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ABSTRACT
Online digital goods auctions are settings where a seller with
an unlimited supply of goods (e.g. music or movie down-
loads) interacts with a stream of potential buyers. In the
posted price setting, the seller makes a take-it-or-leave-it of-
fer to each arriving buyer. We study the seller’s revenue
maximization problem in posted-price auctions of digital
goods. We find that algorithms from the multi-armed bandit
literature like UCB, which come with good regret bounds,
can be slow to converge. We propose and study two alterna-
tives: (1) a scheme based on using Gittins indices with priors
that make appropriate use of domain knowledge; (2) a new
learning algorithm, LLVD, that assumes a linear demand
curve, and maintains a Beta prior over the free parameter
using a moment-matching approximation. LLVD is not only
(approximately) optimal for linear demand, but also learns
fast and performs well when the linearity assumption is vi-
olated, for example in the cases of two natural valuation
distributions, exponential and log-normal.
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General Terms
Algorithms, Economics

Keywords
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1. INTRODUCTION
Digital goods auctions are those where a seller with an

unlimited supply of identical goods interacts with a popu-
lation of buyers who desire one unit of that good [12, 11].
These are typically thought of as digital goods which can be
produced at negligible cost, for example, rights to watch a
movie broadcast, or to download an audio file.

Consider the problem faced by a company that has the
rights to a piece of music, and wants to market it to con-
sumers. There is some underlying valuation distribution on
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the potential population of buyers, reflecting how much each
potential buyer values that piece. However, the seller is not
aware of this distribution, and can only learn it through in-
teraction with buyers. The seller’s goal is to maximize her
own revenue. While such problems have typically been dealt
with by using a few discrete possible prices and estimating
popularity, this has mostly been due to the transaction costs
associated with regularly changing prices. Dynamic pricing
mechanisms, on the other hand, are increasingly available
to sellers, and it is now practical to consider strategies that
change prices online [13]. The typical interaction will be
that the user searches a music database for the piece, sees a
price, and decides whether or not to buy.

In this kind of posted-price mechanism [15, 3], the seller
offers a single price, and an arriving buyer has the option to
either complete the purchase at that price, or not go through
with it. If the seller knew the distribution of valuations, the
pricing problem for revenue maximization would be simple
to solve, yielding a single fixed price to be offered to all the
buyers (under the assumption that the seller has no way of
discriminating between buyers, or finding out their individ-
ual valuations). This distribution can also be thought of as
the demand curve, because an arriving buyer will only buy
if her valuation exceeds the posted price being offered.

Posted price mechanisms have also received attention in
the context of limited supply auctions [4]. There has been
work in economics on learning the demand curve in posted
price auctions when the seller has a single unit of the item to
sell [5], and also on learning the demand curve using buyers’
bidding behavior in non-posted price settings [19].

Posted price auctions in which the seller must learn the
demand curve are a natural application for the tools of
dynamic programming and reinforcement learning because
they exhibit a classic exploration-exploitation dilemma. The
quoted price serves as both a profit-seeking mechanism (ex-
ploitation) as well as an information-gathering one (explo-
ration). In the context of two-sided posted-price mecha-
nisms in finance where a “market maker” offers to both buy
and sell a security at some price, Das and Magdon-Ismail [7]
use dynamic programming techniques to show that there are
times when it is optimal to make significant losses in order
to learn the valuation distribution more quickly. In digital
goods auctions the seller does not make a loss, but may lose
out on potentially higher revenue instead.

