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ABSTRACT
We analyze and extend a recently proposed model of linguis-
tic diffusion in social networks, to analytically derive time to
convergence, and to account for the innovation phase of lexi-
cal dynamics in networks. Our new model, the degree-biased
voter model with innovation, shows that the probability of
existence of a norm is inversely related to innovation prob-
ability. When the innovation rate in the population is low,
variants that become norms are due to a peripheral member
with high probability. As the innovation rate increases, the
fraction of time that the norm is a peripheral-introduced
variant and the total time for which a norm exists at all
in the population decrease. These results align with his-
torical observations of rapid increase and generalization of
slang words, technical terms, and new common expressions
at times of cultural change in some languages.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences

General Terms
Algorithms, Experimentation, Theory

Keywords
Social Simulation, Lexical Innovation, Norms, Degree-biased
Voter Model

1. INTRODUCTION
Multiagent modeling and analysis is being increasingly

applied to the study of language change [1; 3, e.g.]. In
this view, a language is seen as an emergent phenomenon
from the interactions between a population of communicat-
ing agents, and change in language is driven by linguistic
factors, such as frequency of use, and social factors like social
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network structure and popularity. Computational modeling
is especially relevant with respect to language change; it pro-
vides tools to explore the large-scale consequences of small
incremental changes that are typically studied empirically
at the individual level or the level of small communities.

One of the foundational questions in this respect is, how
do linguistic norms emerge, and how do they change? Re-
cently, Fagyal et al. [9] proposed a model, known as the
degree-biased voter model (DBVM), to study the role of
network structure and popularity in the spread of linguistic
variants. They showed that the DBVM brings together in
one model two separate factors in the emergence of linguis-
tic norms: the role of network positions, in particular the
contribution of central and peripheral agents referred to as
hubs and loners, and the role of popularity in determining
which linguistic variants are preferentially copied and prop-
agated. These factors had been separately attested to in the
empirical sociolinguistic literature [5; 16; 18; 19, e.g.], but
never combined into a model of norm emergence before.

However, their model left some important questions un-
addressed:

• From an analytical perspective, how long does it take
for a norm to emerge, i.e., what is the time to conver-
gence?

• From a sociolinguistic perspective, their model does
not address the innovation phase of the dynamics. Who
creates the new variants that go on to become norms?

The first question is relevant in that the time to convergence
is directly related to the time it takes to switch between
norms, which would allow to investigate cycles of fashion
and fad quantitatively. The second question is important
for understanding diffusion dynamics at times of increased
cultural contact when the innovation rate, for instance in the
lexicon via borrowing or other means, is particularly high.

In the present work, we analyze the DBVM to derive time
to convergence in terms of the size of the network. We
also introduce an extension to the model to include inno-
vation, and we numerically address the question of which
network positions have an advantage in terms of generating
new norms. Languages tend to be stable for long periods,
and then change in bursts (typically triggered by large-scale
social change). Our analysis and extension here, therefore,
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combine to present a more complete model of linguistic dy-
namics. The extended model shows that in situations where
the innovation rate is high, there tend to be multiple vari-
ants in competition in the network, and the period of time
for which norms exist is lower. Further, many peripheral
variants become the norm in the network. This behavior is
congruent with qualitative observations of certain types of
lexical change in French and possibly in other languages.

The rest of this paper is organized as follows: first we pro-
vide some linguistic context and a description of the DBVM,
then we analyze the model to derive expressions for time to
convergence. This is followed by a discussion of the DBVM
dynamics, which we extend to include a parameter for in-
novation. We present some simulations to analyze this ex-
tended model, and show that at low innovation rates loners,
i.e., peripheral agents who might influence others but do not
listen to anyone else in the network, are more likely to pro-
duce the variants that later become norms in the network.
As the innovation rate increases, however, both the fraction
of time that the norm is a peripheral-introduced variant and
the total time for which a norm exists at all in the popu-
lation decrease. We discuss the relevance of this model to
changes in French in the 19th Century.

