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ABSTRACT
The behavior composition problem involves realizing a virtual tar-
get behavior (i.e., the desired module) by suitably coordinating the
execution of a set of partially controllable available components
(e.g., agents, devices, processes, etc.) running in a shared partially
predictable environment. All existing approaches to such prob-
lem have been framed within strict uncertainty settings. In this
work, we propose a framework for automatic behavior composition
which allows the seamless integration of classical behavior compo-
sition with decision-theoretic reasoning. Specifically, we consider
the problem of maximizing the “expected realizability” of the tar-
get behavior in settings where the uncertainty can be quantified.
Unlike previous proposals, the approach developed here is able to
(better) deal with instances that do not accept “exact” solutions,
thus yielding a more practical account for real domains. Moreover,
it is provably strictly more general than the classical composition
framework. Besides formally defining the problem and what counts
as a solution, we show how a decision-theoretic composition prob-
lem can be solved by reducing it to the problem of finding an opti-
mal policy in a Markov decision process.

Categories and Subject Descriptors
I.12.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods.

General Terms
Theory, Verification, Algorithms.

Keywords
Behavior composition, decision theory, synthesis.

1. INTRODUCTION
In this work, we develop a decision theoretic account for be-

havior composition, that is, the problem of synthesizing a smart
controller that is able to realize a virtual (i.e., non-available) tar-
get behavior module by suitably coordinating a set of available be-
haviors acting in a shared environment. Such problem has been
extensively studied in the web-service composition literature (e.g.,
[1, 2]), where behaviors are deterministic and represent services,
and more recently within the AI literature in more general settings
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(e.g., [5, 10, 11]), where nondeterministic behaviors may stand for
the logic of various artifacts, such as agents or agents’ high-level
plans, physical devices, business processes, or software modules.
Nonetheless, all approaches to behavior composition have assumed
a setting of strict uncertainty [6], in that the incomplete informa-
tion, for example, on the dynamics of the environment or on that
of the available behaviors, cannot be quantified in any way. Hence,
classical behavior composition problems may only accommodate
exact solutions, that is, controllers that will guarantee the realiza-
tion of the given target module no matter what. In many settings,
however, while exact solutions may not exist, the ability to obtain
a controller realizing the target module to the highest degree—the
“optimal” controller—is desirable.

In order to better deal with non-solvable behavior composition
instances, a framework in which different non-exact controllers can
be compared is required. To that end, we propose an extension of
the classical composition problem that goes beyond strict uncer-
tainty, by accommodating ways of quantifying the different uncer-
tainties in the model. Following the literature in behavior composi-
tion, we abstract the actual behaviors and environment as finite state
transition systems. More precisely, each available module is rep-
resented as a nondeterministic transition system (to model partial
controllability); the target behavior is represented as a determinis-
tic transition system (to model full controllability); and the environ-
ment, which is fully accessible by all behaviors, is represented as a
nondeterministic transition system (to model partial predictability).

As one can observe, in the above model, there are three sources
of uncertainty stemming from the potential nondeterminism in both
the environment and the available behaviors as well as in the po-
tential different transitions in the target behavior. In the extended
behavior composition framework to be developed here, all three
uncertainties can be quantified. Note this is a reasonable assump-
tion in many realistic settings, in which such information is readily
available to the modeller. Consider a domain in which different
bots are meant to maintain a garden, by performing various gar-
dening activities such as cleaning, watering, and plucking flowers.
Some bots may be equipped with buckets that may, nondetermin-
istically, get filled after using it, and such nondeterminism can be
quantified depending on various aspects of the domain (e.g., size of
the bucket, average amount of dirt collected in a single action, etc.)
Similarly, execution of actions in the garden environment—where
the bots are meant to operate—can also be represented stochasti-
cally: a single clean operation may not always successfully clean
the whole garden; the probability of a successful clean depends,
for example, on the size of the garden and the season. More in-
terestingly, given that the desired target behavior for maintaining
the garden may involve more than one action from a given state,
probabilities can be assigned to these depending on their expected

575



frequency. For instance, in some state, the gardening target system
is expected to request the plucking action 30% of the time only,
most times it will just request watering the garden.

The contributions of this paper are threefold. First, building
on [10, 5, 11], a decision theoretic framework for behavior com-
position is developed. In doing so, we define the notion of opti-
mal composition controllers using the “expected realizability” of
the target, as well as the notion of exact compositions, that is, con-
trollers that will solve the composition problem robustly. Unlike
previous frameworks for behavior composition, the proposed one
is able to deal with problems that do not accept exact solutions.
Second, we provide a translation of a decision theoretic behavior
composition problem into a Markov decision process (MDP) [8, 6],
and show that finding an optimal policy for such MDP amounts to
finding an optimal composition. This problem reduction provides a
readily available technique for solving the new composition frame-
work using the established MDP paradigm. Third, we show that the
decision theoretic framework developed here is a strict extension of
the classical behavior composition frameworks in the literature.

2. THE PROBABILISTIC FRAMEWORK
Classical behavior composition problems are stated on an ab-

stract framework based on a sort of finite state transition systems
(see, e.g., [1, 5, 10, 11]). Specifically, the so-called (available) sys-
tem includes a set of available behaviors representing those artifacts
or devices at disposal that are meant to run within a shared environ-
ment. A target behavior then stands for such module that is desired
but not directly available and is therefore meant to be “realized” by
suitably composing the available behaviors in the system.