Given the exploration-exploitation dilemma inherent in
the problem, it is natural that many of the algorithms an-
alyzed for posted price selling with unknown demand have
been based on the multi-armed bandit literature. Several of
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these schemes have been shown to possess good properties
in terms of asymptotic regret for the seller’s revenue maxi-
mization problem in the unlimited supply setting. Blum et
al [3] discuss the application of Auer et al ’s [2] EXP3 al-
gorithm for the adversarial multi-armed bandit problem to
posted price mechanisms, showing a worst-case adversarial
bound. Kleinberg and Leighton [15] derive regret bounds
for Auer et al ’s [1] UCB1 bandit algorithm for i.i.d. settings
in the posted price context. UCB1 is intended to minimize
regret even in finite-horizon contexts, so we would expect it
to perform relatively well. However, these algorithms rarely
perform very well in terms of utility received in even simu-
lated posted price auction settings – for example, in Conitzer
and Garera’s comparison of EXP3 with gradient ascent and
Bayesian methods [6], or even in different applications, as
found by Vermorel and Mohri on an artificially generated
dataset and a networking dataset [20]. Conitzer and Gar-
era’s Bayesian methods are a relevant comparison to the
algorithms we develop here, but they make a “correct prior”
assumption, mostly focusing on learning when the model is
known but the parameters unknown (for example, when the
valuation distribution is uniform or exponential with known
probabilities and a set of possible parameters with finite sup-
port for each type of distribution).

Contributions.
In this paper, we study the problem of revenue maximiza-

tion in posted-price auctions of digital goods from the per-
spective of reinforcement learning and maximizing flow util-
ity, rather than trying to achieve asymptotic regret bounds.
We evaluate algorithms on simulated buying populations,
with valuations distributed uniformly, exponentially, and
log-normally. We find that regret-minimization algorithms
from the multi-armed bandit literature are slow to learn in
practice, and hence impractical, even for simple distribu-
tions of valuations in the buying population. We propose
two alternatives: (1) a scheme based on Gittins indices that
starts with different priors on the arms based on the knowl-
edge that purchases at higher prices are less likely, and (2) a
new reinforcement learning algorithm for the problem, called
LLVD, that is based on a plausible linearity assumption on
the structure of the demand curve. LLVD maintains a Beta
distribution as the seller’s belief state, updating it using a
moment-matching approximation. LLVD is (approximately)
optimal when the linearity assumption holds, and empiri-
cally performs well for several families of valuation distribu-
tions that violate the linearity assumption.

2. THE POSTED PRICE MODEL
We start by introducing the model and assumptions that

we will use. Buyers arrive in a stream, each with an i.i.d.
valuation v of the good from an unknown underlying distri-
bution fV . fV can have support on [0,∞), At each instant
in time, the seller quotes a price qt ∈ [0, ∞), a potential
buyer arrives with vt ∼ fV , and chooses to buy if vt ≥ qt and
not to buy otherwise. The seller has access to the history of
her own pricing decisions, as well as the purchase decisions
made by each arriving buyer. Her goal is to sequentially set
qt so as to maximize (discounted) expected total long-term
revenue (we assume an infinite horizon model).

2.1 Learning the Demand Curve
For any given distribution of buyer valuations fV , under

the assumption that buyer valuations are I.I.D. draws from
fV at each point in time, there is a single optimal price qOPT

that maximizes the seller’s expected revenue. When fV is
unknown, there are several different possible design goals.
In this work we seek to design an algorithm that maximizes
flow utility, rather than an algorithm with the explicit goal
of asymptotically correct or regret-bounded learning. There-
fore, we focus on a dynamic programming approach that
maximizes flow utility under a probabilistic model. This is
a problem that falls within the domain of dynamic program-
ming, reinforcement learning, and optimal experimentation,
because the seller’s actions, corresponding to posted prices,
have both a profit role (exploitation) and an informational
role (exploration; conveying information about the true de-
mand curve). The first problem with designing such a model
is that the seller’s state space is itself a probability distribu-
tion over possible probability distributions (of valuations),
so without restricting the space of possibilities it is difficult
to get any traction. It is useful to consider a simple example.

“Linear” Demand.
Assume that buyer valuations are distributed uniformly

on [0, B]. The probability of an arriving buyer choosing to
buy at price q, P (q) is (B− q)/B, or 1− γq where γ = 1/B.
This entails a linear form for the probability of a sale at price
q, so we refer to this (loosely) as the case of linear demand.