2. THE DEGREE-BIASED VOTER MODEL
The importance of the social network in language change

has been recognized for a long time. Bloomfield first sug-
gested a thought experiment, where “every time any speaker
uttered a sentence, an arrow were drawn into the chart
pointing from his dot to the dot representing each one of his
hearers. At the end of a given period of time, say seventy
years, this chart would show us the density of communica-
tion within the community” [4, p. 46]. He hypothesized that
these “lines of communication” and “the relative prestige of
social groups”were the two main conditioning factors of “the
spread of linguistic features” [4, p. 345].

Since then several researchers have studied the role of so-
cial networks in language change, by mapping out specific
networks and recording the spread of linguistic variants and
emergence of norms over these networks [7, 8, 15, 18, 19,
27]. Theorizing has focused on the roles of central “hubs” or
“leaders” and peripheral “loners” or “lames” in the diffusion
process.

These and other studies have resulted in two competing
models of language change: Labov’s and Eckert’s work has
supported the so-called two-step flow of influence model [14].
This model says that the centrally-connected leaders are re-
sponsible for introducing new variants into the local net-
work, and that they themselves are primarily influenced by
other leaders. On the other hand, work by the Milroys sup-
ports the weak-tie model of influence [11, 12]. In this model,
it is the loosely-connected peripherals who introduce new
variants into the local network, which they are able to do
because they are relatively free from the regulatory influence
of the local leaders, and more in touch with outsiders.

These models are at odds with each other because they
posit different roles for the central and peripheral members
of the network: hubs are considered agents of innovation in
one, and conservative regulators in the other; peripherals
are considered barely involved in the linguistic life of the
network in one, and sources of novel variants in the other.
The question then arises, how can these seemingly mutually
contradictory explanations be reconciled?

Fagyal et al. proposed the degree-biased voter model to
answer this question [9]. In this model, each node in the
network (corresponding to an agent) is initialized with one
variant of a linguistic variable. A variant can be phonetic,
such as a flapped or fully released /t/ in the word “mittens”
(number of variants, v = 2), or it can be a stylistic or con-
textual variant of a lexical item such as the French voiture as
‘véhicule’, ‘char’, ‘tacot’, or ‘bagnole’ (v = 4), etc. Further,
edges in the network are directed, and an edge from node A
to node B is interpreted to mean that A can copy B.

Once the simulation starts, at each time step, an agent
copies a neighbor’s variant with probability proportional to
the neighbor’s in-degree (the number of edges pointing to
the neighbor). Thus, the probability that neighbor i will be
chosen to copy from is,

P (i) =
kiniP
j k

in
j

, ∀i, j ∈ N (1)

where kini is the in-degree of neighbor i, and N is a set
consisting of all the neighbors of the current node. Note that
the sum in the denominator is taken over all the neighbors
of the node.

They showed that on a scale-free network with a small
number of loners, this model results in the rapid emergence
of norms, where nearly all the agents are in the same state
(except the loners initialized in a different state). Loners re-
main fixed in their initial states because they have no links
pointing to another agent (meaning they do not copy any-
one else), but can still influence the dynamics within the
network because they have (a very small number of) links
pointing to them (meaning others can copy them). The
presence of these loners makes the system a driven, or out-
of-equilibrium, system. Thus the norms, while stable for
long periods, will eventually be replaced by other norms, as
some of the agents stochastically copy one of the loners in a
different state, and this new variant gets propagated through
the network. Interestingly, they showed that norms do not
appear if degree-biasing is not present, which implies that
norms emerge only when the system is close to equilibrium.

Their model points to a resolution of the debate over the
two competing models of language change formulated by
linguists by suggesting that both interpretations can be seen
as valid at different instants of observation of the stochastic
process of linguistic diffusion. Hubs essentially fulfill the
roles of enforcing norms, but they also rapidly spread new
variants when they themselves change their state. Loners
tend to hold on to their variants, which then sometimes
stochastically work their way up to the hubs because of short
path lengths in a scale-free network, and thereby trigger
changes in norms.

In this paper, we make this analysis more quantitative by
analytically deriving the time-scale of norm emergence, as
we now do.

3. ANALYZING THE DBVM
For analysis, we simplify the model slightly, by considering

a system of N nodes connected through undirected links.
We indicate with k the degree of each node and with nk the
fraction of nodes with degree k. We suppose that the degree
distribution is a power law with exponent ν.