In a classical composition problem, incomplete information on
any component is modeled by means of nondeterminism in the tran-
sition systems (in the available behaviors or in the environment) or
different action transitions per state (in the target). However, all the
work so far on the problem of behavior composition has assumed a
setting of strict uncertainty [6] in that the space of possibilities—
possible effects of actions, evolution of behaviors, and future action
requests—is known, but the probabilities of these potential alterna-
tives is not quantified.

In this section, we extend the framework used in [11, 10] to ac-
commodate stochastic measures in the different components, thus
yielding a framework for behavior composition under (non-strict)
uncertainty. In particular, we use probabilities to model the un-
certainty of the dynamics of the environment and of the available
behaviors, as well as of the preferences on actions in the target
module. Such probabilities are provided by a domain expert who
is able to state how often a device happens to fail, an action brings
about its expected effects, or certain requests arrive to the system.

Environment.
As standard in behavior composition, we assume to have a

shared fully observable environment, which provides an abstract
account of actions’ preconditions and effects, and a mean of com-
munication among modules. Since, in general, we have incomplete
information about the actual preconditions and effects of actions,
we shall use a stochastic model of the environment. Thus, given
a state and an action to be executed in such state, different suc-
cessor states may ensue with different probabilities. Formally, an
environment is a tuple E = 〈A, E, e0,PEnext〉, where:

• A is a finite set of shared actions;

• E is the finite set of environment’s states;

• e0 ∈ E is the initial state of the environment;

• PEnext : E × A × E 7→ [0, 1] is the probabilistic transition
function among states: PEnext(e, a, e

′) = p, or just e
a:p−→ e′

in E , states that action a when performed in state e leads
the environment to a successor state e′ with probability p.
Furthermore, we require that for every e ∈ E and a ∈ A,∑
e′∈E
PEnext(e, a, e

′) ∈ {0, 1}, that is, the action is not exe-

cutable (the sum is 0) or all possible evolutions of the envi-
ronment are accounted (the sum is 1).

EXAMPLE 1. A scenario wherein a garden is maintained by
several bots is depicted in Figure 1. To keep the garden healthy
one needs to regularly water the plants, pluck the ripe fruits and
flowers, clean the garden by picking fallen leaves and removing
dirt, and emptying the various waste bins. Whereas cleaning and
emptying the bins is a regular activity, plucking and watering are
done as required. The environment E models the states the garden
can be in. The environment allows plucking and cleaning activi-
ties to be done in any order, and plants can be watered in any state.
The pluck action results in the flowers and fruits been fully plucked
75% of the time (i.e., 25% of the time the garden still remains to
be plucked), whereas the clean action results in the garden being
totally cleaned 20% of the time (i.e., dirt still remains 80% of the
time). A pluck action from the initial state (e0) results in the garden
been plucked but dirty (e2) with a probability of .75, a subsequent
clean action results in the garden being both plucked and clean (e3),
with a probability of .2. Similarly, a clean action from the initial
state results in the garden being fully clean but not plucked (e1)
20% of the time, and a subsequent pluck action causes the garden
being cleaned and plucked (e3) 75% of the time. For simplicity,
we assume that emptying the bins always results in the environ-
ment evolving to its initial state. �

Behaviors.
A behavior stands, essentially, for the logic of some available

component (e.g., device, agent, plan, workflow), which provides,
step by step, its user with a set of actions that can be performed.
At each step, the user selects one action among those provided and
executes it. Then, a new set of actions is provided, and so on. As
behaviors are intended to interact with the environment (cf. above),
their dynamics may depend on conditions in the environment. For-
mally, a behavior over an environment E = 〈A, E, e0,PEnext〉 is a
tuple B = 〈B, b0,PBnext〉, where:

• B is the finite set of behavior’s states;

• b0 ∈ B is the initial state of the behavior;

• PBnext : B×E×A×B 7→ [0, 1] is the probabilistic transition
function of the behavior: PBnext(b, a, e, b

′) = p, or e
a,e:p−→ e′ in

B, denotes that action a executed in behavior state bwhen the
environment is in state e will result in the behavior evolving
to state b′ with probability p. Since all potential transitions
are accounted for in the model, we require that for every b ∈
B, a ∈ A, and e ∈ E,

∑
b′∈B
PBnext(b, a, e, b

′) ∈ {0, 1}.

Behaviors are, in general, nondeterministic, that is, given a state
and an action, there may be several transitions enabled by the en-
vironment. Hence, when choosing the action to execute next, one
cannot be certain of the resulting state and of which actions will be
available later on, since this depends on what particular transition
happens to take place. In other words, nondeterministic behaviors
are only partially controllable.
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Figure 1: The garden bots system SGarden = 〈BCleaner,BMulti,BPlucker, E〉 and the target behavior TGarden.

EXAMPLE 2. In the gardening scenario, we assume there are
three available garden bots; see Figure 1. The cleaner bot BCleaner

cleans the garden by collecting the fallen leaves, dirt, waste, etc.,
into its own bucket. Most generally—90% of the time—its bucket
gets filled up with a cleaning session, and the bot has to empty it
to be able to start cleaning again. We assume the empty action in-
volves emptying all garden bins as well as the bots’ buckets. The
plucker bot BPlucker can pluck and clean the garden; since it is not
equipped with a bucket, it plucks and collects from the ground di-
rectly. Finally, the multi-bot BMulti has the capability to water the
plants and pluck. It has a small bucket, and so it needs to empty it
after every plucking session. �

A behavior is deterministic if given a state and a legal action in
that state, we always know exactly the next behavior state—the be-
havior is fully controllable through the selection of the next action
to perform. Formally, a behavior B = 〈B, b0,PBnext〉 over an envi-
ronment E = 〈A, E, e0,PEnext〉 is deterministic iff for every b, b′ ∈
B, e ∈ E, and a ∈ A, it is the case that PBnext(b, e, a, b

′) ∈ {0, 1}.
In such case, the dynamics of the behavior can be represented using
a transition relation δB ⊆ B × E × A × B, where δB(b, e, a, b′)
holds iff PBnext(b, e, a, b

′) = 1.

