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ABSTRACT
This work proposes new techniques for saving communica-
tion and computational resources when solving distributed
constraint optimization problems in an environment where
system hardware resources are clustered. Using a pre-computed
policy and two phase propagation on Max-Sum algorithm,
the system performance on Radar scheduling problem im-
proves in terms of communication and computation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence
and coordination

General Terms
Algorithms, Performance

Keywords
DCOP, Max-Sum, semi-centralized

1. INTRODUCTION
This paper focuses on utilizing semi-centralized hardware

system structure to solve the agent coordination problem.
It proposes modifications on message-passing algorithms in
order to reduce required computation and communication
resources. We consider the real-time sensor system NetRad
for real-time harzardous weather phoneomena detection [1].
In NetRad system, a collection of controllers responsible for
multiple radars, radar coordination is essential for efficient
resource utilization and accurate weather detection. We
model the distributed scheduling problem as a constraint
optimization problem and solve it approximately using the
Max-Sum algorithm [2]. This work proposes two new exten-
sions of the Max-Sum algorithm using a pre-computed policy
and two-phase message propagation. The experimental re-
sults shows savings on 50% of communication and 5-30% of
computational resources using these extensions.

2. RADAR SCHEDULING PROBLEM
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(a) The system structure for 48
radars

(b) 48 radars with 96
phenomena

Figure 1: System structure for radars (a), Example
configuration of radars with example scenario (b).
All radar ranges and phenomena are assumed circu-
lar shaped. All phenomena locations and sizes are
randomly selected. In (b), Radar 1 (R1) can choose
to scan Event 1 (Ev1), Event 2 (Ev2) or to scan both
depending on the utility. Scanning all phenomena
in range with sufficient quality may not be possible
given the time limit to scan.

2.1 Radar Scheduling Problem Formulation
The NetRad system simulator as in Figure 1 consists of

controllers where each controller Ai controls and schedules
a set of radars Ri. Given the real-time map of phenomena,
each radar selects discretized scanning ranges by choosing
a subset of phenomena in its range. For each phenomena
pj , the weight wj is a constant determined by the requested
user or the weather pattern. The utility(factorized local
function) for each phenomenon j is defined as,

uj : pj × rpj → cj (1)

where cj denotes coverage of a scan within some range and
rpj denotes the scanning policy of radars which have pj in
range.

The goal of the system is to find a radar configuration
r1, . . . , rn which maximize the sum U of the utilities for all
phenomena and represented as,

U =
X
j

uj(pj , r
pj )× wj =

X
j

cj × wj (2)

Each radar can be thought as the variables with limited
discrete domains and the local utility function uj works as
constraint that is involved with rpj and we can solve the
problem as distributed constraint optimization problem.
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3. MODIFICATIONS ON MAX-SUM

3.1 Using Organization Structure: Max-Sum
Alternating 2-level Hierarchy (MS2L)

We modify Max-Sum to have a two-level message propa-
gation scheme in order to increase the algorithm efficiency
in the context of clustered hardware resources. In the first
propagation phase, we only send messages to nodes located
within the same hardware resource. This is repeated for a
number of message passing cycles. In the second phase, we
send messages to nodes that are located in other hardware
resources. These phases are then repeated until the termi-
nation criteria is reached. This modified Max-Sum, which
we call MS2L, alternates between the cycle of global propa-
gation cycle and local propagation so as to ensure that the
utility values can also travel to other parts of the graph.

The 2-level propagation schedule
1. (Initialization) At any vertices, carry out the global
flooding.
2. (Local flooding) Both variable and function nodes
sends messages only to the neighbors within the same
MCC. For each local neighbor, given the newest mes-
sage on each edge, compute the message values for
each local neighbor and send. Let the variable node’s
neighbors be Ni and the nodes in MCC k mk. In func-
tion nodes, it sends the same message to a subset of
neighbors Ni ∩mk. In variable nodes, it computes the
message using the previous messages from neighbors
outside the MCC. At cycle t, the message from the
variable to function node is,

qti→j(xi) = αij+
X

k∈Ni∩mk\j
rtk→i(xi)+

X
k∈Ni\mk

rt−1
k→i(xi)

3. (Global flooding) For all neighbors, do a regular
message calculation using the newest message on
each edge. Function nodes computes the messages
at cycle t for all neighbors using messages at t − 1
for neighbors Ni \ mk. The function node does not
have updated messages for all neighbors due to local
propagation in the previous cycle thus it combines
previous messages from neighbors outside MCC.

rtj→i(xi) = maxxj\i[Fj(xj) +
P
k∈(Nj∩mk\i) q

t
k→j(xk)

+
P
k∈(Nj\(i∪mk)) q

t−1
k→j(xk)]

4. Repeat step 2 and 3.

3.2 Starting with Known Policy
In this section, we propose to construct better initial mes-

sages incorporating global information to further optimize
the efficiency of the algorithm i.e. to start the algorithm
with a policy for subgraph contained in the cluster proces-
sor.

The initial message in Max-Sum has the value assuming
the best-case setting of other variables and only incorporates
the local preferences. Given a known policy x̂, we modify
the algorithm for function nodes to send the following mes-
sages which does not involve maximization to the connected
variable nodes. Function node j to variable node i:

Fj((x̂j \ i) ∪ xi) (3)

After receiving these messages, if a variable node were to
take on a value, it would be:

x̃i = arg max
xi

X
j∈Ni

Fj((x̂j \ i) ∪ xi) (4)

3.2.1 Using the Structure for Policy Generation
Additionally we provide a scheme which computes a policy

which can be used as in Section 3.2. Instead of generating
a policy for the whole problem, we tried to compute the lo-
cally optimal policy for subproblems associated with each
MCC. We break the full factor graph into factor subgraphs
for each MCC that contains only the radars and phenomena
in each MCC and are smaller than the original factor graph.
In order to accomplish this, we assign each phenomenon to
one MCC to avoid redundant utilities for shared phenomena
in computing the initial policy. Consequently, the domain
of variable nodes and parameter values in the cost function
at the function nodes are smaller than the original prob-
lem. Starting with the generated policy as prior information,
Max-Sum starts with knowledge on local functions.

4. PERFORMANCE OF MAX-SUM IN A
TWO-LEVEL HIERARCHY
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(a) Performance Quality
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(b) Time Decentralized

0 1 1.5 2
0

20

40

60

80

100

120

Phenomena/48

N
um

be
r 

of
 M

es
sa

ge
s

pe
r 

M
C

C
 

 

 

MS2L−Init
MS2L
MS

(c) Messages
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(d) Communication

Figure 2: Performance of MS2L
We experimented with MS2L as in Section 3.1 with in-

creasing number of phenomena and also MS2L-Init with
Init-MS policy replacing the first 2 cycles for generating the
policy. Detailed results and description can be found in [3].
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