We also assume that the network is perfectly uncorrelated
(a Molloy-Reed network [20]), which means that the proba-
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bility of an edge between any two nodes is given by,

P (edge xy) =
kxky
N2

.

Thus, the probability that node x copies node y in the
DBVM is given by,

P (x copies y) = P (edge xy)
kβyP

j P (edge xj)kβj
,

=

kxky
N2 kβy

kx
N2

P
j kjk

β
j

,

=
kβ+1
yP
j k

β+1
j

,

where the summation is over all the nodes in the network.
The coefficient β is the weight of the node. When β =
0 we obtain the standard voter model [23, 24], and when

β = 1, we obtain the canonical DBVM. Now,
P
j k

β+1
j =

N
P
k k

β+1nk, where nk is the fraction of nodes of degree k.

We define µβ+1 =
P
k k

β+1nk as momentum of order β + 1.
Therefore,

P (x copies y) =
kβ+1
y

Nµβ+1
. (2)

We further assume that a node can have one of only two
variants or states (i.e., v = 2), which we denote with +1
(state up) or -1 (state down). We indicate with ρk (corre-
spondingly, 1-ρk) the fraction of nodes with degree k in state
up (state down). At each iteration a node is chosen and one
of its neighbours is picked up: if the states of the two nodes
are different the first node copies the state of the second one
with a probability based on the degree of the second one.
The probability for a node with degree k and state down to
switch state can be shown to be given by:

Rk(ρk) = nk(1− ρk)
X
j

jβ+1njρj
µβ+1

= nk(1− ρk)ωβ+1 (3)

where ωβ+1 is called the weighted magnetization. Corre-
spondingly, the probability for a node with degree k and
state up to switch is given by:

Lk(ρk) = nkρk
X
j

jβ+1nj(1− ρj)
µβ+1

= nkρk(1− ωβ+1). (4)

From now on we concentrate on the DBVM, which mean
we assume β = 1 in what follows. The state of the system
is defined at every time by the vector ρ = (ρ1, ρ2, · · · , ρk)
representing the fraction of nodes with degree k and state
+1. We indicate with P (ρ, t) the probability that the system
at time t is in the configuration ρ. At each time step, the
fraction ρk can change by a quantity δk = 1

Nnk
representing

the fact that one of the nodes has switched state. Indicating
with δt = 1/N , the time evolution of the system is ruled by:

P (ρ, t+ δt) = P (ρ, t) +
X
k

Lk(ρk + δk)P (ρk + δk, t)

+
X
k

Rk(ρk − δk)P (ρk − δk, t)

−
X
k

(Rk(ρk) + L(ρk))P (ρk, t)

(5)

where P (ρk ± δk, t) indicates the configuration differing for
the state of one node with degree k, the first two sums in the
right hand side indicate the system is reaching the configu-
ration ρ, while the last one indicates the departure from the
configuration. Making a Taylor expansion with respect δk
of equation (5) till the second order, we obtain the Fokker-
Planck equation for the system:

δt
∂P (ρ, t)

∂t
=
X
k

1

Nnk

∂

∂ρk
((L(ρk)−R(ρk))P (ρk, t))

+
X
k

1

2(Nnk)2
∂2

∂ρ2
k

((L(ρk) +R(ρk))P (ρk, t))

(6)

The coefficients in the sums of (6) can be expressed in terms
of the quantities ρk, nk and ω2 as:

(Rk(ρk)− Lk(ρk)) = nk(ω2 − ρk)

(Rk(ρk) + Lk(ρk)) = nk(ρk + ω2 − 2ρkω2)
(7)

Moreover we notice that since δ2k/δt = 1/(Nn2
k), the second

term in (6) is sub-leading and can be ignored, giving:

∂P (ρ, t)

∂t
=
X
k

(ω2 − ρk)P (ρk, t) (8)

We use equation (8) to evaluate the time-evolution of the
average value (on the ensemble of all the possible configura-
tions ρ) of ω2 (indicated as 〈ω2〉):

