
Pseudo-tree-based Algorithm for Approximate Distributed
Constraint Optimization with Quality Bounds

(Extended Abstract)

Tenda Okimoto, Yongjoon Joe, Atsushi Iwasaki, and Makoto Yokoo
Department of Informatics, Kyushu University

Fukuoka, Japan
{tenda@agent., yongjoon@agent.,iwasaki@, yokoo@}is.kyushu-u.ac.jp

ABSTRACT
Most incomplete DCOP algorithms generally do not provide
any guarantees on the quality of the solutions. In this pa-
per, we introduce a new incomplete DCOP algorithm that
can provide the upper bounds of the absolute/relative errors
of the solution, which can be obtained a priori/a posteriori,
respectively. The evaluation results illustrate that this algo-
rithm can obtain better quality solutions and bounds com-
pared to existing bounded incomplete DCOP algorithms,
while the run time of this algorithm is much shorter.
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1. INTRODUCTION
A Distributed Constraint Optimization Problem (DCOP)

is a fundamental problem that can formalize various applica-
tion problems in multi-agent systems, e.g., distributed sen-
sor networks [4] and meeting scheduling [6]. Since DCOP is
NP-hard, considering faster incomplete algorithms is nec-
essary for large-scale applications. Most existing incom-
plete algorithms generally do not provide any guarantees
on the quality of the solutions. Some notable exceptions are
DALO [3], the bounded max-sum algorithm [2], and AD-
POP [5]. Among these algorithms, DALO is unique since
it can obtain a priori bound. Also, the obtained bound is
independent of problem instances. On the other hand, the
bounded max-sum algorithm and ADPOP can only obtain
a posteriori bound. Having a priori bound is desirable, but
a posteriori bound is usually more accurate.
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In this paper, we introduce an incomplete algorithm based
on a new solution criterion called p-optimality. This algo-
rithm can provide the upper bounds of the absolute/relative
errors of the solution, which can be obtained a priori/a pos-
teriori, respectively. These bounds are based on the induced
width p of a constraint graph [1] and the maximal value of
each reward function, but they are independent of problem
instances. This algorithm utilizes a graph structure called a
pseudo-tree, which is widely used in complete DCOP algo-
rithms such as ADOPT [4] and DPOP [6]. This algorithm
is a one-shot type algorithm, which runs in polynomial-time
in the number of agents n. Furthermore, this algorithm has
adjustable parameter p, so that agents can trade-off better
solution quality against computational overhead.

DALO is an algorithm based on the criteria of local opti-
mality called k-size/t-distance optimality [3]. Compared to
this algorithm, our algorithm is a one-shot type algorithm,
while DALO is an anytime algorithm. Also, our algorithm
can provide tighter bounds a priori. The bounded max-sum
algorithm is a one-shot type algorithm. Compared to this
algorithm, our algorithm has adjustable parameter p, while
this algorithm has no adjustable parameter. Also, our al-
gorithm can obtain a priori bound. Our algorithm is quite
similar to ADPOP, which also eliminates edges among vari-
ables to bound the size of messages. ADPOP uses a heuris-
tic method to determine which edges to eliminate. As a
result, it cannot obtain a priori bound. We can consider
p-optimality gives a simple but theoretically well-founded
method to determine which edges to eliminate in ADPOP.

2. PRELIMINARIES
A distributed constraint optimization problem is defined

by a set of agents S, a set of variables X, a set of binary
constraint relations C, and a set of binary reward functions
F . An agent i has its own variable xi. A variable xi takes its
value from a finite, discrete domain Di. A binary constraint
relation (i, j) means there exists a constraint relation be-
tween xi and xj . For xi and xj , which have a constraint re-
lation, the reward for an assignment {(xi, di), (xj , dj)} is de-
fined by a binary reward function ri,j(di, dj) : Di×Dj → R.
For a value assignment to all variables A, let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj ,dj)}⊆A

ri,j(di, dj).

Then, an optimal assignment A∗ is given as arg maxA R(A),
i.e., A∗ is an assignment that maximizes the sum of the value
of all reward functions.
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A DCOP problem can be represented using a constraint
graph, in which a node represents an agent/variable and an
edge represents a constraint.

For a graph G = (V, E), a total ordering o, and a node
i ∈ V , we call A(E, o, i) = {j | (i, j) ∈ E ∧ j ≺ i} as i’s
ancestors, where we denoted j ≺ i, if j occurs before i in o.
We also denote ord(i) for the i-th node in o.