Target behavior.
A target behavior is basically a deterministic behavior over E that

represents the fully controllable desired behavior. A target behavior
is virtual, in the sense that it does not exist in reality and, hence, is
meant to be “realized” through the available behaviors.

Formally, a target behavior over an environment E =
〈A, E, e0,PEnext〉 is a tuple T = 〈T, t0, δ, R,Preq〉, where:

• T is the finite set of target’s states;

• t0 ∈ T is the initial state of the target;

• δ ⊆ T × E × A × T is the target’s deterministic transition
relation: 〈t, e, a, t′〉 ∈ δ, or t e:a−→ t′ in T , states that action
a executed in the target state t, when the environment is in a
state e, results in the target evolving to (unique) state t′;

• R : T×A 7→ R+ is the reward function of the target: R(t, a)
denotes the reward obtained when the action a is successfully
executed in target state t;

• Preq : T ×E×A 7→ [0, 1] is the probabilistic action request
function: Preq(t, e, a) denotes the probability of the target
requesting the execution of action a when it is in state t and

the environment is in state e. For consistency, we require that∑
a∈A
Preq(t, e, a) ∈ {0, 1}, for every t ∈ T , e ∈ E (i.e., all

possible requests are accounted for), and moreover, for all
a ∈ A, we have Preq(t, e, a) = 0 whenever there is no state
t′ ∈ T such that 〈t, e, a, t′〉 ∈ δ.

A uniform-reward target behavior is one where all actions have
the same reward, that is, there exists α ∈ R+ such that for all
a ∈ A and t ∈ T , we have R(t, a) = α.

This concludes the definition of the basic components for a
decision-theoretic behavior composition problem. As the reader
can easily note, this framework is essentially that of [5, 10, 11],
except that stochastic probabilistic transitions are used instead of
transition relations, a probability distribution over the potential ac-
tion requests is used in the specification of the target, and a reward
function is used in the target to state how “important” a particular
request is. Note also that the probability function Preq in the target
is very different to the ones used in the available behaviors and the
environment. In the former, it denotes the probability of the target
executing (i.e., requesting) an action from a given state, whereas in
the latter the corresponding function simply denotes the stochastic
evolutions of the entity.

EXAMPLE 3. The desired behavior required to maintain the
garden in a particular season is not directly represented by any of
the existing bots in the garden, and is modeled by the deterministic
uniform-reward target bot TGarden shown in Figure 1. Intuitively, the
garden should always be cleaned first to remove any fallen leaves
and dirt, followed by either plucking or watering the garden. Since
flowers and fruits do not grow everyday, the plucking is required
only 30% of the time; 70% of the time a request for watering the
garden will be issued. Finally, the bins are to be emptied, and the
whole process can repeat again. All requests are of equal value,
namely, 1 unit (second component in each transition label). �

Enacted system.
A system S = 〈B1, . . . ,Bn, E〉 is built form n, possibly non-

deterministic, available behaviors Bi, with i ∈ {1, . . . n}, acting
in a shared environment E . Since, in the simplest case, one action
can be executed at a given time, available behaviors in a system are
meant to act concurrently in an interleaved fashion.

To refer to the behavior that emerges from the behav-
iors’ joint (interleaved) executions, we use the notion of en-
acted system behavior, the synchronous product of the envi-
ronment with the asynchronous product of all available be-
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haviors. Let S = 〈B1, . . . ,Bn, E〉 be a system, where
E = 〈A, E, e0,PEnext〉 and Bi = 〈Bi, bi0,PBinext〉, for i ∈
{1, . . . , n}. The enacted system behavior of S is the tuple TS =
〈S,A, {1, . . . , n}, s0,PS〉, where:

• S = B1 × · · · × Bn × E is the finite set of TS ’s states;
when s = 〈b1, . . . , bn, e〉, we denote bi by behi(s), for i ∈
{1, . . . , n}, and e by env(s);

• s0 ∈ S, with env(s0) = e0 and behi(s0) = bi0, for each
i ∈ {1, . . . , n}, is TS ’s initial state;

• PS : S×A×{1, . . . , n}×S 7→ [0, 1] is TS ’s probabilistic
transition function, defined as follows:

PS(s, a, k, s′) =

PEnext(env(s), a, env(s′))×
PBknext(behk(s), a, env(s), behk(s′)),

if behi(s) = behi(s′), for each i ∈ {1, . . . , n} \ {k}; and
PS(s, a, k, s′) = 0, otherwise.

To distinguish which behavior acts in each enacted transition, we
label each stochastic transition in TS with the corresponding be-
havior index—all other behaviors remain still. We observe that
the sources of nondeterminism in enacted behaviors stem from two
sources, namely, the nondeterminism in the environment and the
nondeterminism in the available behaviors.

So, informally, the decision-theoretic (DT) behavior composi-
tion task is stated as follows: Given a system S and a target behav-
ior T , find the “optimal” way of (partially) controlling the avail-
able behaviors in S in a step-by-step manner—by instructing them
on which action to execute next and observing, afterwards, the out-
come in both the behavior used as well as in the environment—so
as to “best realize" a specific deterministic target behavior. In the
next section, we make this problem definition precise.