Now consider a particularly simple example. Suppose the
seller knows with certainty that the demand function is ei-
ther F , corresponding to γ1, or G, corresponding to γ2. Let
α denote the probability the seller associates with demand
function F . Then the state space is entirely parameter-
ized by α. The expected discounted revenue is given by
π(αt) =

∑∞
k=t δ

k−t(αkqkPF (qk) + (1− αk)qkPG(qk)).
A revenue maximizing policy is a mapping from α to q

that maximizes π. The states α = 0 and α = 1 have
no uncertainty associated with them, and the problem re-
duces to a simple maximization. When α = 1, we maximize

maxq
∑∞
k=0 δ

k(qPF (q)) = maxq
qPF (q)
(1−δ) .

For this example we assume q ∈ [0, 1]. So if the optimal
q is theoretically greater than 1, the item is priced at 1.
The function itself is increasing up to a maximum at q =
1/2γ1, so the maximum within our domain q ∈ [0, 1] is at
q = min(1/2γ1, 1) if α = 1. Similarly if α = 0, then the
optimal price is q = min(1/2γ2, 1).

For general α, the seller sets a price q (since we are dis-
cussing optimal actions in a situation that is not explicitly
time dependent, we suppress any dependence on t) Depend-
ing on the action of an arriving buyer, the seller updates α.

If the buyer buys, then α
′

= αPF (q)
αPF (q)+(1−α)PG(q)

. For our

particular model, α
′

= α−γ1αq
1+((γ2−γ1)α−γ2)q

. If the buyer does

not buy, the state update is α
′′

= α(1−PF (q))
α(1−PF (q))+(1−α)(1−PG(q))

.

Again, for our particular model, α
′′

= γ1α
(γ1−γ2)α+γ2

. This

latter equation is of particular interest, since there is, sur-
prisingly, no dependence on q.

The relevant probabilities of buying and not buying, given
a (state, action) pair consisting of α and q are given by
Pr(Buy|α, q) = αPF (q)+(1−α)PG(q), and Pr(¬Buy|α, q) =
α(1− PF (q)) + (1− α)(1− PG(q)).
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Figure 1: The value function for γ1 = 0.25, γ2 = 0.9
and discount factors δ = 0.2 and δ = 0.95. Note how
the value function for high δ is almost linear.

Now we can write down the Bellman equation:

V (α) = αqPF (q) + (1− α)qPG(q) + δV ′ (1)

where V ′ = Pr(Buy|α, q)V (α
′
) + Pr(¬Buy|α, q)V (α

′′
).

We now know the dynamics of the system. We can solve
by discretizing α (we know α ∈ [0, 1]) and using value iter-
ation for any particular values of γ1 and γ2. Figure 1 shows
the value function for two different values of δ.

Computing the value function in this case leads to an in-
teresting observation. When δ is high, the value function is
almost linear in α. We can approximate the value function
by V = bα + c to get an analytical approximate solution.
Substituting in Equation 1 and finding b and c by equating

coefficients, we find V = Zq2+q
1−δ where Z = (γ2 − γ1)α− γ2.

This equation implies that the optimal choice for q is the
same as the myopically optimal choice! The linearity of the
value function and the approximate optimality of a myopic
strategy arise in part because, regardless of the strategy for
setting q, good information is received by whether or not a
buyer buys, allowing us to distinguish the populations, and
α converges to either 0 or 1 quickly. This is partly a function
of the fact that only one of the two possible future states α′

and α′′ depends in any way on q. In fact, the myopic ap-
proximation continues to be an excellent approximation to
the optimal strategy even for lower values of δ, because at
lower values immediate revenue dominates future revenue in
the value function anyhow.

More General Settings.
The example discussed above is analytically tractable be-

cause of the restriction to two possible distributions, reduc-
ing our state space to a single continuous variable. This
restriction is too onerous for any realistic application. The
simplest way to remove this restriction without sending trac-
tability overboard is to consider the whole space of linear
demand functions with γ ∈ [0, 1] (the restriction to γ ≤ 1 is
not restrictive, because the effect could be achieved through
rescaling of the valuations). We approach this problem by
maintaining a probability distribution over γ.

3. ALGORITHMS
Here we describe the three algorithms we compare for this

problem: (1) our new parametric algorithm, LLVD; (2) a
Gittins-index based strategy with appropriately chosen pri-
ors; (3) UCB, a regret-minimizing algorithm from the multi-
armed bandit literature.

