
Learning Action Models for Multi-Agent Planning

Hankz Hankui Zhuo
Dept of Computer Science,

Sun Yat-sen University,
Guangzhou, China.

zhuohank@mail.sysu.edu.cn

Hector Muñoz-Avila
Dept of Computer Science &

Engineering,
Lehigh University,

Bethlehem, PA, USA
munoz@cse.lehigh.edu

Qiang Yang
Dept of Computer Science &

Engineering,
Hong Kong University of
Science and Technology,

Kowloon, Hong Kong.
qyang@cse.ust.hk

ABSTRACT
In multi-agent planning environments, action models for each agent
must be given as input. However, creating such action modelsby
hand is difficult and time-consuming, because it requires formally
representing the complex relationships among different objects in
the environment. The problem is compounded in multi-agent envi-
ronments where agents can take more types of actions. In thispa-
per, we present an algorithm to learn action models for multi-agent
planning systems from a set of input plan traces. Our learning algo-
rithm Lammas automatically generates three kinds of constraints:
(1) constraints on the interactions between agents, (2) constraints
on the correctness of the action models for each individual agent,
and (3) constraints on actions themselves.Lammas attempts to sat-
isfy these constraints simultaneously using a weighted maximum
satisfiability model known as MAX-SAT, and converts the solution
into action models. We believe this to be one of the first learn-
ing algorithms to learn action models in the context of multi-agent
planning environments. We empirically demonstrate thatLammas
performs effectively and efficiently in several planning domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning -Knowledge acquisition;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence -
Intelligent agents, Multiagent systems.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Multi-Agent Planning, Multi-Agent Learning, Single-Agent Learn-
ing.

1. INTRODUCTION
Multi-agent environments are complex domains in which agents

aim at pursuing their goals while interacting with each other. For
multi-agent planning, each agent requires an action model as in-
put that takes into account the possible prerequisites and outcomes,
as well as interactions with other agents. For example, an agent
φi needs to consider many complex situations wherecooperative
agents provide conditions such thatφi’s actions can be executed.

Cite as: Learning Action Models for Multi-Agent Planning, Hankz Han-
kui Zhuo, Hector Muñoz-Avila and Qiang Yang,Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 217-224.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Furthermore, the action model should allowcooperativeagents to
delete conditions as side-effects when providing useful precondi-
tions, and be able to represent othernon-cooperativeagents that
might interfere withφi’s action. Creating action models for these
agents by hand is difficult and time-consuming due to the complex
interactions among agents.

Our objective is to explore learning algorithms that can automati-
cally learn action models in multi-agent environments thatcan then
be fed to multi-agent planning systems, such as theplanning first
system [11]. In the past, there have been several works on learning
action models for single agents, such asARMS [16] andSLAF [1].
However, these learning algorithms did not take into account multi-
agent situations. One possibility in tackling this multi-agent learn-
ing problem is to assume that there is anoracle agentthat knows
and executes all the actions of the agents. In this situation, we can
learn the action models for the oracle agent by using asingle-agent
learning algorithm, such asARMS ([16]). This approach, however,
neglects to consider the interactions between the agents and, as a
result, may increase the errors of the learned models due to the po-
tentially large number of interactions among the agents.

In this paper, we present a novel multi-agent action-model learn-
ing system known asLammas. Lammas stands for (LearningAction
Models forMulti-AgentSystems). In order forLammas to explic-
itly capture the interactions between agents,Lammas generates and
exploits an agent-interaction graph in which it captures the interac-
tions between pairs of agents. Such interactions may happenwhen
one agent’s action provides some positive, or negative, effects on
the actions of other agents. For instance, consider a domainwhere
there are two agentstruck andhoist, where the action “drive” of
agenttruck provides an effect “(at truck loc)” for the action “load”
of agenthoist, such that agenthoist can load a package to the
“truck” at location “loc”. In this example, the interactions can be
somewhat complex because the interactions areproblem-specific;
i.e., building such interactions requires to explore all possible po-
tential interactions among agents, and this is difficult to do for a
human designer when there are many agents involved. To solvethis
problem,Lammas builds the relations statistically from a training
data set that consists ofplan tracesfrom observed multi-agent plan
executions in the past. These built relations help discoveragent in-
teractions that can then be transformed to weighted constraints and
used in learning (Section 4).

For modeling the agents’ actions, in this work we adopt a deter-
ministic state-transition model expressed via theSTRIPS planning
representation language [4], slightly extended to associate actions
with agents (i.e., each action is annotated with the agent that per-
forms it). This extended language is calledMA-STRIPS [2]. In
Lammas, we first build three types of constraints fromplan traces
collected from multi-agent environments. The first type of con-

217

straints encodes the interactions among agents. The secondtype of
constraint encodes the correctness requirements of plans for each
agent. The third type encodes the constraints of actions required by
STRIPS for each agent. We then satisfy these constraints simul-
taneously using a weighted maximum satisfiability (MAX-SAT)
solver, and transform the solution into action models of each agent.

We organize the paper as follows. We first review related works
in single and multi-agent planning area. Then, we present the for-
malities for our work, and give a detailed description of ourLammas
algorithm. Finally, we empirically evaluateLammas in several
planning domains and conclude our work with a discussion on fu-
ture works.

2. RELATED WORK
In this section we review previous works on multi-agent plan-

ning, learning action models, and multi-agent learning.