3. DT-COMPOSITION
In order to bring about the desired virtual target behavior in an

available system, we assume the existence of a (central) controller
module that is able to control the available behaviors, in the sense
that, at each step, it can observe all behaviors, instruct them to exe-
cute an action (within their capabilities), stop, and resume them. In
classical behavior composition, one then looks for a controller that
guarantees that the target will be implemented in the system al-
ways, that is, no matter how the target happens to requests actions
within its logic or how the available behaviors and the environment
happen to evolve with actions. Such controller is then deemed an
(exact) solution to the problem. From a (generalized) planning per-
spective, the composition task can be seen as that of planning for a
“maintenance” goal, namely, always maintain target realization.

When it comes to realizing a target module in a composition
framework as the one described above, though, one should not just
look for exact solutions, as in general there may be none. Instead,
one shall look for optimal ways of maximizing the “expected real-
izability” of the target in the available system.

Controller.
Before formally defining the central module in charge of coor-

dinating the available behaviors, we first need to define the techni-
cal notions of traces and histories of a system. A trace for a sys-
tem S = 〈B1, . . . ,Bn, E〉 is a, possibly infinite, sequence of states

from the enacted system behavior of the form s0 a1,k1−→ s1 a2,k2−→ · · ·
such that (i) s0 = s0; and (ii) PS(sj , aj+1, kj+1, sj+1) > 0, for

all j ≥ 0. Intuitively, a trace represents a possible (legal) evolu-
tion of the (enacted) system, where kj is the index of the behavior
which has executed action aj . A history is a just a finite prefix

h = s0 a1,k1−→ · · · a
`,k`−→ s` of a trace. We denote s` by last(h), and

the length ` of the history by |h|. The set of all histories for a given
system will be denoted byH.

So, formally, a controller for an available system S =
〈B1, . . . ,Bn, E〉 is a total function C : H × A 7→ {1, . . . , n, u}
such that, given a system history h ∈ H and an action a ∈ A
that ought to be performed, returns the index of the behavior to
which the action a is to be delegated for execution. For technical
convenience, a special value u (“undefined”) may be returned, thus
making C a total function which returns a value even for actions
that no behavior can perform.1

Now, informally, a “dead-end” is reached in a history if the con-
troller in use selects a behavior which is not capable of executing
the delegated action. Then, given two controllers, one should pre-
fer the one that reaches a dead-end with lower probability, or put it
differently, the one that has the highest probability of honoring the
target’s requests. In particular, a controller that is guaranteed not to
ever reach a dead-end will be an exact, and thus optimal, solution.

We say that a history is reachable by a controller, if starting
from the initial state of the enacted system, the behavior execut-
ing the action at each state of the history is indeed the one se-

lected by the controller. More formally, a history h = s0 a1,k1−→
· · · a

`,k`−→ s` is reachable by a controller C (in a system S) iff

ki = C(s0 a1,k1−→ · · · a
i−1,ki−1

−→ si−1, ai), for each i ∈ {1, . . . , `}.
We denote withH`C the set of all reachable histories of length ` and
HC =

⋃
i≥0HiC the set of all histories reachable by C.

Value of a controller and compositions.
In order to evaluate and compare controllers, we define the value

of a controller for a given target and system. Roughly speaking, a
controller is “rewarded” for every action request from the target that
it fulfills by a successful delegation to an available behavior. More
specifically, at every point, a controller gets a reward that depends
both on the frequency of such request and the value of (fulfilling) it.

From now on, let T = 〈T, t0, δ,Preq〉 be a target behavior to be
realized in a system S = 〈B1, . . . ,Bn, E〉. Let C be a controller
for system S, and TS be the enacted system behavior as defined
in the previous section. First, consider the case of evaluating the
performance of a controller over a finite number of requests. The
value of C for k ≥ 1 requests at system history h ∈ H when the
target is in state t ∈ T , denoted YCk (h, t), is defined as follows:

YCk (h, t) =∑
a∈A

[Preq(t, env(last(h)), a)× IRC(h, t, a) +∑
s′∈S

〈t,e,a,t′〉∈δ

PS(last(h), a, C(h, a), s′)× YCk−1(h
a,C(h,a)−→ s′, t′)],

where YC0 (h, t) = 0, for all h ∈ H and t ∈ T , and IRC(h, t, a)
stands for the immediate reward collected by the controllerC when

1Although, as we shall see later, under the full observability as-
sumption, it is enough for a controller to depend only on the final
state of the enacted system—rather than the whole history–we shall
work with the most general definition that could also be used in set-
tings with partial observability.
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requested to delegate action a at history h:

IRC(h, t, a) =


R(t, a) if ∃s′.PS(last(h), a, C(h, a), s′) > 0;

0 if C(h, a) = u;

−R(t, a) otherwise.

The value of a controller for k steps of target T in a system S
is defined as YCk = YCk (s0, t0). We say that a controller C∗ is a
k-composition if for all other controllers C, YC∗k ≥ YCk holds.

Since the target may include infinite traces, we are in general
interested in controllers that are optimal for any number of potential
requests, that is, for infinite executions of the target behavior. To
cope with unbounded executions of the target, we appeal to the use
of a discount factor, as customary in sequential decision making
over infinite episodes [6, 3]. The idea is that the satisfaction of
later target-compatible requests are less important than those issued
earlier. Formally, the value of a controller C, denoted by YCγ (h, t),
relative to a discount factor 0 ≤ γ < 1, is defined as follows:

YCγ (h, t) =∑
a∈A

[Preq(t, env(last(h)), a)× IRC(h, t, a) +

γ
∑
s′∈S

〈t,e,a,t′〉∈δ

PS(last(h), a, C(h, a), s′)× YCγ (h
a,C(h,a)−→ s′, t′)].