〈ω2〉 =

Z X
k

k2nkρk
µ2

P (ρ, t)dρ

d〈ω2〉
dt

=

Z X
k

k2nkρk
µ2

dP (ρ, t)

dt
dρ

=
X
k,k′

Z
k2nkρk
µ2

∂((ρ′k − ω2)P (ρ, t))

∂ρ′k
dρ

= −
Z X

k,k′

k2nk((ρk − ω2)P (ρ, t))

µ2

∂ρk
∂ρ′k

dρ

= 〈ω2〉 − 〈ω2〉 = 0

(9)

where we have integrated by parts and exploited the fact
that the derivative term ∂ρk

∂ρ′
k

= δ(k, k′), i.e., it is null when

k 6= k′ and equal to 1 otherwise. The result implies that
the average weighted magnetization is conserved for a fixed
initial condition on the distribution ρ. The existence of
a conserved quantity, in our case ω2, determines the exit
probability, the probability of reaching a consensus state
[24]. Moreover we notice that the conservation of the aver-
age weighted magnetization determines the evolution of the
density ρk:

〈ρk〉 =

Z
ρkP (ρk, t)dρ

d〈ρk〉
dt

=

Z
ρk
dP (ρ, t)

dt
dρ

=

Z
ρk
∂((ρk − ω2)P (ρ, t))

∂ρk
dρ

= 〈ω2〉 − 〈ρk〉

(10)

that has as solution:

〈ρk(t)〉 = 〈ω2〉 − (〈ω2〉 − ρk(0))e−t (11)
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Figure 1: A simulation to show time to convergence
for varying network sizes. We ran 100 independent
trials for each network size, and the dots show the
convergence time on each trial. The solid line shows
the average convergence time. The dashed line plots
y = 75x, which shows a very good fit with the numer-
ically determined average convergence time.

meaning that immediately all the ρk reach the common value
〈ω2〉. These last two results (9,11) (the weighted magnetiza-
tion conservation and the time behaviour of 〈ρk〉) are valid
for a generic value of β. The consensus time T (ρ), the time
at which all the nodes in the system have the same state, can
be easily evaluated using the adjoint of the Fokker Planck
equation (6):X
k

(ω2 − ρk)
∂T (ρ)

∂ρk
+

1

N

X
k

(ω2 + ρk − 2ω2ρk)
∂2T (ρ)

∂ρ2
k

= −1

(12)
Since ρk ' ω2 the first sum in (12) is null and can be elimi-
nated. Moreover we can apply a change of variable:

∂

∂ρk
=
∂ω2

∂ρk

∂

∂ω2
=
k2nk
µ2

∂

∂ω2
(13)

and then equation (12) can be rewritten as:

−1 =
∂2T

∂ω2
2

(
X
k

k4nk
Nµ2

2

ω2(ω2 − 1)) (14)

The equation can be easily solved in terms of ω2:

T (ω2) = N
µ2

2

µ4

»
(1− ω2) ln(

1

1− ω2
) + ω2 ln(

1

ω2
)

–
(15)

.
The time of consensus depends on the initial randomness

in the distribution of state through ω2, a finite term, and
the size of network N explicitly and through the momenta.
The size dependence is a function of both the exponent of
the degree distribution and the momenta considered. The
consensus time is a function of the momenta of the degree
distribution and depends both on the exponent of the degree
distribution ν and on the weight β. We consider 2 ≤ ν < 3,

the maximum degree being kmax = N
1

ν−1 , and for a generic
m-momentum it follows that :

µm ∼

8><>:
N

m
ν−1−1 m > ν − 1,

logN m = ν − 1,

0(1) m < ν − 1.

(16)

The exponents of the momenta appearing in (15) are 2 and
4, which are larger than ν − 1. Using (16), thus,

T (ω2) ' constant (17)

meaning that the time to convergence is constant in the size
of the network. Note that in this analysis, one time step
is taken to involve N node updates. If we count each node
update as a time step, then we expect a linear relationship
between the size of the network and the time to convergence.

We verify the result numerically by generating random
scale-free networks (without loners) with varying N and
ν = 2.5, and measuring the time to convergence. This is
shown in fig. 1 where we plot the time to convergence for
100 independent trials for each network size. The network
size was varied from 1000 to 10000 in steps of 1000. The
convergence time for each run is plotted with a dot, and the
average for each network size is shown with squares joined
by a solid line. We see that a linear function, as expected,
provides a good fit to the data.