2.1 Multi-Agent Planning
Our work is related to multi-agent planning. In [6], Georgeff pre-

sented a theory of action for reasoning about events in multi-agent
or dynamically-changing environments. Wilkins and Myers pre-
sented a multi-agent planning architecture for integrating diverse
technologies into a system capable of solving complex planning
problems [14]. Brafman and Domshlak (2008) established an ex-
ponential upper bound on the complexity of multi-agent planning
problems depending on two parameters quantifying the levelof
agents’ coupling [2]. They quantified the notion of agents’ coupling
and present a multi-agent planning algorithm that scales polynomi-
ally with the size of the problem for fixed coupling levels. Based
on this work, Nissimet al. (2010) presented a distributed multi-
agent planning algorithm [11]. They used distributed constraint
satisfaction (CSP) to coordinate between agents and local planning
to ensure consistency of the coordination points. To solve the dis-
tributed CSP efficiently, they modify some existing methodsto take
advantage of the structure of the underlying planning problem.

2.2 Action Model Learning
Another related work is action model learning for planning.Gil

(1994) described a system called EXPO, which learns by bootstrap-
ping an incomplete STRIPS-like domain description augmented
with past planning experiences [7]. Wang (1995) proposed anap-
proach to automatically learn planning operators by observing ex-
pert solution traces and refining the operators through practice in
a learning-by-doing paradigm [13]. Holmes and Isbell, Jr. (2004)
modeled synthetic items based on experience to construct action
models [9]. Walsh and Littman (2008) presented an efficient al-
gorithm for learning action schemas for describing Web services
[12]. ARMS automatically learns action models from a set of ob-
served plan traces [16] using MAX-SAT. Amir (2005) presented a
tractable, exact solutionSLAF for the problem of identifying ac-
tions’ effects in partially observable STRIPS domains [1].Cress-
well et al. (2009) developed a system calledLOCM designed to
carry out automated induction of action models from sets of exam-
ple plans. Compared with previous systems,LOCM learns action
models with action sequences as input, and is shown to work well
under the assumption that the output domain model can be repre-
sented in an object-centered representation [3]. In [18], an algo-
rithm was presented to learn action models and a Hierarchical Task
Network (HTN) model simultaneously. In [19], an algorithm called
LAMP is presented to learn complex action models with quanti-
fiers and logical implications. Despite these successes in action
model learning, most previous works only focused on learning ac-
tion models forsingle agents, and few work addressed the issue for

multi-agent environments. In contrast, to the best of our knowl-
edge, our systemLammas is aimed at learning action models for
multi-agent environmentsfor the first time.

2.3 Multi-Agent Learning
There has been much related work in multi-agent learning. In

early work, Guestrinet al. (2001) proposed a principled and effi-
cient planning algorithm for cooperative multi-agent dynamic en-
vironments [8]. A feature of this algorithm is that the coordina-
tion and communication between the agents is not imposed, but de-
rived directly from the system dynamics and function approxima-
tion architecture. Bowling (2005) presented a learning algorithm
for normal-form games in multi-agent environment. He proved
that the algorithm is guaranteed to converge at most zero-average
regret, while demonstrating the algorithm converges in many sit-
uations of self-play. Wilkinsonet al. (2005) developed a system
to learn an appropriate representation for planning using only an
agent’s observations and actions [15]. The approach solvedtwo
problems, namely, learning an appropriate state-space representa-
tion and learning the effects of agent’s actions. It required a high-
dimensional data set, such as sequences of images, to be given as
input. Zhang and Lesser (2010) presented a new algorithm that
augmented a basic gradient-ascent algorithm with policy prediction
[17]. The key idea behind this algorithm is that a player adjusts its
strategy in response to forecasted strategies of the other players, in-
stead of their current ones. None of these algorithms, however, can
learn action models for multi-agent planning.

3. PRELIMINARIES

3.1 Satisfiability Problems
The satisfiability problem (SAT) is a decision problem in which,

given a propositional logic formula, an assignment oftrueandfalse
values are to be determined for the variables to make the entire
propositional logic formula true. SAT is known to be NP-Complete
[5], but the flip side is that it is very powerful in its representational
ability: any propositional logic formula can be re-writtenas a CNF
formula. A CNF formulaf is a conjunction of clauses. A clause is
a disjunction of literals. A literalli is a variablexi or its negation
¬xi. A variablexi may take values 0 (for false) or 1 (for true).
The length of a clause is the number of its literals. The size of
f , denoted by|f |, is the sum of the length of all its clauses. An
assignment of truth values to the variables satisfies a literal xi if
xi takes the value 1, satisfies a literal¬xi if xi takes the value 0,
satisfies a clause if it satisfies at least one literal of the clause, and
satisfies a CNF formula if it satisfies all the clauses of the formula.
An empty clause, denoted by�, contains no literals and cannot be
satisfied. An assignment for a CNF formulaf is complete if all the
variables occurring inf have been assigned; otherwise, it is partial.

The Max-SAT problem for a CNF formulaf is the problem of
finding an assignment of values to variables that minimizes the
number of unsatisfied clauses; equivalently, the aim is to maximize
the number of satisfied clauses. There are many SAT solvers for
Max-SAT problems, e.g., Maxsatz [10]. In this paper, we use a
weighted version of Maxsatz1 in ourLammas system.