The use of a discount factor plays the same role as in infinite hori-
zon Markov decision processes, namely, it allows convergence of
the value of a controller [3, 8]. Note that the assumption that tem-
porally closer rewards are more important than distant ones is par-
ticularly suitable in the context of composition problems, where
behaviors may fail, the target and available system may be reset, or
the problem may not be fully solvable.

As with the finite case, the value of a controller for a given target
T and system S is defined as YCγ = YCγ (s0, t0). Finally, we say
that a controller C∗ is a γ-composition (of target T in system S) if
for all other controllers C, it is the case that YC∗γ ≥ YCγ .

Put it all together, the decision theoretic behavior composition
problem, or simply DT-composition problem, amounts to synthe-
size a γ-composition for a given system S, target behavior T , and
discount factor γ.

Exact compositions.
A behavior composition problem has an exact solution when

there exists a controller that can fully realize the target, that is, a
controller that can always honor the target’s requests, no matter
what. There have recently been various approaches in the literature
to synthesize such a controller, called a composition, if any exists
(see, e.g., [5, 10, 11, 4]). Within our decision theoretic setting,
it is important to clearly define what an exact solution is and its
relationship with “optimal” controllers.

Since the target behavior is deterministic, its specification can
be seen as the set of all possible sequences of actions that can be
requested, starting from the initial state. Thus, given any finite run
of the target, the most one could expect is that every single action
has been successfully realized in the system. This would imply that
all possible rewards in the run have indeed been collected. Since
one does not know a priori which actual run will ensue, we consider
the maximum expected reward when running the target. To make
this precise, we defineRmax

k (t, e) as the maximum expected reward
when running the target from its state t at environment state e for

k ≥ 0 steps as follows (here,Rmax0 (t, e) = 0):

Rmax
k≥1(t, e) =∑

a∈A
[Preq(t, e, a)×R(t, a)]+

∑
e′∈E

〈t,e,a,t′〉∈δ

[PE(e, a, e′)×Rmax
k−1(t′, e′)].

As above, we take Rmax
k = Rmax

k (t0, e0), for any k ≥ 0. Note
that this definition is well defined for both cyclic and acyclic tar-
gets. Of course, for an acyclic target with a longest path of length
`, it is easy to show thatRmax

k = Rmax
` , for every k ≥ `.

Thus, a controller C is an exact composition if YCk = Rmax
k ,

for all k ≥ 1, that is, C can fully and always realize a target be-
havior in the available system. Note that controllers are meant to
have full observability of the current history. A Markovian (i.e.,
memoryless) controller C is one that only looks at the current
state of the system to decide the delegation; formally, for all his-
tories h, h′ ∈ H such that last(h) = last(h′) and action a ∈ A,
C(h, a) = C(h′, a) applies. When it comes to exact solutions,
Markovian controllers are enough under full observability.

THEOREM 1. Let S be a system and T be a target behavior.
Then, if there exists an exact solution for realizing T in S, then
there exists a Markovian controller which is also an exact solution.

PROOF. Let C∗ be an exact solution for realizing T in S. For
any h ∈ H and a ∈ A, we define a new controller Ĉ(h, a) =
C∗(h′, a) if h′ ∈ HC∗ is such that last(h) = last(h′) and for
all h′′ ∈ HC∗ such that last(h′′) = last(h), it is the case that
C(h′, a) ≤ C(h′′, a) (we assume u > i, for any i ∈ {1, . . . , n}).
Otherwise, if such history h′ does not exist, we take Ĉ(h, a) = u.

It is easy to check that Ĉ is well-defined. In addition, Ĉ is
Markovian. In fact, consider two histories h1, h2 ∈ H such that
last(h1) = last(h2), and suppose that Ĉ(h1, a) = k1. Then,
C∗(h′1, a) = k1, for some h′1 ∈ HC∗ and it is easy to show that
Ĉ(h, a) = C∗(h′1, a) = k1 as well, the same witness history h′1
can be used for h2 too. Furthermore, because h′1 is reachable by
C∗, together with the fact that C∗ is indeed an exact solution, im-
plies that k1 ∈ {1, . . . , n} is a correct delegation, in the sense that
behavior Bk1 is able to perform a legal step on action a when the
environment is in state env(last(h)), and since last(h) = last(h′1),
such delegation is also legal at history h and Ĉ is also exact.

More importantly, exact solutions are guaranteed to be always
optimal controllers under unbounded runs, independently of the
discount factor chosen.

THEOREM 2. If a controller is an exact composition for a
decision-theoretic behavior composition problem, then such con-
troller is a γ-composition, for any 0 ≤ γ < 1.

PROOF (SKETCH). Let C∗ be an exact solution to a DT-
composition problem, and assume, wlog, a target with a uniform
reward α. Then, at each step, C∗ collects the maximum possible
reward of α. If a discount factor γ is used, then C∗ will collect a

reward of α × ∑̀
n=1

γn−1 over ` steps, which is indeed the maxi-

mum possible reward for a γ-composition after ` steps. Hence, C∗

is also a γ-composition for the given composition problem.