3.1 The LLVD Algorithm
Our main assumption is that it is reasonable to model

the probability of an arriving buyer choosing to go through
with a purchase at quoted price q as a linear function of q,
Pr(Buy|q) = 1 − γq. This gives rise to our learning algo-
rithm, which we call “Linear Learning of Valuation Distri-
butions” (LLVD).

Under the linearity assumption we want to maximize to-
tal expected (discounted) revenue. The seller’s state space
is now the space of distributions over γ. In order to make
this a tractable state space to work with, we enforce that
the seller always represents her beliefs as a Beta distribu-
tion (γ ∈ [0, 1]). The state space can then be parametrized
by the two parameters of the Beta distribution. We need
to derive the state space transition model and the reward
model in order to solve for the seller’s optimal policy. In
the following, f(γ;α, β) represents the density function for
the Beta distribution. F (γ;α, β) represents the c.d.f for the
Beta distribution, and Fk(γ) represents F (γ;α+ k, β).

Transition Model.
An arriving buyer is quoted a price q and decides whether

or not to buy at that price. She will buy if her valuation is
less than equal to the price quoted. The seller updates her
own distribution over γ based on whether or not the arriving
buyer bought the good. Consider the Bayesian updates in
two cases:
1. Buyer does not buy:

f(γ|¬Buy) =
f(γ;α, β)(γq)∫ 1/q

0
f(γ;α, β)(γq)dγ

=
γα(1− γ)β−1∫ 1/q

0
γα(1− γ)β−1dγ

=
f(γ;α+ 1, β)

F (1/q, α, β)
=
f(γ;α+ 1, β)

F0(1/q)

For q < 1, the normalizing constant is 1 and the true
posterior is Beta. When q > 1 the posterior need not be
Beta, so we compute the Beta distribution that matches the
first and second moment of the true posterior. This yields
a pair of simultaneous equations for αt+1 and βt+1 (in the
equations below Fk represents Fk(1/qt)):

αt+1

αt+1 + βt+1
=
qtE(γ2)F2 + E(γ)(1− F1)

(qtE(γ)F1 + 1− F0)

αt+1(αt+1 + 1)

(αt+1 + βt+1)(αt+1 + βt+1 + 1)
=
qtE(γ3)F3 + E(γ2)(1− F2)

(qtE(γ)F1 + 1− F0)

2. Buyer buys:

f(γ|Buy) =
f(γ;α, β)(1− γq)∫ 1/q

0
f(γ;α, β)(1− γq)dγ

=
f(γ;α, β)(1− γq)

(F (1/q, α, β)− qE(γ)F (1/q, α+ 1, β))

=
f(γ;α, β)(1− γq)

(F0(1/q)− qE(γ)F1(1/q))
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Again, we approximate the true posterior with a Beta dis-
tribution by matching the first and second moments.

αt+1

αt+1 + βt+1
=

E(γ)F1 − qtF2E(γ2)

F0 − qtE(γ)F1

αt+1(αt+1 + 1)

(αt+1 + βt+1)(αt+1 + βt+1 + 1)
=

E(γ2)F2 − qtE(γ3)F3

F0 − qtE(γ)F1

Let M and S represent first and second order moments
respectively. Solving these equations yields update rules

αt+1 = MS−M2

M2−S and βt+1 =
(1−M)αt+1

M
.

Reward Model.
Let π denote the discounted long-term revenue and δ the

discount factor. Let P (q) = Pr(Buy|q). Then π = q0P (q0)+∑∞
t=1 qtP (qt). The first term, π0 = q0P (q0) is the expected

reward at this particular instant, from the next action. We
can compute the expected value of this term:

P (q) =

∫ 1/q

0

(1− γq)f(γ;α, β)dγ

= F (1/q;α, β)− qE(γ)F (1/q;α+ 1, β)

= F (1/q;α, β)− qµF (1/q, α+ 1, β) (2)

where µ = α/(α+ β).