3.2 Multi-Agent Planning
Our learning problem is to acquire action models for coopera-

tive Multi-Agent (MA) planning systems, in which agents actun-
der complete state information, and actions have deterministic out-
comes. Specifically, we consider problems expressible in a MA-

1http://www.laria.u-picardie.fr/∼cli/EnglishPage.html

218

Table 2: An output example
action models

hoist truck airplane
(:action lift
:parameters(?h - hoist ?p - package
: ?l - place)
:precondition (and (available ?h) (at ?h ?l)
: (at ?p ?l))
:effect (and (not (at ?p ?loc))
: (not (available ?h))(lifting ?h ?p)))

(:action drive
:parameters(?t - truck ?from - place
: ?to - place ?c - city)
:precondition (and (at ?t ?from) (in-city
: ?from ?c) (in-city ?to ?c))
:effect (and (not (at ?t ?from)) (at ?t ?to)))

(:action fly
:parameters(?a - airplane ?from - airport
: ?to - airport)
:precondition (at ?a ?from)
:effect (and (not (at ?a ?from)) (at ?a ?to)))

... (other action models omitted)

Table 1: An input example

plan traces

plan trace 1 plan trace 2
s0

(lift hoist1 pkg1 loc1)
(load hoist1 pkg1 truck1 loc1)
(drive truck1 loc1 airport1 city1) ...
(move hoist1 loc1 airport1 city1)
(unload hoist1 pkg1 truck1 airport1)
(load hoist1 pkg1 airplane1 airport1)
(fly airplane1 airport1 airport2)
g

predicates

(in-city ?l - place ?c - city)
(at ?o - physobj ?l - place)
(in ?p - package ?v - vehicle)
(lifting ?h - hoist ?p - package)
(available ?h - hoist)

action
head-
ings

hoist

(lift ?h - hoist ?p - package ?l - place)
(drop ?h - hoist ?p - package ?l - place)
(unload ?h - hoist ?p - package ?v - vehicle ?l - place)
(load ?h - hoist ?p - package ?v - vehicle ?l - place)
(move ?h - hoist ?from - place ?to - place ?c - city)

truck (drive ?t - truck ?from - place ?to - place ?c - city)
airplane (fly ?a - airplane ?from - airport ?to - airport)

s0: (in-city loc1 city1) (in-city airport1 city1) (in-city loc2 city2)
(in-city airport2 city2) (at plane1 airport1) (at truck1 loc1) (at pkg1 loc1)
(at hoist1 loc1) (available hoist1)
g: (at pkg1 airport2) (at plane1 airport2)

extension of the STRIPS language known as MA-STRIPS [4]. For-
mally, a MA-STRIPS planning problem for a system of agents
Φ = {φi}k

i=1 is given by a quadrupleΠ = 〈P, {Ai}k
i=1, s0, g〉

[2], where:

• P is a finite set of atoms (also called propositions),s0 ⊆ P
encodes the initial situation, andg ⊆ P encodes the goal
conditions,

• For 1 ≤ i ≤ k, Ai is the set of action models that the
agentφi is capable of performing. Each action modela ∈
A =

⋃Ai has the standardSTRIPS syntax and semantics,
that is,a = 〈heading(a), pre(a), add(a), del(a)〉, where
heading(a) is composed of an action name with zero or
more parameters,pre(a), add(a) anddel(a) are lists of pre-
conditions, adding effects and deleting effects, respectively.

A solution to anMA-STRIPS problem is aplan which is com-
posed of a sequence of ordered actions〈a1, . . . , am〉. These ac-
tions are executed by different agents to project an initialstates0

to a goalg. A plan traceT is composed of an initial states0, a goal
g, partially observed statessi, and a plan〈a1, . . . , am〉 that projects
the initial state to the goal, i.e.,T = {s0, a1, s1, . . . , am, g}, where
the partially observed statesi can be empty.

3.3 Learning Problem
We formalize our multi-agent learning problem as follows: given

a set of plan tracesT , a set of predicatesP , and a set of action
headingsAi for each agentφi, Lammas outputs a set of action
modelsAi for each agentφi. We show an input/output example in
Tables 1 and 2. The example is taken from thelogisticsdomain2,
extended with theMA-STRIPS conventions (?<string> indicates
that <string> is a variable). In Table 1 we show an example of
plan trace 1, likewise for other plan traces.s0 andg in plan trace
1 are the initial state and the goal, respectively. We assumethat
there are three agentshoist, truck, andairplane, each of which has
its own actions. Agenthoisthas five actionslift , drop, unload, load
andmove, while agentstruck andairplane both have one action,
drive andfly respectively. Note that each parameter of the actions
or predicates is associated with atype. A typecan beprimitive, or
composed of other types. In Table 1, the typephysobjis composed
of the typespackage, hoist, andvehicle; vehicle is composed of
truck andairplane; andplaceis composed oflocationandairport.
Other typeshoist, package, truck, airplane, location, airport and
city are all primitive. In Table 2, we show an example action model
for each agent that is learned by our algorithm.

4. THE LAMMAS ALGORITHM
In a nutshell, ourLammas algorithm performs three steps: (1)

generate constraints based on the inputs, (2) solve these constraints
using a weighted MAX-SAT solver, and (3) extract action models
from the solutions. An overview of theLammas algorithm can be
found in Algorithm 1. In the following subsections, we will give a
detailed description of each step of Algorithm 1 in turn.