4. SOLVING DT-COMPOSITIONS
Various techniques have been used to actually solve classical

behavior composition problems, including PDL satisfiability [5],
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search-based approaches [11], LTL/ATL synthesis [9, 4], and com-
putation of special kind of simulation relations [10, 2]. Unfortu-
nately, in the context of the decision theoretic framework from Sec-
tion 2, none of these techniques can be applied. In this section, we
show how to solve a decision theoretic composition problem, by
reducing it to a Markov decision problem in a natural manner. We
also demonstrate the reduction with a proof of concept implemen-
tation using an off-the-shelf existing MDP solver.

Markov decision processes.
A Markov decision process (MDP) is a discrete time stochastic

control process [8, 3]. At each step, the process is in a state q,
the decision maker chooses an action a, the process evolves to a
successor state q′ with some probability, and the decision maker
receives certain reward r. The “best" decision maker is one that
collects maximum (potential) rewards over time.

Formally, a Markov decision process (MDP) is a tuple
M = 〈Q,A, p, r〉, where:

• Q is a (finite) set of states;

• A is a (finite) set of actions;

• p : Q × A × Q 7→ [0, 1] is the probabilistic state transi-
tion function: p(q, a, q′) denotes probability of the process
evolving to state q′ when action a is executed in state q;

• r : Q × A 7→ R is the reward function: r(q, a) denotes the
immediate reward obtained when action a in executed state q.

A policy—the decision maker—is a collection of state-action
mappings stating what action to take in each state of the process.
Formally, a (stationary) policy is a function π : Q 7→ A; π(q) de-
notes the action to be taken in state q. Solving an MDP involves
then computing a policy that accumulates maximum reward over
time. In doing so, one can be interested in finite horizon problems,
where the decision maker is meant to perform a fixed number of
sequential decisions, or infinite horizon problems, where rewards
over infinite runs of the MDP are considered.

So, the value of an optimal policy in a state q for a finite horizon
k is given by the following Bellman’s principle of optimality [8, 3]:

V ∗k (q) = max
a∈A
{r(q, a) +

∑
q′∈Q

p(q, a, q′)× V ∗k−1(q′)}.

Similarly, the value of an optimal policy in a state q for infinite
horizon relative to a discount factor of 0 ≤ γ < 1 is as follows [7]:

V ∗(q) = max
a∈A
{r(q, a) + γ

∑
q′∈Q

p(q, a, q′)× V ∗(q′)}.

Howard [7] showed that there always exists an optimal station-
ary policy for infinite horizon problems, that is, one that does not
depend on which stage a decision is taken.

From behavior composition to MDPs.
With the notion of MDPs at hand, we show next how to reduce

a DT-composition problem, as described in Sections 2 and 3, to the
problem of solving an MDP.

Informally, in our setting, the decision maker is the controller,
and thus, the possible actions that can be taken are those of be-
havior delegation. Consider then a system S = 〈B1, . . . ,Bn, E〉,
with TS denoting the corresponding enacted system behavior, and
a target T = 〈T, t0, δ, R,Preq〉. We define the corresponding MDP
encodingMS,T = 〈Q,A, p, r〉 as follows:

• Q = S × T × A ∪ {qinit}, where for all 〈s, t, a〉 ∈ Q,
Preq(t, env(s), a) > 0. Given an MDP state q = 〈s, t, a〉 ∈
Q, we define sys(q) = s, tgt(q) = t, and req(q) = a. A
special, domain independent, state qinit is used as a “dummy"
initial state of the process.

• A = Index = {1, . . . , n, u}, that is, an action in the encoded
MDP stands for a behavior selection (or no selection at all).

• The state transition function is defined as follows:

p(q, i, q′) =



Preq(tgt(q′), env(sys(q′)), req(q′)), if
q = qinit, sys(q′) = s0, tgt(q′) = t0;

PS(sys(q), req(q), i, sys(q′))×
Preq(tgt(q′), env(sys(q′)), req(q′)), if
q 6= qinit;

0, otherwise.

• The reward function is defined as (α = R(tgt(q), req(q))):

r(q, i) =



α if PS(sys(q), req(q), i, sys(q′)) > 0

for some q′ ∈ Q and q 6= qinit;

0 if i = u or q = qinit;

−α otherwise.

In the resulting MDP, a state is built from the state of the enacted
system behavior (which includes the states of the environment and
those of all available behaviors), the state of target behavior, and an
action being requested; in other words, a “snapshot” of the whole
composition problem. Each transition in the MDP represents the
behavior—through its index—to which the current request is dele-
gated for execution. The dynamics of the MDP encodes both the
dynamics of the enacted system behavior and the target behavior,
as well as that of the stochastic process (i.e., the user of the target)
that is requesting actions. Finally, the reward function in the MDP
merely mimics that of the encoded behavior composition problem;
no reward is given from the initial dummy state, and an unfeasible
delegation (i.e., one where the chosen behavior may not perform
the action) receives a penalty (i.e., it is better to prescribe “u”).

Given a policy π : Q 7→ Index for the MDPMS,T , we define

the induced controller Cπ(h, a), where h = s0 a1,k1−→ · · · a
`,k`−→ s`,

with ` ≥ 0 and a ∈ A, as follows:

Cπ(h, a) =


π(q) if sys(q) = last(h), a = req(q), and

t0
env(s0):a1−→ · · · env(s`−1):a`−→ tgt(q) in T ;

u otherwise.

Note that the output for histories that do not yield any legal evo-
lution of the target is irrelevant, and hence, we just output value u.

We now state the main result of the section, namely, a solution to
the encoded MDP yields an optimal controller for the correspond-
ing DT-composition problem.