π0 = q0(F (1/q0;α, β)− q0E(γ)F (1/q0;α+ 1, β))

= q0(F (1/q0;α, β)− q0µF (1/q0, α+ 1, β)) (3)

The Bellman Equation.
In a risk-neutral framework, we can similarly take expec-

tations over γ and derive the appropriate Bellman equation:
V (αt, βt) = maxq qP (q) + δV ′, where

V ′ = P (q)V (αt+1, βt+1|Buy)+(1−P (q))V (αt+1, βt+1|¬Buy)

Obviously, if γ were known to the seller, the optimal action
would be the optimal myopic action, and it would yield a
discounted expected revenue of:

π = max
q

(q(1− γq) +

∞∑
t=1

δtq(1− γq))

= max
q

q(1− γq)
1− δ = max

q

q(1− γq)
1− δ (4)

This equation is maximized at q = 1
2γ

, in our environment,

yielding V = 1
4γ(1−δ) .

Solving for the optimal policy.
Various issues arise in trying to solve such a system. A

value-iteration type method would rely on a reasonable func-
tional approximation of the value function in order to con-
verge to a correct estimate. We use a different approach by
first restricting the problem to a space where table-based
value iteration can be applied, and then extrapolating to
the complete space. We start by restricting to values of q
between 0 and 1.

The q < 1 case: Equation 2 reduces to P (q) = (1− µq),
therefore Equation 3 reduces to π0 = q0(1 − µq0) because
F (1/q) = 1 for the Beta distribution as q < 1. Equation 4 is
maximized at q = min(1, 1

2µ
), in our environment, yielding

V = min( 1
4µ(1−δ) ,

1−µ
1−δ ). Since the transition model is known
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Figure 2: Comparison of the regression line with
data from the value iteration table for different val-
ues of α + β. Note the very tight match in the do-
main where the optimal q would be expected to be
less than 1. The regression function allows LLVD to
generalize this to the entire space (notice the differ-
ence between the line and the data points for lower
values of µ, which correspond to higher optimal val-
ues of q).

(the fact that the true posterior is Beta when the buyer
buys for q < 1 is helpful in efficient implementation), all
that remains in order to discretize and apply value iteration
is to specify some boundary conditions on the model. The
boundary conditions correspond to having a high degree of
certainty about the value of γ. We assume that when the
variance of the Beta distribution becomes less than 0.001,
γ can be assumed to be known to the seller, and it is then
equal to µ. In order for this technique to be consistent, we
need to show that once the variance is sufficiently low, it will
not be the case that it again starts increasing. We can show
that in expectation the variance decreases in every iteration
for q < 1; the proof is omitted due to space considerations.

This yields the final algorithm: we use value iteration to
solve for the value function on a grid for α, β ∈ [0.1, 200], but
we pre-fill all spaces where α, β are such that the variance
of the distribution is less than 0.001. Figure 3 (V1) shows
the value function for δ = 0.95, as a function of α and β.

Extending to q > 1: We expect the value function
computed using table-based value iteration to closely ap-
proximate the universally“correct”one for regions where the
optimal value of q is less than 1. Therefore, we fit a regres-
sion line using values from the value function matrix where
µ > 0.6 (implying that the optimal q is probably lower than
0.85). Empirically, we find that the value function is close
to linear in 1

µ
and 1

α+β
(see Figure 2). So we approximate

the value function for the whole space as

V (α, β) = a1
α+ β

α
+ a2

1

α+ β
(5)

Figure 3 shows that this is a good approximation over the
entire space. Now, at any time T = t, with the belief state
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V1: Table-based value function V2: Value function using regression V3: Value function extrapolated using regression

Figure 3: V1 is the value function computed using table-based value iteration with q < 1 (the maximum value
of V is 20). V2 is the value function computed using regression (see Equation 5), showing the similarity to
V1 where the value function is less than 20 (the flat maroon region shows where V ≥ 20, where the value
functions would be expected to differ, and q > 1). V3 shows some more of the structure of the value function
computed using regression (Equation 5) in the region where it attains values between 20 and 30.

(α, β) we can find the q which maximizes the given equation.

π = max
qt

V (α, β) + δ(Pr(Buy|qt)V (α′, β′|Buy)

+ (1− Pr(Buy|qt))V (α′′, β′′|¬Buy))

Here α′, β′, α′′ and β′′ are functions of qt,α and β, price
offered at time T=t. These values can be calculated as dis-
cussed above by comparing the first two moments.

