agent’s own beliefs about its environment.

Ascription on grounds of computation sequences is then
implemented as in Formula 11, which captures the informal
notion mentioned in the first paragraph of this section and
extends it to observed sequences.

∀(n : γ <-β |π) ∈ R
∀α1, . . . , αn, φ1?, . . . , φk?, π′ ∈ LΠ :

[(π′ ∈ CS(π) & OS(π′) = {α1 · · ·αi · · ·αn} &

π′ = · · · ;αi−1;φ1?; · · · ;φk?;αi; · · ·) =⇒
(k{τ ′(φ1, i− 1), . . . , τ ′(φk, i− 1)}k : −
r(n, ι(π′)), s(α1, 1), . . . , s(αi, i).) ∈ PR]

(11)

The function τ ′ is required because plans, as defined in Sec-
tion 2.1, contain test actions on expressions φ ∈ L0 prefixed
by either B or G. A test action Bφ? is evaluated with
respect to the agent’s beliefs and Gφ? with respect to its
goals, and such tests can be understood as belief/goal intro-
spection. Translation through τ ′ is therefore as follows.

τ ′(Bφ, n) = b(τ(φ), n) τ ′(Gφ, n) = g(τ(φ), n)

This approach has the following useful property.

Proposition 1 (proven for B, likewise for G.).
Computation sequences with mutually inconsistent tests on
conjoined literals give rise to inconsistent answer sets.

Proof. Given Lit = {p,¬p | p ∈ Atom}, let φ =
∧

Φ, ψ =∧
Ψ for some Φ,Ψ ⊆ Lit. Furthermore let (n : γ <-β |π) ∈
R be such that π′ = · · · ;αi−1; Bφ?; · · · ; Bψ?;αi; · · · ∈ CS(π),
where ι(π′) = c. Assume that {φ, ψ} |= ⊥, such that for
some q ∈ Lit holds φ→ q and ψ → ¬q, and observe that on
grounds of Formulae 9, 10, and 11 it holds that every answer
set satisfying r(n, c) and s(α1, 1), . . . , s(αi, i) must satisfy
bel(q, i− 1) and −bel(q, i− 1), and be inconsistent.

Proposition 1 states that the observer program which incor-
porates inference on grounds of presumed test actions, along
the lines of Formula 11, reflects the fact that observed ac-
tions could have not been generated by a sequence which
has unsatisfiable tests preceding those actions.

6. EXAMPLE
Throughout this paper short examples have been used

to illustrate certain sections. In this section a more elab-
orate example is given, which has been implemented based
on the approach presented in this paper using the grounder
Lparse [22] and the solver clasp [11]. The example imple-
ments a (fictional) virtual character from a life-simulation
game like The Sims that has the following two rules, in the
APL syntax of Section 2.1.

seen_movie <- playing_movie |

enter_mall; if B(not have_cash) then withdraw_cash

else skip; watch_movie

have_book <- good_book or not playing_movie |

enter_mall; if B(not have_cash) then withdraw_cash

else skip; buy_book

Based on the approach sketched in this paper, those rules
give rise to the following fragment of the answer set pro-
gram PR of the observer in relation to Formulae 5, 6, and 8;
abbreviations should be evident.

2{g(s m, 0), b(p m, 0)}2 : − r(1, 1).

2{g(s m, 0), b(p m, 0)}2 : − r(1, 2).

3{o(e m, 1), o(w c, 2), o(w m, 3)}3 : − r(1, 1).

2{o(e m, 1), o(w m, 2)}2 : − r(1, 2).

2{g(h b, 0), b(disj(g b, neg(p m)), 0)}2 : − r(2, 3).

2{g(h b, 0), b(disj(g b, neg(p m)), 0)}2 : − r(2, 4).

3{o(e m, 1), o(w c, 2), o(b b, 3)}3 : − r(2, 3).

2{o(e m, 1), o(b b, 2)}2 : − r(2, 4).

1{r(1, 1), r(1, 2), r(2, 3), r(2, 4)}1.
: − s(A, T), not o(A, T).