Algorithm 1 An Overview of OurLammas Algorithm
Input: (1) a set of plan tracesT ; (2) a set of predicatesP ; (3)
action headings for each agentφi: Ai, i = 1, . . . , n.
Output: action models for each agentφi: Ai, i = 1, . . . , n.
1: build agent constraints;
2: build correctness constraints;
3: build action constraints;
4: solve all the constraints using a weighted MAX-SAT solver;
5: convert the solving result into action modelsAi, i = 1, . . . , n;

4.1 Agent Constraints
The first type of constraints is the coordination constraints among

different agents (see step 1 of Algorithm 1). With these constraints,
we aim at encoding the interactions between the multiple agents,
where one agent provides a condition that another agent needs.

2http://www.cs.toronto.edu/aips2000/

219

Specifically, there may be two kinds of actions that any one agent
can perform:interactiveandnon-interactive. The former requires
conditions from other agents or provides conditions for other agents.
For example, in plan trace 1 of Table 1, the action “(drive truck1
loc1 airport1 city1)” of agenttruck1 provides the condition “(at
truck1 airport1)” for the action “(unload hoist1 pkg1 truck1 air-
port1)” of agenthoist1. Non-interactive actions have no interaction
with other agents. For example, in plan trace 1, the action “(lift
hoist1 pkg1 loc1)” of agenthoist1does not affect other agents or is
affected by other agents.3 Agent constraintsencode constraints for
interactiveactions.

To generate agent constraints, we first collect the set of allpos-
sible conditionsPCi(a) for each actiona of agentφi by checking
that the proposition’ parameters are included in the action’s, i.e.,

PCi(a) = {p|para(p) ⊆ para(a), for eachp ∈ P},
wherepara(p) denotes the set of parameters ofp, likewise for
para(a).

Example 1: In Table 1, letφ1, φ2, φ3 be agentshoist, truck,
airplane, respectively. We can build possible conditions for each
agent’s actions as follows:4

PC1(lift) = {(at ?h ?l), (at ?p ?l), (lifting ?h ?p),

(available ?h)};
PC1(drop) = {(at ?h ?l), (at ?p ?l), (lifting ?h ?p),

(available ?h)};
PC1(unload) = {(at ?h ?l), (at ?p ?l), (at ?v ?l), (in ?p ?v),

(lifting ?h ?p), (available ?h)};
PC1(load) = {(at ?h ?l), (at ?p ?l), (at ?v ?l), (in ?p ?v),

(lifting ?h ?p), (available ?h)};
PC1(move) = {(at ?h ?from), (at ?h ?to), (in-city ?from ?c),

(in-city ?to ?c)};

PC2(drive) = {(at ?t ?from), (at ?t ?to), (in-city ?from ?c),

(in-city ?to ?c)};
PC3(fly) = {(at ?a ?from), (at ?a ?to)}.

After collecting all possible conditions, we compute all common
conditions among pairs of actions(a, a′) from agent pairs(φi, φj).
To do this, we identify an one-to-one correspondence from a subset
of parameters ofa to a subset of parameters ofa′ such that the pa-
rameterm and its corresponding parameterm′ can be instantiated
with the same value. Two parameters can be instantiated withthe
same value if (1) they have the same type or (2) one is a subtypeof
the other one (i.e., truck is a type of vehicle). We denote anyone
such one-to-one correspondence as asCRa,a′ and the correspond-
ing parameters inCRa,a′ as pairs(m, m), wherem andm′ are the
indexes of parameters ofa anda’. We denote the common condi-
tions for a pair of actions(a, a′) of two agentsφi andφj relative to
a correspondenceCRa,a′ asPCij(a, a′, CRa,a′). For example,
takePC2(drive) andPC1(unload). Assuming

CRdrive,unload = {(1, 3), (3, 4)}
(i.e., the first parameter ofdrive corresponds to the third parame-
ter of unload, and the third parameter ofdrive corresponds to the

3We considerhoist1andhoist2as instances of the same agent be-
cause they share the same action models.
4For simplicity, we omit thetypeassociated with each parameter of
each predicate (e.g., type “package” of parameter “?p” is omitted).

fourth parameter ofunload), we have

PC21(drive, unload, CRdrive,unload) = {(at ?t ?to)}
or

PC21(drive, unload, CRdrive,unload) = {(at ?v ?l)}.
We say that an actiona of an agentφi is interactivewith another

actiona′ of agentφj , if and only if there exists a correspondence
CRa,a′ such thatPCij(a, a′, CRa,a′) is not empty. Otherwise,
we say that actiona is non-interactive with actiona′, and we say
that actiona is noninteractiveif it is non-interactive with all the
actions of other agents. For example, in Example 1, actiondrive
is interactive with actionunload, while actionlift of agenthoist1is
non-interactive.

In the next step, we generate agent constraints by finding allthe
interactiveactions among agents and building a new structure that
we call aweightedAgent InteractionGraph (w-AIG). We do this
by scanning all the plan traces. We define aw-AIG by a tuple
(N, E, W), whereN is a set of nodes,E is a set of edges, and
W is a set of weights. The nodesN correspond to agents inΦ. A
directed edge inE from an agentφi to another agentφj is labeled
by PCij(a, a′, CRa,a′), indicating that actionsa ∈ Ai anda′ ∈
Aj satisfy

(Add(a)∩ Pre(a′)) ⊆ PCij(a, a′, CRa,a′).

It is possible that there are multiple edges between the sametwo
agents.

Each weight inW is associated with an edge inE, measuring
the likelihood of the existence of that edge. This likelihood is com-
puted as follows. We scan the set of plan tracesT , looking for
situations in whichφj executes actions immediately afterφi. In
such situations, we conjecture that some actions of agentφi in plan
traces probably provides some conditions for some actions of agent
φj , which corresponds to some edges fromφi to φj in w-AIG. The
same edges may be repeatedly created when scanning plan traces.
Each time the same edge is found, its corresponding weight will be
incremented by one. The procedure for building the graph is shown
in Algorithm 2.