Implementation notes: In our experiments, we com-
pute the value function using δ = 0.95. The best fit re-
gression line is obtained for a1 = 4.99 and a2 = 1.5147; for
convenience we use a1 = 5 and a2 = 1.5. The LLVD based
seller then learns online, constantly updating her belief on
γ (starting from α = β = 1), and choosing the price that
maximizes the value function at any instant.

3.2 Bandit Schemes
Multi-armed bandit algorithms are often applied to Dy-

namic pricing [16]. The different pricing options are the
arms of the bandit and the goal is to find the arm that max-
imizes infinite horizon discounted reward. The downside of
such approaches is that one needs to have fixed arms, and
there is no “information sharing” between arms. How to dis-
cretize the space into arms is an interesting problem. For the
purposes of this paper, we discretize the space from [0.5 2q∗]
in 20 steps, where q∗ is the (analytically computed) optimal
price for the specific valuation distribution. While reason-
able for evaluation, there may be situations where the need
to find a reasonable interval is a downside for bandit-based
methods. We discuss two algorithms.

A Gittins Index Scheme With Smart Priors.
Gittins and Jones introduced dynamic allocation indices

as the Bayes optimal solution to the exploration-exploitation
dilemma in the standard multi-armed bandit context [10, 8,
9]. In the context of “yes/no” rewards, a particularly useful,
computable scheme is to maintain a Beta prior on each arm.
This takes advantage of the conjugate nature of the Beta dis-
tribution for Bernoulli observations. The distribution β(a, b)
is updated to β(a+ 1, b) upon success and β(a, b+ 1) upon
failure. For every pair (a, b) we can calculate the Gittins in-
dex G(a, b). For simplicity we assume that when a+b ≥ 500,
the mean a

a+b
represents the correct probability of success

for that arm. We choose the arm to play next by multiplying

Parameters: Price Q ∈ [0.5, 2q∗]K , Matrix G of Gittins
Indices.
Initialization: n = 0 (# buyers so far) , Divide Q in 4
regions in increasing order of magnitude. Initialize state S
for each of the K arms according to the region they lie in:
from lower to higher: (4,1),(3,2),(2,3),(1,4)

For each k in Buyers do:

1. Price the item at Qj which maximizes Qj .G[Sj ]. De-
note the chosen price by Qj∗.

2. If the buyer buys, set Sj(a) = Sj(a) + 1 else set
Sj(b) = Sj(b) + 1

Table 1: A Gittins-Index Based Algorithm. The K
parameter governs the discretization of the space
(we use K = 20).

the Gittins index for each arm with its payoff if the arm is
successful, Si = qiG(ai, bi) and choosing the arm with high-
est Si. This is equivalent to maintaining Gittins indices on
arms with two payoffs, 0 and qi [16].

The standard approach of initializing all the arms with the
same prior is inappropriate in this case, because we know
that the probability of a buyer buying at a higher price is
lower. Thus we arrange the arms in increasing order of their
weights and divide them in 4 region. We initialize arms
in the region with lowest weight with a Beta (4, 1) prior,
the next lowest with a Beta (3, 2) prior, next with (2, 3)
and the remaining with (1, 4). As expected, this weighting
of the priors significantly outperforms uniform priors on all
the arms. Table 1 shows the final algorithm in detail.

UCB1.
Much work on digital goods auctions has focused on al-

gorithms with good regret bounds. Two of these that are
based on algorithms for multi-armed bandit problems have
gained particular attention, namely the EXP3 algorithm [2,
3] and the UCB1 algorithm [1, 15]. Kleinberg discusses a
“continuum armed” bandit algorithm called CAB1, which is
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Parameters: Price Q ∈ [0.5, 2q∗]K , Number of buyers:
nob.
Initialization: n = 0 (# buyers so far)

For each k in first K buyers do:

1. Price the item at Qk

2. nk = 1;n = n+ 1

3. If the buyer buys then xk = Qk else xk = 0

For the remaining buyers at each time instant t do:

1. Price the item at Qj which maximizes
xj
nj

+
√

2 lnn
nj

.