Based on Formula 11, the rest of the program is as follows.

1{b(neg(h c), 1)}1 : − r(1, 1), s(e m, 1), s(w c, 2).

1{b(h c, 1)}1 : − r(1, 2), s(e m, 1), s(w m, 2).

1{b(neg(h c), 1)}1 : − r(2, 3), s(e m, 1), s(w c, 2).

1{b(h c, 1)}1 : − r(2, 4), s(e m, 1), s(b b, 2).

Let P ′ = P ∪ {s(e m, 1)}. Focusing on the predicates bel/2
and goal/2, note that the program P ′ has answer sets with
S = {goal(s m, 0), bel(p m, 0)} on grounds of explanations
r(1, 1) and r(1, 2), and S′ = {goal(h b, 0), bel(g b, 0)}, S′′ =
{goal(h b, 0),−bel(p m, 0)}, as well as S′ ∪ S′′ on grounds
of r(2, 3) and r(2, 4). Now let P ′′ = P ′ ∪ {s(w m, 2)} and
observe that P ′′ |= goal(s m, 0) ∧ bel(p m, 0) ∧ bel(h c, 1)
because P ′′ |= r(1, 2). The example thus illustrates the the-
ory of preceding sections in relation to specific atoms being
ascribed as (not) the agent’s belief/goal, and shows conclu-
siveness of the observer after observation of two actions.

7. RELATED WORK
The approach presented in this paper can be categorized

in the area of plan/intention recognition. Although this tra-
ditionally has been an active area of A.I. research, there has
been little work specific to agent programming. An excep-
tion is that of Goultiaeva & Lespérance [13], who present a
formal model meant for inclusion in the ConGolog program-
ming language, which is based on the situation calculus. The
approach focuses on the procedural aspect of incrementally
matching observed behavior to an annotated library of plans.

307

An important difference with the work in this paper is the
fact that our approach uses a general logical abstraction of
plans and it is therefore not restricted to a particular agent
programming language, except for the fact that it supposes
the availability of an ASP interpreter. Furthermore, our
work utilizes a mature automated (nonmonotonic) reason-
ing paradigm, and, last but not least, it is difficult to see how
the work of Goultiaeva & Lespérance could extend to incom-
plete observation (i.e. missing actions), whereas our work is
founded on an approach that handles this case. Of further
interest is the work of Baral et al. [4] because it uses ASP
to model agents knowledge about others’ knowledge, albeit
using a radically different approach. Apart from logic-based
approaches such as the above, there exists a multitude of
statistical approaches (see [7]), including some in the game
domain. Such approaches require significant amounts of run-
time data as input, though, and are not BDI-specific.

8. CONCLUSION AND FUTURE RESEARCH
This paper presents an answer set programming imple-

mentation of mental state ascription based on observed prim-
itive actions of a BDI-based agent. The approach is based
on earlier work ([21], cf. Section 2.2), which is reformulated
here in terms of abduction in classical logical in Section 3.
This logical theory gives rise to an implementation in Sec-
tion 4 which utilizes the suitability of ASP for nonmonotonic
reasoning, and is expanded in Section 5 to incorporate as-
cription based on test actions the observed agent can be
presumed to have performed, hereby employing concepts of
the situation calculus. Formal proof is given of useful and
interesting properties of our approach.

It should be noted that for space and simplicity the im-
plementation presented here assumes complete observation,
meaning that all of the agent’s actions are observed. In [21]
we also formalized incomplete observation by means of ad-
ditional structural relations which allow ‘gaps’ to occur in
matching observed to observable sequences. By implement-
ing those relations our implementation can be generalized
to cases of incomplete observation as well. Future research
can furthermore focus on exploring the relation with the
situation calculus, as indicated in Section 5.2, which would
furthermore open up possibilities for implementation of an
agent that reasons about its own environment and mental
state in relation to that ascribed to others. Existing work on
ASP for dynamic domains can then be of use [12]. Further-
more, prediction of agents’ actions can be considered, and,
last but not least, investigating the practice of integrating
logic programming interpreters into demanding applications
such as games is mandatory for (industrial) deployment.

