
Experimental Evaluation of Teamwork
in Many-Robot Systems

(Demonstration)

Andrea D’Agostini
Department of System and

Computer Sciences
“Sapienza” University of

Rome, Italy
andreadago@gmail.com

Daniele Calisi
Department of System and

Computer Sciences
“Sapienza” University of

Rome, Italy
calisi@dis.uniroma1.it

Alberto Leo
Space Software Italia s.r.l.

Rome, Italy
alberto.leo@ssi.it

Francesco Fedi
Space Software Italia s.r.l.

Rome, Italy
francesco.fedi@ssi.it

Luca Iocchi
Department of System and

Computer Sciences
“Sapienza” University of

Rome, Italy
iocchi@dis.uniroma1.it

Daniele Nardi
Department of System and

Computer Sciences
“Sapienza” University of

Rome, Italy
nardi@dis.uniroma1.it

General Terms
Experimentation

Keywords
Multi-robot system, experimental setting

1. INTRODUCTION
The experimental evaluation of methods and techniques

for teamwork in multi robot systems (MRS) is challenging.
Experiments with multiple robots are very difficult to man-
age [4] and thus the proposed approaches are seldom evalu-
ated on real multi robot systems composed by several robots.

Teamwork in MRS, especially when aiming at massive
experiments, is often evaluated using abstract simulators,
which typically focus on the communication model, but make
very rough assumptions on the behavior of the robots in the
operational environment. In these cases, it may happen that
the simulation model is too abstract to provide convincing
evidence that the results obtained in simulation, apply also
to the real case. Obviously, the more complex each individ-
ual robot is, the larger the distance between the simulation
and the real case. Indeed, we have experienced that the per-
formance of teamwork in MRS is deeply influenced by the
performance of the robotic platform in the operational envi-
ronment. Consequently, in order to bridge the existing gap
with real robots, we have focussed on simulators that are
originally designed for robotic systems and provide a more
accurate model of the performance of the robots. This ap-
proach is challenging for a number of reasons. First of all,
simulation tools are sometimes embedded in a software de-
velopment framework, like for example Microsoft Robotics

Cite as: Experimental Evaluation of Teamwork in Many-Robot Systems
(Demonstration), A. D’Agostini, D. Calisi, A. Leo, F. Fedi, L. Iocchi, D.
Nardi, Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Yolum, Tumer, Stone and
Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 1327-1328.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Developer Studio1, or come as commercial products (e.g We-
bots [5]). Moreover, even when the simulator is accessible
through a dedicated interface, the design and implementa-
tion of the system and of the simulation scenario can be
rather resource intensive.

Player [2] is a very widespread tool; it includes in its pack-
age both a 2D (Stage) simulator and a 3D one (Gazebo): the
Stage simulator is particularly suited for large-scale simula-
tion of teams of several robots, as reported in [6]. In ad-
dition, these simulators provide models of distance sensors,
thus allowing for an accurate modeling of navigation and
localization in the environment, that make them suitable
for experimental evaluation of several robotic tasks. More-
over, Player is providing an interface to robotic platforms
and sensors that is becoming a de-facto standard. However,
experiments of complex teamwork capabilities, that include
several robots with complex individual functionalities and
make use of a realistic robot simulator such as Stage have
not been deeply investigated.

In this paper, we present an experimental set-up, based
on our robotic software, that allows to make performance
evaluation of systems including tenths of robots, simulated
as complete applications, using Player/Stage. The key fea-
ture of our implementation is that each robot is simulated
using the whole robotic software, by simply replacing the
interface to the real robot with the Player interface. By
switching interface we can run the real robot, thus allowing,
for example, experiments simultaneously including real and
simulated robots.

The expected benefits of our proposed setting are mainly
in reducing the gap between the behavior of the simulation
as compared with experiments with real robots. To this
end, in addition to the usually implemented variants of the
communication model, we run experiments which analyze
the behavior of the system with respect to different robotic
platforms, different sensor settings, different navigation al-
gorithms, different localization algorithms, etc..

In the next section, we describe the implemented system
and then we provide some examples of experimental evalu-

1www.microsoft.com/robotics

1327



ations.

2. SYSTEM DESCRIPTION
The software of each simulated robot runs inside a vir-

tual machine: in this way, the deployment to real robots is
straightforward. Details of the system functionalities and
capabilities can be found in [1].

Different tasks are performed by the components included
in each virtual machine: behaviors (e.g., exploration, take a
picture, obstacle avoidance, etc.), sensor processing, etc. In
particular, we focus on the coordination module, which has
been designed to implement task assignment [3], with several
degrees of flexibility. The coordination algorithm manages
entities called tasks, that are distributed over the network
together with other information in order to assign each task
to one robot.