Denote the chosen price by Qj∗.

2. nj∗ = nj∗ + 1;n = n+ 1

3. If the buyer buys, set xj∗ = xj∗ + Qj∗ and update
total profit

Table 2: Algorithm UCB1, adapted to our setting.
The K parameter governs the discretization of the
space (we use K = 20).

a wrapper around algorithms like UCB1 or EXP3 for con-
tinuous spaces [14]. We perform extensive empirical tests
on all these algorithms, adapted to our setting. UCB1 and
EXP3 discretize the action space and treat each possible
price as a unique possible action (or “arm” in bandit lan-
guage). The EXP3 and UCB1 algorithms are specifically
designed for adversarial and I.I.D scenarios respectively. As
expected, we find that EXP3 is outperformed (or equaled
in performance) by UCB1 in all our I.I.D. scenarios, so we
do not report results from EXP3. While one would expect
CAB1 to perform well, since it is designed for continuous
action spaces, it is geared more towards producing useful
regret bounds, and does not take advantage of the struc-
ture of the search space, instead using doubling processes to
efficiently scan a potentially large continuum. It is outper-
formed by UCB1. The specific form of the UCB1 algorithm
we use is shown in Table 2.

4. EXPERIMENTAL RESULTS
We consider various different distributions that generate

demand. We restrict ourselves to I.I.D. assumptions rather
than considering adversarial scenarios.

Choice of distributions.
We consider three sets of valuation distributions that gen-

erate a wide range of optimal prices:

1. Uniform on [0, B] where B is 4, 2.5, 1.5.

2. Exponential with rate (λ) parameters 1.75, 0.8, 0.5.

3. Log-normal with location (µ) and scale (σ) parameters
(1, 1), (1, 0.75) and (1, 0.5).

Analysis of Results.
Each simulation consists of a stream of n buyers, arriving

one after the other, each buyer has a valuation v that is
sampled at random from the valuation distribution. The
seller chooses a price q to offer, and if v ≥ q the buyer
goes through with the purchase, otherwise she turns down
the offer. In Figure 4 we report results averaged over 1000
simulations of the process, each consisting of 500 time steps.

In addition to comparing the algorithms, in cases where
the linearity assumption of LLVD is violated (exponential
and log-normal valuation distributions), we are interested in
quantifying how much of the regret of the algorithm can be
attributed to the linearity assumption itself, and how much
may be due to not learning the best possible linear func-
tion. In order to study this, we also report the analytical
profit that would be achieved by using the linear function
of the form 1− γq to model the probability of buying, when
γ is chosen so that the functional distance between the uni-
form distribution on [0, 1/γ] and the true target valuation
distribution is minimized. We evaluate functional distance
between the two distributions as the sum of squared differ-
ence between their c.d.f (square of L2-Norm of the difference
of the c.d.f). Let F (x) and G(x) be the two distributions

fd = L2-Norm =

√∫ ∞
0

(F (x)−G(x))2 dx

In our case where F (x) is the uniform distribution in the
interval [0, B] where B = 1/γ.

D = fd
2 =

∫ B

0

(F (x)−G(x))2 dx+

∫ ∞
B

G2(x) dx

Further details are in Appendix A.
Uniform valuation distributions (linear demand) As
expected, LLVD always learns the correct distribution rapidly
in these cases, significantly outperforming UCB1 and the
Gittins-index based scheme.
Exponential valuation distributions In this case,
Pr(Buyer Buys|q) = e−λq, where λ is the rate parameter.
LLVD performs either better than or as well as the Gittins-
index based scheme in these cases, and significantly outper-
forms UCB1.
Log-normal valuation distributions For the log-normal,
Pr(Buyer Buys|q) = 1−φ( ln q−µ

σ
), where µ and σ are the lo-

cation and scale parameters for the log-normal distribution.
While LLVD dominates UCB1, the Gittins-index based sch-
eme is competitive, sometimes performing better and some-
times worse. LLVD may have trouble with these cases be-
cause the log-normal distribution is harder to approximate
with a linear function, or because the learning process is
thrown off. In some cases LLVD even outperforms the“best”
linear function (indicating that the fit over the entire dis-
tribution is not necessarily the best measure when profit-
seeking behavior is determined by only a portion of the dis-
tribution), providing evidence for the latter explanation.