4. MODELING INNOVATION
The DBVM assumes that the population begins with a

set of variants, and no new variants are introduced after
that. This raises the question, where do the original variants
come from? One possibility is that for a given linguistic
feature, only a few variants are possible, and they are found
very quickly, leaving no room for further innovation of that
feature. In this case, it is safe to say that all variants exist
“from the beginning” in the population. This is not the
case in certain instances of lexical change, where new words
and near-synonyms for the same concept are not limited in
numbers.

The other approach, then, is to say that some form of in-
novation is always occurring. In this case, there would be
no reason to believe that only peripherals (or some other
subgroup) innovate. We assume, instead, that anyone can
innovate, at any time (though the innovation rate might be
low). This view is close to the position adopted by Baxter et
al., with their Utterance Selection Model [2], where nobody
produces exactly the same utterance every time. In their
model innovation can be understood as being due to ran-
dom variation in speech production, or due to noise in the
communication channel. In our model, however, we are in-
terested in discrete innovation, i.e., we are modeling change
in the lexicon, which may be triggered by external circum-
stances, such as the need for new words with the spread
of new technologies, or increased contact between different
speech communities.

It has been suggested, for instance, that in times of ac-
celerated cultural change quite a few new items with new
meaning as well as new items with near-synonymous mean-
ings to existing words can enter the lexicon. Such lexical
innovations can come from two sources. The first means of
lexical enrichment that can lead to lexical inflation over time
is borrowing, which can arise even in situations of relatively
superficial cultural contact (see Thomason and Kauffman’s
borrowing scale [26]). The second way is a specific type of
language-internal innovation and borrowing process, called
argots, jargons, and taboo [13, p. 420]. This second type
seems to be the most appropriate analogy to consider with
our innovation and diffusion model.

So the question we now ask is, during periods of high inno-
vation rate, what sorts of norms will emerge in a population?
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Figure 2: In the R-MAT algorithm, the adjacency
matrix is recursively divided into quarters, and each
quarter has a probability (a, b, c, d) associated with it.
Starting with an empty matrix, we choose quarters
recursively according to these probabilities until we
get to a single cell, whereupon we set that cell to 1
to indicate a link.

We extend the DBVM to try to answer this question, by in-
troducing a parameter p, the probability for innovation. In
this model, a node can copy a neighbor chosen with probabil-
ity proportional to the neighbors degree, as before, or, with
probability p, introduce a new variant into the language.

We study the above question by keeping track of the source
of each new variant, so that when we see a norm emerge in
the population, we can tell which agent introduced it in the
population. More precisely, we evaluate the probability that
a variant that becomes a norm was introduced by a periph-
eral agent (or equivalently, by a non-peripheral agent).

5. THE DBVM WITH INNOVATION
In this extended model, we assume that there are v pos-

sible initial variants of a certain linguistic feature. To ini-
tialize the model, we assign a uniformly randomly chosen
variant to each agent in the network at time t = 0. At
each time step after that, we choose one of the agents uni-
formly randomly. This agent updates its variant by copying
one of its neighbors with probability (1− p), where p is the
innovation rate. With probability p, therefore, the agent
introduces a new variant into the population. Variants are
numbered starting with 1.

We keep a running count of the number of agents with
each variant in the network. If one of the variants is in
use by more than 90% of the population, we say that that
variant has become the norm. Note that this means there
can be periods when there is no norm in the population.

We also keep track of which agent introduced a particular
variant, which will allow us to estimate the probability of
variants generated by a particular class of nodes (e.g., loners)
to become the norm in the network.

5.1 Generating the interaction network
Following Fagyal et al. [9], we generate the interaction

network using the R-MAT algorithm [6]. R-MAT, which
stands for Recursive MATrix, works by creating a set of
nested communities in the network. The algorithm operates
on the adjacency matrix of the network. An adjacency ma-
trix describes a network as follows: if agent x is influenced
by agent y in the social network (i.e. there is a link from
x to y), then we place a 1 at row x and column y of the
adjacency matrix, otherwise we place a 0 at that location.