In step 4 of Algorithm 2,lengthof(t) returns the number of
actions int. In step 8,findCR(ak, ak′) returns a set of corre-
sponding parameters betweena anda′. For example, letak and
ak′ be actions “(drive truck1 loc1 airport1 city1)” and “(unload
hoist1 pkg1 truck1 airport1)”. The first parameter “truck1”of ak

is the same as the third parameter ofak′ , and the third parameter
“airport1” of ak is the same as the fourth parameter ofak′ . Thus,
the procedurefindCR(ak, ak′) returns{(1, 3), (3, 4)} as the cor-
responding parameters betweena anda′. In step 13,W (e) records
the times that edgee is repeatedly found.

Example 2: From Example 1, we can easily build aw-AIG after
scanning plan trace 1, as shown in Figure 1. After scanning plan
trace 1, we know that the first two actionslift andload are executed
by agenthoist1, and the third actiondrive is executed by agent
truck1. Since thatlift is noninteractiveholds, it is not included. For
actionload, sincePC12(load, drive, {(3, 1), (4, 2)}) 6= ∅, a new
edgee is created, and its weight is set as one. Likewise, we can
create other edges by scanning plan trace 1.

Once thew-AIG is generated, the last step is to generate agent
constraints. Lete be an edge that connects an agentφi to another
agentφj . We can build the constraints to denote that some action
of agentφi provides some condition for some action of agentφj .
Formally, for each edge connecting agentφi to agentφj with a la-
bel PCij(a, a′, CRa,a′), we create the following constraints (one

220

Algorithm 2 Building w-AIG: G = buildwAIG(T)

input: a set of plan tracesT .
output: aw-AIG G = (N, E, W).
1: letN = Φ, E = ∅;
2: for eacht ∈ T do
3: n = 1;
4: while n ≤ lengthof(t) do
5: find the maximal numberh, such that actions

an, . . . , an+h in t are all executed by agentφi;
6: find the maximal numberh′, such that actions

an+h+1, . . . , an+h+h′ in t are executed by agentφj ;
7: for each two integersk ∈ [n, n + h] andk′ ∈ [n + h +

1, n + h + h′] do
8: assumingak andak′ are instances of actiona anda′

respectively, buildCRa,a′ = findCR(ak, ak′);
9: calculatePCij(a, a′, CRa,a′);

10: if PCij(a, a′, CRa,a′) 6= ∅ then
11: create an edgee, with labelPCij(a, a′, CRa,a′);
12: if e ∈ E then
13: W (e) = W (e) + 1;
14: else
15: E = E ∪ {e}, andW (e) = 1;
16: end if
17: end if
18: end for
19: n = n + h + 1;
20: end while
21: end for
22: return (N, E, W);

12

w

21

w

13

w

21

w

Figure 1: An example ofw-AIG

for eachp ∈ PCij(a, a′, CRa,a′)):

p ∈ Addi(a) ∧ p ∈ Prej(a
′).

The weights of these constraints are directly assigned by the val-
ues ofW .

4.2 Correctness Constraints
In step 2 of Algorithm 1, we buildcorrectness constraints(first

introduced by [16]), where we require that the action modelslearned
are consistent with the training plan traces. These constraints are
imposed on the relationship between ordered actions in the plan
traces to ensure that the causal links in the plan traces are not bro-
ken. That is, for each preconditionp of an actionaj in a plan trace,

eitherp is in the initial state, or there is an actionai (i < j) prior
to aj that addsp and there is no actionak (i < k < j) between
ai andaj that deletesp. For each literalq in a statesj , eitherq is
in the initial states0, or there is an actionai beforesj that addsq
while no actionak deletesq.

We formulate these constraints as follows.

p ∈ Pre(aj) ∧ p ∈ Add(ai) ∧ p 6∈ Del(ak)

and

q ∈ g ∧ (q ∈ s0 ∨ (q ∈ Add(ai) ∧ q 6∈ Del(ak)))

wherei < k < j, Del(aj) is a set of deleting predicates of the
actionaj andg is the goal which is composed of a set of proposi-
tions.

In order to ensure that the correctness constraints are maximally
satisfied, we assign these constraints with a maximal weightamong
all weightsW in w-AIG.

4.3 Action Constraints
In step 3 of Algorithm 1, we build another kind of constraint

known asaction constraints(introduced by [16]). We introduce
two categories of action constraints. The first is the resultof the se-
mantics ofSTRIPS [4], while the second is the result of the statisti-
cal information extracted from the plan traces (i.e., the relationship
between states and actions revealed by plan traces). Specifically,
we build the constraints as follows.

1. In STRIPS, if a predicatep is a precondition of an action
a, i.e., p ∈ pre(a), then it should not be added bya, i.e.,
p 6∈ Add(a); on the other hand, if a predicateq is added by
an actiona, i.e., q ∈ Add(a), then it should not be deleted
by a at the same time, i.e.,q 6∈ Del(a). Formally, these
constraints can be represented by

(p ∈ Pre(a) → p 6∈ Add(a))

and

(q ∈ Add(a) → q 6∈ Del(a))

for any actiona from any agent. The weights of these con-
straints are also set as the maximal value ofW in w-AIG.

