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ABSTRACT

This paper presents an attempt on incremental robot learn-
ing from demonstration. Based on previously learnt knowl-
edge about a task in simpler situations, a robot learns to
fulfill the same task properly in a more complicated situa-
tion through analyzing comparative demonstrations and ex-
tracting new knowledge, especially the constraints that the
task in the new situation imposes on the robot’s behaviors.
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INTRODUCTION

In recent years, researchers have shown growing interest
in Learning from Demonstration (LfD) [1], which provides
a new approach to improving the abilities of robots. Most
LfD methods currently concentrate on learning procedural
knowledge about how to fulfill a given task. However, the
same task should be fulfilled differently in different situa-
tions. A procedure for fulfilling the task in a certain situa-
tion may be improper in another one, e.g., causing harmful
side-effects. For example, a robot who knows how to pick up
an item in ordinary situations may not know how to avoid
falling of other items in some particular situations. One solu-
tion to this problem is to decompose LfD into two parts: first
learning “canonical knowledge” for ordinary (simplest, typ-
ical) situations and then learning constraints to the canon-
ical knowledge for more and more complicated unordinary
situations. Therefore, the entire learning process becomes
incremental and needs less number of demonstrations.
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This paper presents an effort on the approach called the
Learning Constraints from Comparative Demonstration
(LCfCD), in which the teacher (people) demonstrates for the
task in a new unordinary situation a number of right and
wrong behaviors. The robot tries to recognize the differences
between the right and wrong behaviors, and extract new
knowledge, especially the constraints that the task in the
new situation imposes on the robot’s behaviors.

2. APPROACH

LCfCD assumes that the teacher and the robot “share”
a set A of primitive actions. The precondition and the
effect of each primitive action a € A are known by the
robot and taken to be identical for both the teacher and
the robot, i.e., differences between the executions of each
action by the teacher and the robot are ignored. Thus it
is not required to identify the teacher’s actions precisely.
States of the environment are specified by a subset of P,
the set of predefined predicates. For instance, in our ex-
periment, P contains on(X,Y), standing for the fact that
object X is on the object Y, and sticking_out(D), for D
is sticking out. {s1,a1,...,Sn,an, Snt+1} is called an execu-
tion sequence, where s; is the initial state, ai,...,a, are
primitive actions, and s;y1 is the sequential state reached
by the execution of a; under s;. a, is called the end ac-
tion and s,+1 the end state. An execution sequence and
a learning label ¢t € {+, —} compose a task demonstration
e = (h,t), where +, — denotes right and wrong respectively.
A task demonstration labeled with +/— is called a posi-
tive/negative example.

The LCfCD also assumes the robot has been equipped
with a general-purpose planner and a knowledge base KB
which contains previously learnt knowledge about the task,
including the knowledge about the primitive actions and
other background knowledge. With the planner and KB,
the robot can complete the task properly in the previously
known situations.

The data for LCfCD E = (E*, E™) is composed of a set
of positive examples ET and a set of negative examples F~,
which are obtained by behavior identification and attitude
recognition. Whence E is ready, the learning procedure of
LCfCD is conducted in the following steps. (1) Difference
analysis: Identify the difference set D C P between the end
states of execution sequences in E* and E~, where D is in-
cluded in every end states in £~ and none of end states



in Et. (2) Causal analysis: Extract, if any, new rules
of primitive actions describing their unexpected effects ob-
served in E. For instance, in out experiment, a new rule,
R, is learnt: if there is a red can on the sticking-out end of
the board and the blue can on the other end of the board is
picked up, then the red can will fall. (3) Pre-condition anal-
ysis: Make out initial conditions under which D is satisfied
in the end states. The result is a set of predicates I which
is included in the initial state of every e € E~ and not in
the initial state of any e € ET. (4) Induction: Generalize
the extracted knowledge into a more general form. For in-
stance, under some conditions, predicates such as can, cup,
etc can be generalized as small_object, and predicates such
as red will be ignored, meaning that color is irrelevant. Af-
ter the learning phase, KB is updated with learnt rules and
constraints like C: T'A I = not D, which states that D is
prohibited if the task is 7" and the initial state satisfies I.