A note about long-term learning.
It is worth noting that in the long-term, when the LLVD

algorithm converges to a suboptimal price, it remains sub-
optimal, whereas bandit-based algorithms keep learning and
slowly improving their performance over time. In some cases
(like exponential distributions with λ = 0.5, 0.8) where LLVD
and the Gittins index scheme perform similarly, the perfor-
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Figure 4: Main experimental results: Each graph shows the time-averaged profit received at any time,
averaged over 1000 simulations and the 95% confidence interval. The top row shows uniform valuation
distributions, corresponding to the model LLVD is based on. The second row shows exponential valuation
distributions, and the bottom row log-normal ones. All values are represented as fraction of optimal profit.

mance of the Gittins index scheme continues to improve over
time, eventually exceeding that of LLVD. Our primary in-
terest is in maximizing revenue in the initial stages, because
we assume that over time the distribution can be learned
anyhow, perhaps in an “off-policy” manner.

5. DISCUSSION
As dynamic pricing becomes a reality with intelligent age-

nts making rapid pricing decisions on the Internet, the field
of algorithmic pricing has developed rapidly. While there
has been continuing work on revenue management and in-
ventory issues in operations research, the study of posted
price mechanisms for digital goods auctions has mostly been
confined to theoretical computer science, inspired by devel-
opments from computational learning theory. As a result,
the focus has mostly been on deriving regret bounds rather
than developing and analyzing algorithms that could prove

useful in practice. In the spirit of Vermorel and Mohri’s
empirical analysis of algorithms for bandit problems [20],
we believe that it is important to test algorithms in simu-
lation, and ideally in real-world environments, or at least
using real-world data. This paper starts exploring this path
with simulation experiments.

We find that the UCB1 algorithm, which has some desir-
able theoretical properties for posted price auctions with un-
limited supply, can be slow to learn in simple simulated en-
vironments; further, choosing the right number of arms can
have a significant effect on performance (we experimented
with several different numbers of arms to come up with a
good number, reported in this paper). Theoretical exten-
sions to spaces with a continuum of actions, like CAB1, fare
no better. However, there are two promising directions: (1)
an algorithm based on making a linearity assumption about
the demand curve performs well, even when the true model
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is not linear. Additionally, our experimental results and the-
oretical analysis of the linearity assumption indicate that it
may be a very useful approximation, far beyond just for
truly linear models. (2) Using simple but appropriate priors
in a Gittins-index based scheme also shows promise. There
is still scope to further improve performance by enabling
better information sharing between arms. One possibility
is to apply knowledge gradient techniques [18, 17] to the
pricing problem, but current state-of-the-art KG techniques
also do not account for correlation between arms. Exist-
ing extensions typically consider multivariate normal priors,
though, which are not appropriate for monotonic functions
like demand. This is a fruitful area for future work.
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APPENDIX
A. FUNCTIONAL DISTANCE

Let F (x) = x
B

represent the c.d.f of Uniform distribution
over the interval [0 B] and G(x) be the c.d.f be the actual
valuation distribution. L2-Norm for the difference between
the two distributions is given by:

fd =

√∫ ∞
0

(F (x)−G(x))2 dx

For convenience we consider D = fd
2, written as

D = fd
2 =

∫ ∞
0

((1−G(x))− (1− F (x)))2 dx

Let F1(x) = 1− F (x) and G1(x) = 1−G(x). Then

D =

∫ B

0

F 2
1 (x) dx− 2

∫ B

0

G1(x)F1(x) dx+

∫ ∞
0

G2
1(x) dx

=
B

3
− 2

∫ B

0

G1(x)F1(x) dx+

∫ ∞
0

G2
1(x) dx

differentiating w.r.t B and setting to 0 to calculate minima,
we find

1

3
− 2

∫ B

0

qG1(x)

B2
dx = 0

This equation can easily be solved numerically for G(x) ex-
ponential and lognormal respectively, and it can be verified

that d2D
dB2 > 0 for minima.
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