2. In general, if a predicatep frequentlyoccurs before an action
a in plan traces (i.e.,p frequently occurs in the state wherea
is executed), thenp is likely a precondition ofa. Similarly, if
a predicateq frequently occurs aftera (i.e.,q frequently oc-
curs in the state aftera is executed), thenq is likely an added
effect of a. This idea can be formulated via the following
constraints:

(p ∈ before(a) → p ∈ Pre(a))

and

(q ∈ after(a) → q ∈ Add(a))

wherebefore(a) indicates a set of predicates that occur fre-
quently beforea, while after(a) indicates a set of predi-
cates that occur frequently aftera, where the termfrequently
is used to indicate that the number of occurrences is larger
than a pre-defined threshold; in each domain we need to ad-
just the threshold value empirically. The weights of these
constraints are set as the number of their occurrences.

221

4.4 Attaining Action Models
After all three types of constraints are built, we satisfy all con-

straints using a weighted MAX-SAT solver (Step 4 of Algorithm
1). Before that, we introduce three new parametersλi(1 ≤ i ≤ 3)
to control the relative importance of the three kinds of constraints
(which is similar to [18]). We adjust the weights of each kindof
constraints by replacing their weights withλi

1−λi
wi, wherewi is

the weight of theith kind of constraints. By adjustingλi from 0
to 1, we can adjust the weight from 0 to∞. The weighted MAX-
SAT solution returns a truth value for each atom. We are interested
specifically in the truth values of atoms of the form “p ∈ pre(a)’,
“p ∈ add(a)’,’ and “p ∈ del(a)’. We convert the MAX-SAT solu-
tion to action models directly: if an atom “p ∈ Add(a)” is assigned
with true, p will be converted to an adding effect of actiona. We
can likewise transform an atom to a precondition or a negative ef-
fect of an action.

5. EXPERIMENTS
In order to verify the effectiveness ofLammas, we developed

a prototype system, which we compare to a baseline algorithmon
three multi-agent domains derived from IPC (InternationalPlan-
ning Competition) domains. These domains are multi-agent varia-
tions of logistics5, rovers6 andopenstacks7.

5.1 Dataset and Criterion
In the first domainlogistics, a set of packages should be moved

on a roadmap from their initial to their target locations using the
given vehicles. The packages can be loaded onto and unloaded
off the vehicles, and each vehicle can move along a certain sub-
set of road segments. We extend this domain by introducing three
kinds of agentshoist, truckandairplane, each of which has its own
actions, as it is described in Table 1. These agents cooperate to
achieve the specific goals, e.g., ahoist agent uploads a package to
a truck in its starting location; atruckagent takes the package from
this location to an airport, ahoist agent then unloads the package
from the truck and loads it into an airplane, anairplaneagent takes
the package from an airport to another airport and so forth. The
second domain isrovers, which is inspired by a planetary rovers
planning problem. The domainrovers tasks a collection of rovers
with navigating a planetary surface, finding samples (soil,rock and
image), analyzing them, and communicating the results backto a
lander. We extend this domain by introducing four kinds of agents:
soilrover, rockrover, imageroverandcommunicant, each of which
has its own actions. Specifically, the agentssoilrover, rockrover
andimageroverperform actions related to sampling soil, rocks, and
images, respectively. In other words, they are responsiblefor trans-
porting the soil to agentcommunicant. The agentcommunicantis
in charge of analyzing the soil, rocks and images, and communi-
cating the results back to a lander. In the last domainopenstacks, a
manufacturer has a number of orders, each consisting of a combina-
tion of different products, and can only make one product at atime.
We extend this domain by introducing three kinds of agents:re-
ceiver, produceranddeliveryman. Agent receiverreceives orders
from clients and passes them to producers. Agentproducerpro-
duces products according to the orders and passes them to delivery
men. Agentdeliverymandelivers products to clients according to
the orders. With these extended domains, we can test our learning
algorithm in multi-agent conventions. In what follows, we refer to
these extended multi-agent domains asma-logistics, ma-roversand
5http://www.cs.toronto.edu/aips2000/
6http://planning.cis.strath.ac.uk/competition/
7http://zeus.ing.unibs.it/ipc-5/

ma-openstacks, respectively. The action models of these extended
domains were built by hand and used asground truthaction mod-
els. Using theground truthaction models, we generated 200 plan
traces from each domain, which was used as the training data for
Lammas.

We compare the learned action models with the ground truth ac-
tion models to calculate the error rates. If a precondition appears
in the precondition list of our learned action model but not in the
precondition list of its corresponding ground-truth action model,
the error count of preconditions, denoted byEpre, is incremented
by one (this is a false positive). If a precondition appears in the
precondition list of a ground truth action model but not in the pre-
condition list of the corresponding learned action model,Epre also
is incremented by one (this is a false negative). Likewise, the error
count in the actions’ adding (or deleting) lists is denoted by Eadd

(or Edel). False positives restrict the potential plans that could be
generated, and they measure the loss in terms of the completeness
of planning. False negatives can give rise to incorrect plans, and
thus they measure the loss in the soundness.

We useTpre, TaddandTdel to denote the number of all the possible
preconditions, add-effects and delete-effects of an action model,
respectively. We define the error rate of an action modela as

R(a) =
1

3
(
Epre

Tpre
+

Eadd

Tadd
+

Edel

Tdel
)

where we assume the error rates of preconditions, adding effects
and deleting effects are equally important, and the range oferror
rateR(a) is within [0,1]. Furthermore, we define the error rate of
all the action models from agentsΦ in a domain as

R(Φ) =
1∑

i∈Φ |Ai|
∑

i∈Φ

∑

a∈Ai

R(a)

where, |Ai| is the number of action models that the agentφi is
capable of performing. Using this definition of error rate asthe
performance metric, we present our experimental results inthe next
subsection.