The R-MAT algorithm uses four parameters, (a, b, c, d),
which correspond to four quarters of the adjacency matrix,

1 10 100
Indegree

1

10

100

Nu
m

be
r o

f n
od

es

Figure 3: Indegree distribution of a network with
900 nodes and 7561 edges, generated by R-MAT.

as shown in fig. 2. We start with an adjacency matrix filled
with zeroes. We then choose a quarter of the matrix with
probability corresponding to its parameter. We chose the
parameters a = 0.5, b = 0.1, c = 0.1, and d = 0.3. These
parameters mean, for example, that half the time we choose
the upper left quarter of the matrix. We then treat the
chosen quarter as a new matrix, divide it into quarters, and
again choose one quarter with the same set of probability
parameters. This process is repeated recursively until we
end up with a single cell, whereupon we set the value at
that cell to 1. Again, following Fagyal et al. [9], we created
a network with 900 nodes and added links to the adjacency
matrix 9000 times, which resulted in 7561 unique links.

Another advantage of using the R-MAT algorithm is that
it automatically results in a small number of loners (∼5%
of the nodes), which avoids having to artificially choose a
small number of peripheral nodes to designate as loners. The
generated network has a heavy-tailed power-law-like degree
distribution, as shown in fig. 3, and the behavior of the
DBVM on these networks is similar to its behavior on scale-
free networks.

6. SIMULATIONS
A single time step of the model corresponds to a single

agent updating its variant, either by copying a neighbor or
by innovating. Note that if an agent chooses to copy a neigh-
bor, its variant may not actually change, because the chosen
neighbor’s variant might be the same as the agent’s own.

Each simulation is run for 40 million time steps. We al-
ways start with v = 8 initial variants. The choice of number
of initial variants is arbitrary; the qualitative dynamics are
the same for other (small) values of v. Once the simula-
tion starts, agents introduce new variants in the population
with innovation rate p. We count the number of individuals
for each variant in the population every ten thousand time
steps. If a particular variant is being used by more than
90% of the population, we say that it is the norm. We mark
this on the graph by a single point for that variant number
at that timestep.

Figure 4 shows norms when the innovation rate, p =
0.0001. We see that nearly all the time, the norm is one
of the original eight variants (which are numbered from 1 to
8). Very rarely, a new variant (with number greater than 8)
becomes the norm.

Figure 4 suggests that if we observe a variant as the norm
in a population, it is due to a peripheral member, with high
probability. The next simulation increases the innovation
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Figure 4: Norms are primarily the variants held
by peripheral members, when the innovation rate
is 0.0001.

rate by an order of magnitude, i.e., p = 0.001 now. The
result is shown in figure 5. We see that, in this case, norms
are much more evenly split between the original variants and
innovative variants. This shows that probability of a non-
peripheral-introduced variant becoming the norm depends
on the innovation rate. In other words, if we observe a norm
in a network, the statistical answer to “who introduced this
into the population?” depends on the rate at which innova-
tions are being introduced into the population as a whole.
To get a more precise picture, we did a number of runs for
various values of p, varying it from 0.0001 to 0.01. The
results are shown in figure 6.

We did a ten runs for each value of p. Figure 6 shows two
curves. The dashed line is the average fraction of the total
simulation time for which a norm exists in the population.
We call this the norm time. The norm time varies from one
run to another because, even though the network is the same
every time1, the initial state of all the nodes is set randomly.
The solid line shows the fraction of the norm time for which
the norm was a variant introduced into the population by a
loner. We call this the loner fraction. The error bars show
one standard deviation.

Note that while the total number of variants generated
over the span of the simulation is quite large, there are rel-
atively few variants circulating in the network at any given
time. The lifetime of an innovation is quite short because
new variants are lost with high probability as nodes re-copy
an existing variant from another node after they generate
an innovation.