THEOREM 3. Let S be an available system and T a target be-
havior. Let MS,T be the corresponding MDP encoding as de-
scribed above. If π∗ is an γ-optimal policy for MS,T , then its
induced controller Cπ∗ is an γ-composition for realizing T in S.
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PROOF (SKETCH). This is proved by showing that a solution
to the optimality equation of the encoded MDP conforms to the
solution of the equation for a composition. Specifically, we show,
by induction on `, that γYCπ` (s0, t0) = V π`+1(qinit), where γ is a
discount factor, ` ≥ 0, and π is a policy forMS,T . To that end,
we rely on the fact that the value of a controller and that of a policy
in the MDP can be re-written as follows. First, the value of the
controller for k + 1 steps can be re-written as:

YCπk+1(s0, t0) =

YCπk (s0, t0) +

γk
∑

h∈HCπ
k

[PrCπ (h)
∑
a∈A
Preq(th, env(last(h)), a)× IRCπ (h, th, a)],

whereHCπk is the set of all histories of length k that may be reached
by following controller Cπ , PrCπ (h) is probability of such history
arising, and th stands for the resulting (unique) state of the target
after having performed all the actions in h.

Second, the cumulative reward gained by policy π after k + 2
steps can be re-written as follows:

V πk+2(qinit) =

V πk+1(qinit) + γk+1 ∑
λ∈Λπ

k+1

[Prπ(λ)× r(last(λ), π(last(λ)))],

where Λπk is the set of all MDP sequence of states of length k that
may be traversed when following policy π, and Prπ(λ) is the prob-
ability of sequence λ arising.

The fact that γYCπ` (s0, t0) = V π`+1(qinit), together with the fact
that every controller is always related to some policy in the MDP
(even non-Markovian controllers), is enough to prove the thesis.

This result proves the correctness of the encoding, and provides
us with a technique for solving DT-composition problems, by us-
ing, for instance, policy-iteration implementations [7].

EXAMPLE 4. We generated the optimal policy for the garden
scenario from Figure 1 by using a simple existing MDP solver.2

The problem does not actually have an exact solution. To see that,
consider the sequence of action requests clean ·water · empty com-
patible with the target TGarden. It is not hard to verify that the first
and last actions need to be delegated to bot BCleaner, whereas the
second action water ought to be delegated to bot BMulti. However,
bot BCleaner will be able to perform the last action empty only if
it has evolved to state a1 after clean’s execution. Otherwise, if
BCleaner happens to stay in state a0 instead, action empty cannot be
realized in the system SGarden and a dead-end is reached.

Note, though, that the chances of BCleaner evolving to state a0 are
indeed low. Hence, an optimal controller—a composition—should
still choose BCleaner to execute the first clean action. This is indeed
the controller induced by the optimal policy found when solving
the corresponding MDP, which is partially listed below as output
by the MDP solver (BEH0, BEH1, and BEH2 stand for behaviors
BCleaner, BMulti, and BPlucker, respectively):

Beh:0 0 0 | Tgt:0| Env:0|Act:CLEAN ------> BEH0
Beh:0 0 0 | Tgt:1| Env:0|Act:WATER ------> BEH1
Beh:1 0 0 | Tgt:1| Env:0|Act:WATER ------> BEH1
Beh:1 0 0 | Tgt:2| Env:0|Act:EMPTY ------> BEH0
Beh:0 0 0 | Tgt:2| Env:0|Act:EMPTY ------> U
...

2http://copa.uniandes.edu.co/software/jmarkov/

Observe that if after doing a clean action, behavior BCleaner

(BEH0) stays in its state a0, the policy prescribes U, thus signal-
ing a dead-end in the composition.

In turn, the following rules in the policy will successfully realize
the request sequence clean · pluck · empty:

Beh:0 0 0 | Tgt:0| Env:0|Act:CLEAN ------> BEH0
Beh:0 0 0 | Tgt:1| Env:0|Act:PLUCK ------> BEH1
Beh:0 1 0 | Tgt:1| Env:0|Act:WATER ------> BEH1
Beh:0 1 0 | Tgt:3| Env:0|Act:EMPTY ------> BEH1

Finally, botBPlucker (BEH2) will be used by the induced controller
in cases as the following ones:

Beh:0 1 0 | Tgt:1| Env:0|Act:PLUCK ------> BEH2
Beh:0 1 1 | Tgt:0| Env:0|Act:CLEAN ------> BEH2

Observe that in the configuration of the second rule, behavior
BCleaner is also able to perform the cleaning action; however, it is
best to use the plucker bot as it will bring it to state c0, from where
it is able to pluck again if needed (see that bot BMulti is in state b1
from where it cannot pluck).

All the above rules are only for the cases in which the environ-
ment remains in its state e0, other (similar) rules exist in the pol-
icy/controller for other environment states. �

Exact compositions.
As discussed, in a decision theoretic composition problem, one

looks, in general, for the “best” possible controller, since exact
compositions may not exist. Nonetheless, the following result
states that if one does exist, it is enough to restrict to the finite hori-
zon case in the corresponding MDP (without losing optimality).

THEOREM 4. If there exists an exact composition for realizing
a given target T in a system S, then the controller induced by any
(|Q|+ 1)-optimal policy for MDPMS,T is an exact composition.

PROOF (SKETCH). This follows from the fact that there exists
an optimal policy forMS,T that is stationary (which can be proven
by relying on the fact that there exists a Markovian exact composi-
tion due to Theorem 1), and the fact that by optimizing the MDP up
to Q + 1 steps, it is guaranteed that all possible configurations of
the whole composition framework—which includes both available
system and target—are taken into account.