5.2 Experimental Results
We test ourLammas algorithm in the following way. First, we

compare between ourLammas algorithm andARMS. Second, we
vary the weights of each type of constraints and observe the im-
pact on performance. Finally, we report on the running time of
Lammas.

5.2.1 Comparison betweenLammas andARMS
One way to conduct the comparison is to consider the existence

of anoracle agent, which knows all the actions of each agent in the
multi-agent system, such that the multi-agent system can beviewed
as a single-agent system. This will enable the learning of actions
for the oracle agent by using previous single-agent action-model
learning algorithms such asARMS. These single-agent learning al-
gorithms, however, do not consider the coordination information
involved in the various agents. InLammas this information is cap-
tured by the agent constraints. We hypothesize that theLammas
algorithm can handle these interactions better, resultingin reduced
error rates.

We set the percentage of observed states as1/5, which indicates
that one in five consecutive states can be observed. We set the
percentage of observed propositions in each observed stateas1/5.
We also set allλi (1 ≤ i ≤ 3) as 0.5 without any bias. We ran
Lammas andARMS five times by randomly selecting the states and
propositions in plan traces, and calculate the average of error rates.
The comparison result is shown in Figure 2.

222

30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

plan traces

R
(Φ

)

Lammas→

← ARMS

(a). ma−logistics

30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

plan traces

R
(Φ

)

Lammas→

← ARMS

(b). ma−rovers

30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

plan traces

R
(Φ

)

Lammas→

← ARMS

(c). ma−openstacks

Figure 2: The comparison betweenLammas and ARMS

From Figure 2, we can see that the error ratesR(Φ) of both
Lammas andARMS generally decrease as the number of plan traces
increases, which is consistent with the intuition that whenmore
training data is given the percentage of error will decrease. By ob-
servation, we can also find that the error rateR(Φ) of ourLammas
algorithm is generally smaller than that ofARMS, which suggests
that the agent constraints generated fromw-AIG can indeed help
improve the learning result in multi-agent environments. From
the curves for different domains, ourLammas algorithm functions
much better in both domains ofma-logisticsand ma-openstacks
than in the domainma-rovers. The results are statistically signifi-
cant; we performed the Student’s t-test and the results are 0.0101
for ma-logistics, 0.0416 forma-roversand 0.0002 forma-openstacks.
This suggests that the agent constraints work better inma-logistics
and ma-openstacksthan in ma-rovers. The reason for this dif-
ference is because agents inma-logisticsandma-openstackshave
more interactions between each other than that inma-rovers.

5.2.2 Varying weights of constraints
The importance of different kinds of constraints may be differ-

ent in the learning process. We test this hypothesis by varying the
weights of the different kinds of constraints. We fixλ2 andλ3 as
0.5 and setλ1 as different values of 0, 0.25, 0.5, 0.75 and 1. We
runLammas and calculate the error rates with respect to different
values ofλ1. The error rates are shown in the second/fifth/eighth
columns of Table 3. Likewise, we calculate the error rates with dif-
ferent values ofλ2 or λ3 when fixing the other twoλ values at 0.5,
as shown in Table 3. In the table, we highlight the smallest error
rates of each column with boldface; e.g., in the second column the
smallest error rate is 0.0601 whereλ1 = 0.75.

From Table 3, we find thatλi cannot be set too high (the highest
being 1) or set too low (the lowest being 0); otherwise its corre-
sponding error rates will be high. This suggests that the weights of
constraints cannot be set too high or too low to offset the impact of
other constraints. Hence, all three kinds of constraints are needed
for learning high quality result. For instance, whenλi is set too
high, its corresponding kind of constraints plays a major role while
the other two kinds of constraints play a relatively minor role (in
an extreme case, they play no effect whenλi = 1) on the learning
result. On the other hand, whenλi is set too low, the importance
of its corresponding kind of constraints is reduced. In the extreme
case, they have no effect whenλi = 0.

By comparing theλ1 columns betweenma-logisticsand ma-
rovers, we can see that the value ofλ1 should be higher inma-
logistics (to make error rates smaller) than inma-rovers, which
suggests agent constraints inma-logisticsare more important than
in ma-rovers. The reason for this is because there are more inter-
actions among agents inma-logisticsthan in ma-rovers. Hence,
exploiting the agent’s interaction information helps improve the
learning result.

5.2.3 Running time
To test the running time of theLammas algorithm, we setλi(1 ≤

i ≤ 3) as 0.5 and runLammas with respect to different number of
plan traces. The result is shown in Figure 3. As can be seen from
the figure, the running time increases polynomially with thenum-
ber of input plan traces. This can be verified by fitting the relation-
ship between the number of plan traces and the running time toa
performance curve with a polynomial of order 2 or 3. For example,
the fit polynomial forma-logisticsis −0.0002x3 + 0.0541x2 −
3.1616x + 52.6667.