For task-assignment purposes, we use the two-phase ap-
proach described in the following. First, tasks are dynami-
cally discovered by some robots (depending on sensor read-
ing and situation assessment) or injected into the system by
an external agent (e.g., a user GUI); the robots that receive
the task use a utility function to decide whether to candidate
themselves to execute the task or not. The candidature is
the second phase of the algorithm: robots send their candi-
dature (i.e., their expected utility) to the subgroup of robots
that participate to the candidature of this task. The robot
with the highest candidature is assigned the task.

In addition to the above outlined schema, a number of
features have been added to ensure the generality of the
approach:
• duplicate task removal : the system is able to detect

similar tasks (e.g., the same task that has been dis-
covered by two different robots) and drop all but one;
• task persistence: if no robot decides to candidate to

the execution of a task, this is re-submitted;
• task priority : a priority is assigned to each task class,

and each task instance can further refine this priority:
while a robot is performing a task, it always candidates
for other tasks with a higher priority, if it gets the
assignment of the task, it interrupts the previous one
and re-submits it into the system;
• sub-teams formation: in order to execute tasks that

require more than one robot, the system is able to
build sub-groups of team-mates, each of which with a
specified role in the task execution;
• open teams: since the sub-teams of robots that are

interested in a task are dynamically built during the
mission, the robots do not need to know the exact num-
ber of their team-mates: this results in the possibility
for robots to lately join or leave the team.

In the next section we describe a set of experiments that
we performed in order to evaluate the behavior and the ro-
bustness of the system. In these experiments, we have been
able to run up to 20 robots using 20 virtual machines dis-
tributed over a network of 4 multi-core hosts, with an addi-
tional server that runs the Stage simulator.

3. SOME PRELIMINARY EXPERIMENTS
In this section we present a first set of experiments that

aim at addressing types of analyses that are not typically
taken into account in experimental evaluation of coordina-
tion and cooperation in multi robot systems. The work re-
ported here is not meant to be exhaustive; a detailed analysis
of the influence of various aspects of robotic performance on
the effectiveness of teamwork is on-going work.

First of all, we focus on an exploration task, that is in-
spired to a de-mining application. Thus, robots operate out-
door and their common goal is to check the area for the pres-
ence of a (simulated) target (e.g., a heat source); the robots
are provided with a set of short-range sensors to detect the
target (e.g. measure the temperature). Once the target is
found, the robots are required to coordinate in order to dy-
namically build small groups that should act upon the target
(e.g., a robot marks the zone, another takes a picture, etc.).
The area to be explored is discretized according to a grid of
cells (size 4x4 meters). Each target can be identified only
from the cell where it is located.

As already mentioned, the goal of our system is to allow
for the analysis of the performance of different approaches
and features of MRS teamwork, when varying both the en-
vironment and the robot capabilities. In order to evaluate
the performance of the system, we consider the following
measures: time to finish the mission (i.e., to explore the
whole area), number of heat sources found (wrt their total
number), percentage of total area to explore.

We present three sets of experiments. In the first, we
vary the number of robots (2-12), operating on different-
sized areas. The results of the experiment show that the
proposed approach does not degrade the performance, when
the explored area and the number of robots are increased
consistently.

The second set of experiments shows the behavior of the
system with respect to different localization errors. In this
case, we observed three different behaviors when the local-
ization error is increased: the robots explored cells that were
outside the assigned area; sometimes they were not able to
detect duplicated tasks and thus explored the same area
more than once; finally, some cells have been skipped in the
exploration.

In the third set of experiments, we change the maximum
navigation speed that is allowed for each robot. The per-
formance evaluation of these tests shows that, as expected,
there is an optimal speed limit, and if the speed overcomes
this limit, the performances degrades, because the naviga-
tion algorithm is not able to steer the robot.

4. REFERENCES
[1] D. Calisi, F. Fedi, A. Leo, and D. Nardi. Software

development for networked robot systems. In Proc. of
the 7th IFAC Symposium on Intelligent Autonomous
Vehicles (IAV), 2010.

[2] T. Collet, B. MacDonald, and B. Gerkey. Player 2.0:
Toward a practical robot programming framework. In
Proc. of the Australasian Conf. on Robotics and
Automation (ACRA 2005), Dec. 2005.

[3] B. Gerkey and M. J. Matarić. A formal analysis and
taxonomy of task allocation in multi-robot systems. Int.
journal of robotic research, 23(9):939–954, Sept. 2004.

[4] K. Konolige, C. Ortiz, R. Vincent, A. Agno,
B. Limketkai, M. Lewis, L. Briesemeister, D. Fox,
J. Ko, B. Stewart, and L. Guibas. CentiBOTS: large
scale robot teams. In Proceedings of the International
Conference on Autonomous Agents and Multi Agent
Systems (AAMAS), 2003.

[5] O. Michel. Webots: professional mobile robot
simulation. International Journal of Advanced Robotic
Systems, 1(1):39–42, 2004.

[6] R. T. Vaughan. Massively multi-robot simulations in
stage. Swarm Intelligence, 2(2-4):189–208, 2008.

1328