There are a few interesting things to note in figure 6. One
is that as the innovation rate increases, the fraction of time
that the norm is a peripheral-introduced variant decreases
and correspondingly the fraction of time that the norm is
a non-peripheral-introduced variant (1 - loner fraction, not
shown in figure 6) increases. Second, at the same time, the
fraction of the total time for which a norm exists at all in the
population decreases with increasing innovation rate. When
the innovation rate is 0.01, i.e. when an agent innovates
only with a one in hundred probability, no norms appear in
the population. This means that agents have to be rather
conservative if norms are to exist at all. Third, we can use
the fraction of time that a norm exists at all in the popu-

1Since we use only one network, the values we have com-
puted are network-specific, but the qualitative results are
the same across different network instantiations.
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Figure 5: Norms are relatively equally divided be-
tween peripheral and non-peripheral variants when
the innovation rate is 0.001.

lation as an index to determine innovation rate, and thus
the probability that the norm is due to a peripheral mem-
ber. This means that even if we do not know the rate at
which innovations are being introduced into the population
(and empirically, we can’t), we can still estimate the prob-
ability that a norm is due to an innovation introduced by a
peripheral.

As the innovation rate increases, the loner fraction de-
creases, which means that it becomes more and more likely
that an innovation introduced by someone other than a loner
can become the norm. The loner fraction drops below 0.5
when the innovation rate is approximately 0.002 in this sim-
ulation. At this point, it becomes more likely that an in-
novation introduced by a non-loner will become the norm,
than that an innovation introduced by a loner will become
the norm. Note that for this value of the innovation rate
(and above this value), the norm time has dropped to about
25% or less. Thus, for variants introduced by non-loners to
be more likely to become the norm, the innovation rate must
be so high that norms only exist in the population for brief
intervals.

7. LEXICAL INFLATION IN FRENCH
These findings seem to align with certain types of lexico-

semantic change, such as lexical inflation, in natural lan-
guages. The following examples will focus on lexical change
in French, which corresponds to one of the best known and
described examples of this type of change in modern Eu-
ropean languages. Lexical inflation is a process by which
lexical items with the same meaning and similar stylistic
use tend to accumulate and persist in the lexicon over time
[21, p. 155], [10, p. 118]. There is general consensus among
linguists that the lexicon resists the inclusion of too many
perfect synonyms, i.e. lexical items duplicating the same
meaning, but partial or near-synonyms can be quite numer-
ous. While theoretical models of near-synonymy are still
debated (see [25]), their practical implications have been
observed for many years.

Parallel to new near-synonyms entering the language, old
lexical items also need to persist for lexical inflation to occur.
As Posner [21, p. 155] notes with respect to lexical inflation
in French: “Most words that have outlived their time are
not consigned to the dustbin, but to the attic, whence they
can be taken out, dusted down, and brought back into use
for special occasion.” In other words, words do not neces-
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Figure 6: The dashed line shows the fraction of the
total time for which a norm existed in the popula-
tion, which we call “norm time”, against innovation
rate. We see that the norm time becomes essen-
tially zero when the innovation rate is close to 0.01.
The solid line shows the fraction of norm time for
which the norm was a variant introduced by a loner
(or one of the original variants, which are held on
to only by loners after the first norm emerges). We
call this the “loner fraction”.

sarily disappear; just become more peripheral in the lexicon.
Word-loss has indisputably characterized French, and other
languages, historically. An especially large number of words
were lost from French during the early modern period. Verb
forms, such as gésir (to lie) and quérir (to seek) that, al-
though not particularly frequent, had particularly irregular
conjugations led to the replacement of these verbs by reg-
ular forms (coucher (to lie), chercher (to seek)). However,
it has also been argued that since at least the late 18th-
century the overall picture seems to be that of lexical in-
flation: “the number of different words (types) occurring in
texts has not ceased to grow, even though for some individ-
ual words the number of instances (tokens) has regressed.”
[21, p. 155]. The question is: what possible mechanisms, if
any, might have motivated this type of inverse relationship
between type-frequency and token-frequency?