This result is important in that it provides a way of verify-
ing whether a DT-composition problem accepts an exact solution,
namely, find an optimal policy π for horizon |Q| + 1 and check
whether YCπ|Q| = Rmax

|Q| (recall the first step in the MDP involves no
action request and attracts no reward). Of course, it is possible to
restate the above theorem in terms of an infinite horizon problem:

COROLLARY 1. If there exists an exact composition for real-
izing a given target T in a system S, then there exists a discount
factor γ̂ such that for any γ-optimal policy π for MDPMS,T , with
γ≥ γ̂, the induced controllerCπ is an exact composition of T in S.

When no exact composition exists, though, all one can do is to
settle for the (best) controller induced by an optimal policy in the
encoded MDP. Since non-exact compositions will include dead-
ends, that is, possible histories where some target-compatible re-
quest may not be fulfilled, other mechanisms will be required to
bring the overall system to a “healthy” configuration, such as reset-
ting the whole system or even some parts of it.
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We close this section by relating our approach to behavior com-
position with the “classical” approaches to the problem in the lit-
erature (e.g., [5, 10, 11, 4]). In such approaches, the task amounts
to decide whether an exact composition controller exists (and to
synthesize one if any) in settings under strict uncertainty. The dy-
namics of behaviors and that of the environment are represented
by means of transition relations, rather than probabilistic transition
functions. As a result, the designer can only model whether a tran-
sition is possible or not. In addition, the target behavior does not
include a probabilistic request function Preq, but simply a transition
relation stating what actions can be legally requested.

As expected, the following result states that our DT-composition
framework is at least as expressive as the classical one.

THEOREM 5. For any instance of a classical behavior compo-
sition (as in [10, 11]), there is a decision-theoretic behavior com-
position instance such that there exists a composition solution for
the former iff there exists an exact composition for the latter.

PROOF (SKETCH). This is shown by building a DT-
composition problem instance as follows:

• The environment probabilistic transition function is de-
fined such that PEnext(e, a, e

′) = 1/|∆(e, a)|, whenever
〈e, a, e′〉 ∈ ρ, where ρ is the transition relation of the original
classical environment and ∆(e, a) = {e′ | 〈e, a, e′〉 ∈ ρ}.
• The probabilistic transition function for each available be-

havior Bi is defined as PBinext(b, e, a, b
′) = 1/|∆(b, e, a)|,

whenever 〈b, e, a, b′〉 ∈ δi, where δi is the transition re-
lation of the original classical available behavior Bi and
∆(b, e, a) = {b′ | 〈b, e, a, b′〉 ∈ δi}.
• The probabilistic action request function of the target be-

havior is defined Preq(t, e, a) = 1/|∆(t, e)|, whenever
〈t, e, a, t′〉 ∈ δT , where δT is the transition relation of the
original target and ∆(t, e) = {a | 〈t, e, a, t′〉 ∈ δT }.
• The target reward function is defined as R(t, a) = 1 for all
a ∈ A and t ∈ T such thatPreq(t, e, a) > 0 for some e ∈ E.

(In all other cases, the probabilities are assumed to be zero.) It is
not hard to show that the resulting DT-composition instance has an
exact composition iff the original classical one has a solution.

Clearly, not every DT-composition problem can be mapped to
the classical setting, as it is the case with our gardening scenario. It
follows then that the framework developed here is, not surprisingly,
a strict extension of the classical ones for behavior composition.

We observe that all previous approaches provide an EXPTIME
upper bound to the computational complexity. Fully observable
MDPs can be solved in time polynomial in the size of state space
and actions [8]. Since the size ofMS,T ’s state space is indeed ex-
ponential in the number of behaviors, such bound still applies here.

5. CONCLUSIONS
In this paper, we have generalized the classical behavior com-

position problem (e.g., [11, 5, 10]) to one that is able to account
for quantified uncertainties in the domain, both in the dynamics
of the behaviors and environment, as well as in the preferences
over requests from the target user. The task then is to find the
“best" controller—a composition—that maximizes the expected re-
alizability of the target. Unlike previous approaches, the extended
decision theoretic composition framework is able to deal with un-
solvable problem instances, that is, those that do not accept ex-
act solutions. In addition, it is provably more expressive than the

classical version under strict uncertainty. In order to solve a DT-
composition problem, we showed how to reduce it to the problem
of finding an optimal policy in a Markov decision process, an es-
tablished framework for sequential stochastic decision making.

There are many open lines of research in this framework. A nat-
ural extension is to accommodate preferences over available be-
haviors. In many applications, using one component may be more
costly than using another one, e.g., it is preferred to transport goods
by car than to do by truck. Though catering for this may appear
straightforward to achieve by simply encoding, for instance, a rank-
ing over available behaviors in the reward function of the MDP, it
is not clear that all the results presented here would generalize. In
fact, under such setting, exact solutions may no longer be optimal
controllers. Another interesting issue is to combine our framework
with that of classical behavior composition in the literature. The
idea is that some actions in the target may not be compromised and
must be met in any composition. For example, once the garden has
been plucked, it is mandatory that the collected fruit be adequately
stored. Yet another possibility is to generalize the framework to one
under partial observability, and possibly using partially-observable
MDPs (POMDPs) to tackle those cases. Lastly, if rewards and tran-
sitions are not fully known, a reinforcement learning framework
could be used to find compositions while learning the domain.
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