9. REFERENCES
[1] N. Afonso and R. Prada. Agents that relate:

Improving the social believability of non-player
characters in role-playing games. In Proc. of 7th Conf.
on Entertainment Comp. (ICEC), pages 34–45, 2008.

[2] A. Aliseda-Llera. Seeking Explanations: Abduction in
Logic, Philosophy of Science, and Artificial
Intelligence. PhD thesis, Univ. of Amsterdam, 1997.

[3] J. Baeten and W. Weijland. Process Algebra.
Cambridge University Press, 1990.

[4] C. Baral, G. Gelfond, E. Pontelli, and T. C. Son.
Using answer set programming to model multi-agent

scenarios involving agents’ knowledge about others’
knowledge. In Proceedings of 9th Intl. Conf. on
Autonomous Agents and Multiagent Systems
(AAMAS), pages 259–266, 2010.

[5] R. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors. Multi-Agent Programming:
Languages, Tools and Applications. Springer, 2009.

[6] R. I. Brafman and M. Tennenholtz. Belief ascription
and mental-level modelling. In Proceedings of the 4th
Intl. Conf. on Principles of Knowledge Representation
and Reasoning (KR), pages 87–98, 1994.

[7] S. Carberry. Techniques for plan recognition. User
Modeling & User-Ad. Interaction, 11(1-2):31–48, 2001.

[8] P. R. Cohen and H. J. Levesque. Intention is choice
with commitment. Artificial Intelligence,
42(2-3):213–261, 1990.

[9] M. Dastani. 2APL: A practical agent programming
language. Autonomous Agents and Multi-Agent
Systems, 16:214–248, 2008.

[10] D. Dennett. The Intentional Stance. MIT Press, 1987.

[11] M. Gebser, B. Kaufmann, A. Neumann, and
T. Schaub. clasp: A conflict-driven answer set solver.
In Proc. of the Ninth Intl. Conf. on Logic
Programming and Nonmonotonic Reasoning
(LPNMR), pages 260–265, 2007.

[12] M. Gelfond. Answer sets. In F. van Harmelen,
V. Lifschitz, and B. Porter, editors, Handbook of
Knowledge Representation, pages 285–316. Elsevier
Science, 2008.

[13] A. Goultiaeva and Y. Lespérance. Incremental plan
recognition in an agent programming framework. Proc.
of Plan, Activity and Intent Recognition (PAIR), 2007.

[14] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, 2000.

[15] A. C. Kakas, R. A. Kowalski, and F. Toni. Handbook
of Logic in Artificial Intelligence and Logic
Programming, volume 5, chapter The Role of
Abduction in Logic Programming, pages 235–324.
Oxford University Press, 1998.

[16] J. Laird. It knows what you’re going to do: Adding
anticipation to a Quakebot. In Proc. of 5th Intl. Conf.
on Autonomous Agents, pages 385–392, 2001.

[17] A. B. Loyall. Believable Agents. PhD thesis, Carnegie
Mellon University, 1997.

[18] P. Novák. Jazzyk: A programming language for hybrid
agents with heterogeneous knowledge representations.
In Proceedings of ProMAS 2008, pages 72–87, 2009.

[19] A. S. Rao and M. P. Georgeff. Modeling rational
agents within a BDI-architecture. In Proc. of the 2nd
Intl. Knowl. Repr. Conf. (KR), pages 473–484, 1991.

[20] R. Reiter. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness
result for goal regression. Artificial Intelligence and
Mathematical Theory of Computation: Papers in
Honor of John McCarthy, pages 359–380, 1991.

[21] M. P. Sindlar, M. Dastani, F. Dignum, and J.-J.Ch.
Meyer. Mental state abduction of BDI-based agents.
In Proc. of the 6th Intl. Workshop on Declarative
Agent Lang. and Tech. (DALT), pages 161–178, 2008.

[22] T. Syrjänen. Lparse manual.
(http://www.tcs.hut.fi/Software/smodels/).

308