Furthermore, as near-synonyms tended to accumulate and
persist in the lexicon starting from the late 18th-century,
historians of French also noticed that the use of many pre-
viously peripheral and/or specialized lexical items became
generalized. Casting his net of spoken lexical forms much
wider than dictionaries of his time, Lazare Sainéan [22],
among others, left literary usage behind to analyze an im-
pressive array of fringe vocabulary spoken by the early 20th-
century Parisian society’s have-nots. He studied the jar-
gon of solders, butchers, sailors, shoemakers, printers, and
other corporations, as well as the secret terms, or argots, of
thieves, beggars, prostitutes, pimps, and professional gam-
blers. Together with the terms of his times’ entertainment
industry, the Parisian cabarets, Sainéan also listed the mean-
ing and stylistic connotations of terms handed down from
child language and dialectal borrowings, or provincialisms.
This wide variety of lexical items studied in their histor-
ical context lead him to one general conclusion: “Having
followed the evolution of the language of criminals until the
19th-century, I came to the conclusion that the last traces of

this idiom (whose sole reason to exist was its secrecy) have
blended into modern-day working-class Parisian French. [...]
This modern argot led to a unified idiom spoken by millions
of Parisians and French people.” [22, VII-VIII]. The sole
reason for this “penetration of jargon into ‘the vulgar’ (i.e.,
working-class spoken French)”, according to Sainéan, was
the result of more frequent and “infinitely more easy” con-
tact between different segments of French society.

Analogies between the dynamics of our computational model
and the above story of lexical innovations in industrial-age
Paris are suggestive. Increased innovation and large-scale
spread of slang words and group-specific technical terms are
first noticed in French in the modern era, i.e. starting from
the late 18th-century when task-oriented labor divisions and
technological advances in the manufacturing sector bring in
close and regular contact members of traditionally tight-knit
communities in close-reach from each other (i.e., small in
diameter and showing high clustering). Marked by flagrant
social inequalities (i.e., possibly of scale-free degree distribu-
tion), these networks could have been prominent sites of the
type of innovation and distribution dynamics exhibited in
our general model. The question whether the (inverse) re-
lationship between increased type-frequency and decreased
token-frequency is indeed governed by the same statistical
dynamics as the innovation rate increase vs. norm-time de-
crease in our model remains to be investigated empirically
in very large written and spoken language corpora. What
we hope to have accomplished in this paper is a more precise
formulation of the next series of hypotheses to be tested on
lexical inflation in French and other languages.

8. CONCLUSION
In this paper, we have analyzed and extended a model of

linguistic innovation and diffusion in social networks. We
have shown how to derive the time to convergence in the
degree-biased voter model. Our analysis follows the tech-
nique of Sood and Redner [24] of grouping nodes by degree
to derive the Fokker-Planck equation for the system. From
this we derive the adjoint equation, and the expression for
convergence time follows. It turns out that time to con-
vergence in the DBVM is simply linear in the size of the
network, when time is measured as the number of updates,
which we confirmed with a simulation.

The previous model is analogous to stable sedentary so-
cieties where there are a small number of variants for any
linguistic variable. However, as is well-attested in histori-
cal linguistics, during periods of accelerated cultural change,
languages must adapt to a greater number of innovations, es-
pecially in the lexicon. We model this situation by including
a probability of innovation into the DBVM. We did simula-
tions to qualitatively understand the nature of this extended
model, and saw that as innovation rate increases, the dura-
tion of norms decreases, as is indeed the case historically.
We also discovered that the probability of loner or periph-
eral variants becoming the norm tends to be substantially
higher than non-loner variants. This has also been empiri-
cally noted, in 19th-century French for example, which saw a
large number of terms from argots and jargons being incor-
porated into the mainstream. Our approach suggests that
a simple stochastic model might account for a great deal of
this change.

We do not, however, claim that the above are the only rea-
sons for linguistic change, or that simple stochastic models
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can account for all the variation observed empirically. There
are a number of essential sociolinguistic factors left out by
our model, including effects of gender, age, and social iden-
tity. Our goal is to model these factors incrementally, in
order to make sure that the effects of each new factor are
fully examined before including them in the model.

We end this paper by underscoring the importance of com-
putational modeling in sociolinguistics. Language is a very
complex adaptive system. The dynamics of large-scale in-
teractions and long-terms change are, we believe, impossible
to understand fully without a rigorous mathematical theory
and computational tools [17] that allow linguists to experi-
ment with factors identified in small-scale empirical studies
in sociolinguistics.
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