An execution sequence is extracted from a demonstration
of the teacher through detection and tracking of the related
objects, as described as follows. (1) Pre-processing: A me-
dian filter is used for noise reduction on the captured videos
and depth information. (2) Target segmentation: to narrow
the region of interest, an initial segmentation is executed
by making use of the mask constructed from the depth in-
formation. Then the ultimate segmentation of target ob-
jects of concern is executed in HIS. (3) Target tracking: The
directions and speed of movement are calculated from the
location differences of the targets in the previous and cur-
rent frames, and the most likely locations of the targets in
next frame are estimated. (4) Extracting information of the
states and the actions. Currently we only consider primi-
tive actions that are easy to be distinguished. For example,
pick-up and put-down can be distinguished according to the
direction of movement. Meanwhile, we only consider the
predefined, known objects in recognizing the environmental
states. As a result, a state is extracted as a set of the pred-
icates over these objects, where each predicate is identified
by the robot’s vision analyses as being true at the state.

Now the +/— label is expressed by the teacher’s nod-
ing/shaking her head, respectively. To recognize them, the
teacher’s pupils are detected first through the following steps.
(1) AdaBoost is used with Haar features to detect the tea-
cher’s face region. (2) In the same way M left-eye and
N right-eye regions are detected in (z € [1, width/2], y €
[1, 0.6 x height]) and (z € [width/2, width], y € [1, 0.6 X
height]) (Fig 1). If M = 0 or N = 0, then the algorithm
fails; otherwise, M + N coordinates of pupils are calculated
according to the proportion of eye. And there are total
M x N pupil pairs. (3) Three weights are summed as the
probability of each pair: Wh 1— 1S — 8- /(St + Sr);
Wy = p < 0.8?7-10 : p, where L = (S; + Sr) x 5/6 and
p=1—|L,—L|/(Ly+ L); Ws =6 <0.857—10 : 0, where
0 = D3 /(Dg+ Dy). The pair with the largest Wi +Wa+ W3
is selected. Here 0.8 and 0.85 are empirical values. Then the
horizontal and the vertical displacement of binoculus are cal-
culated in each two successive frames. If the horizontal is
larger than the vertical, then it is shake, else it is nod. Fi-
nally, vote is used to determine the expression of the whole
sequence.

3. DEMO

This demo (http://www.wrighteagle.org/) shows one of
tests on the LCfCD approach. The robot [2] has a 6-DOF
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Figure 1: The proportional relation.

manipulator, multiple cameras and laser range finders. Also
the robot has a general-purpose planner and a KB as de-
scribed in last section. The robot can complete tasks of
moving small objects in ordinary situations where items’
falling is not considered. The purpose of the experiment is
to show that: with LCfCD, the robot can learn to move ob-
jects while avoiding things falling in the designed scenario.

The teacher demonstrates a positive and a negative ex-
ample of the same task, to pick up the can on the inside end
of the board. In the negative example, the teacher picks up
the inside can directly, causing the outside one to fall; in the
positive example, the teacher puts the outside can on the ta-
ble first, then to pick up the inside one. Actually, the robot
can generate these two sequences with the current KB, but
will always choose the wrong one because it is shorter and
the current KB does not contain rules predicting the falling
of items or constraints prohibiting falling of items. So this
is a substantially new situation to the robot.

With LCfCD, the robot gets D = {can(a), red(a), on(a,b),
ground(b), board(c),on(c,b)}, R, and C (see last section).
The learned rules and constraints are generalized with back-
ground knowledge, obtaining the resulted D' = {on(a,b),
small_object(a), ground(b), board(c), on(c,b)}, as well as cor-
responding R’ and C’; otherwise, more task demonstrations
would be needed to reach the same generality.

After the learning phase, the robot is asked to pick up
one of the cans. The experiment shows that, the robot can
always complete the task while avoiding items falling. In
addition, the robot is also asked to pick up the outside can,
and she picks it up directly. This means that LCfCD does
not damage the original knowledge which keeps valid.
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