ARMS also runs in polynomial time on the size of the input
traces. Hence, since both ARMS andLammas are designed to run
off-line there is no real advantage of using one or the other one
based on their running times. However, our experiments showthat
Lammas has the advantage that it can learn more accurate models
than ARMS for multi-agent environments.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an action-model learning sys-

tem known asLammas, which performs well in multi-agent do-
mains. We learn the structure information to reflect agent inter-
actions, which is shown empirically to improve the quality of the
learned action models. Our approach builds aw-AIG graph to re-
veal the potential interactions among agents, which results in agent
constraints that are used to capture agent interactions. Integrating
these agent constraints with previously used action constraints are
shown to give better learning performance. Our experimentsshow
thatLammas is effective in three benchmark domains.

Our work can be extended to more complex multi-agent do-
mains. For example, in a multi-player computer game setting, agents
have their own utilities, and they may cooperate with each other or
work against each other. In such situations, we may incorporate
more types of constraints to model adversarial situations.

223

Table 3: Error rates with respect to different λ values

λi values
ma-logistics ma-rovers ma-openstacks

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

1 0.1552 0.1784 0.1744 0.1305 0.1714 0.1552 0.1202 0.1323 0.1544
0.75 0.0601 0.2020 0.1561 0.1329 0.1081 0.1271 0.0986 0.0633 0.1561
0.5 0.0623 0.0623 0.0623 0.1302 0.1302 0.1302 0.0794 0.0794 0.0794
0.25 0.0943 0.1436 0.1594 0.1164 0.1490 0.0962 0.1118 0.1561 0.1294

0 0.1236 0.1934 0.2479 0.1610 0.1648 0.2124 0.1638 0.2134 0.1979

30 60 90 120 150 180
0

50

100

150

200

250

plan traces

cp
u

tim
e

(s
ec

on
ds

)

(a) ma−logistics

30 60 90 120 150 180
0

50

100

150

200

250

plan traces

cp
u

tim
e

(s
ec

on
ds

)

(b) ma−rovers

30 60 90 120 150 180
0

50

100

150

200

250

plan traces

cp
u

tim
e

(s
ec

on
ds

)

(c) ma−openstacks

Figure 3: The running time of the Lammas algorithm

Acknowledgement
Hankz Hankui Zhuo thanks China Postdoctoral Science Founda-
tion funded project(Grant No.20100480806) and National Natu-
ral Science Foundation of China (61033010) for support of this
research. Qiang Yang thanks Hong Kong RGC/NSFC grant N
HKUST624/09 for support of this research. Hector Munoz-Avila
thanks the National Science Foundation grant 0642882 for support
of this research.

7. REFERENCES
[1] E. Amir. Learning partially observable deterministic action

models. InProceedings of IJCAI’05, 2005.
[2] R. I. Brafman and C. Domshlak. From one to many:

Planning for loosely coupled multi-agent systems. In
Proceedings of ICAPS’08, 2008.

[3] S. Cresswell, T. L. McCluskey, and M. M. West. Acquisition
of object-centred domain models from planning examples. In
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS’09), 2009.

[4] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving.Artificial
Intelligence Journal, pages 189–208, 1971.

[5] M. R. Garey and D. S. Johnson. Computers and
intractability: A guide to the theory of np-completeness.
W.H. Freeman, 1979.

[6] M. Georgeff. A theory of action for multiagent planning.In
Proceedings of AAAI’84, 1984.

[7] Y. Gil. Learning by experimentation: Incremental refinement
of incomplete planning domains. InIn Proceedings of the
Eleventh International Conference on Machine Learning
(ICML-94), pages 87–95, 1994.

[8] C. Guestrin, D. Koller, and R. Parr. Multiagent planningwith
factored mdps. InProceedings of NIPS’01, 2001.

[9] M. P. Holmes and C. L. Isbell, Jr. Schema learning:
Experience-based construction of predictive action models.

In In Advances in Neural Information Processing Systems 17
(NIPS-04), 2004.

[10] C. M. LI, F. Manya, and J. Planes. New inference rules for
Max-SAT.Journal of Artificial Intelligence Research,
30:321–359, October 2007.

[11] R. Nissim, R. I. Brafman, and C. Domshlak. A general, fully
distributed multi-agent planning algorithm. InProceedings
of AAMAS’10, 2010.

[12] T. J. Walsh and M. L. Littman. Efficient learning of action
schemas and web-service descriptions. InIn Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI-08), pages 714–719, 2008.

[13] X. Wang. Learning by observation and practice: An
incremental approach for planning operator acquisition. In In
Proceedings of the Twelfth International Conference on
Machine Learning (ICML-95), pages 549–557, 1995.

[14] D. E. Wilkins and K. L. Myers. A multiagent planning
architecture. InProceedings of AIPS’98, 1998.

[15] D. Wilkinson, M. Bowling, and A. Ghodsi. Learning
subjective representations for planning. InProceedings of the
Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 889–894, 2005.

[16] Q. Yang, K. Wu, and Y. Jiang. Learning action models from
plan examples using weighted MAX-SAT.Artificial
Intelligence Journal, 171:107–143, February 2007.

[17] C. Zhang and V. Lesser. Multi-Agent Learning with Policy
Prediction. InProceedings of the 24th National Conference
on Artificial Intelligence (AAAI’10), Atlanta, GA, USA,
2010.

[18] H. H. Zhuo, D. H. Hu, C. Hogg, Q. Yang, and
H. Muñoz-Avila. Learning HTN method preconditions and
action models from partial observations. InProceedings of
IJCAI, pages 1804–1810, 2009.

[19] H. H. Zhuo, Q. Yang, D. H. Hu, and L. Li. Learning complex
action models with quantifiers and logical implications.
Artificial Intelligence Journal, 174(18):1540–1569, 2010.

224