Definition 1 (Chordal graph based on total or-
dering). For a graph G = (V, E) and a total ordering o, we
say G is a chordal graph based on total ordering o when the
following condition holds:

• ∀i, ∀j, ∀k ∈ V , if j, k ∈ A(E, o, i), then (j, k) ∈ E.

Definition 2 (Induced chordal graph based on to-
tal ordering). For a graph G = (V, E) and a total order-
ing o, we say a chordal graph G′ = (V, E′) based on total
ordering o, which is obtained by the following procedure, as
an induced chordal graph of G based on total ordering o.

1. Set E′ to E.

2. Choose each node i ∈ V from the last to the first based
on o and apply the following procedure.

• if ∃j, ∃k ∈ A(E′, o, i) s.t. (j, k) ̸∈ E′, then set E′

to E′ ∪ {(j, k)}.
3. Return G′ = (V, E′).

A parameter called induced width can be used as a measure
for checking how close a given graph is to a tree. We call
w(G, o) as the width of graph G based on total ordering o
and it is defined as maxi∈V |A(E, o, i)|. Furthermore, we call
w(G′, o) as the induced width of G based on total ordering
o, where G′ = (V, E′) is the induced chordal graph of G
based on total ordering o.

A chordal graph G = (V, E) based on total ordering o
can be assumed as a pseudo-tree. We say an edge (i, j) is
a back-edge of i, if j ∈ A(E, o, i) and j is not i’s parent.
Also, when (i, j1), (i, j2), . . . , (i, jk) are all back-edges of i,
and j1 ≺ j2 ≺ . . . ≺ jk holds, we call them as first back-
edge, second back-edge, . . ., k-th back-edge, respectively.

3. BOUNDED INCOMPLETE ALGORITHM
BASED ON INDUCED WIDTH

Our proposed incomplete algorithm has two phases:

Phase 1: Generate a subgraph from an induced chordal
graph by removing several edges, so that the induced
width of the induced chordal graph obtained from the
subgraph is bounded by parameter p.

Phase 2: Find an optimal solution to the graph obtained
in Phase 1 using any complete DCOP algorithms.

Let us describe Phase 1. To obtain such a subgraph is not
easy. One might imagine that we can easily obtain such a
subgraph by just removing the back-edges so that all nodes
have at most p − 1 back-edges. However, by this simple
method, we cannot guarantee that the remaining graph is
a chordal graph and we might need to add some edges to
make it a chordal graph. As a result, the induced width of
the induced chordal graph can be more than p.

We develop a method for Phase 1 as follows.

Definition 3 (p-reduced graph). For a chordal graph
G = (V, E) based on total ordering o, we say a graph G′ =
(V, E′) obtained by the following procedure as p-reduced graph
of G (where 1 ≤ p ≤ w(G, o)):

1. Set E′ to E.

2. Repeat the following procedure w(G, o)− p times.

• For each i ∈ V where p + 1 ≤ ord(i) ≤ w(G, o)
remove the first back-edge in G′ = (V, E′) from
E′ if there is one.

3. Return G′ = (V, E′).

In Phase 1, a p-reduced graph is generated. Then, we
can guarantee that the obtained graph is chordal and its
induced width is p. Based on the idea of p-reduced graph,
we introduce a new solution criterion as follows.

Definition 4 (p-optimality). We say an assignment A
is p-optimal for a distributed constraint optimization prob-
lem ⟨X, C, R⟩ and a total ordering o, when A maximizes the
total rewards in G′′ = (X, C′′), where G′ = (X, C′) is an
induced chordal graph of G = (X, C) based on total ordering
o, and G′′ = (X, C′′) is the p-reduced graph of G′. More
specifically, ∀A′, RC′′(A) ≥ RC′′(A′) holds.

To find a p-optimal solution in Phase 2, we can use any
complete DCOP algorithms. We use the obtained p-optimal
solution as an approximate solution of the original graph.

Furthermore, we estimate two types of errors, i.e., abso-
lute and relative errors of the solution. Absolute error can
be obtained a priori. Intuitively, the absolute error is given
by the product of the maximal value of each reward function
and the maximal number of removed back-edges. Relative
error can be obtained a posteriori. We can compute it using
a method similar to ADPOP.

In our evaluations, we showed that our algorithm for p=1-
optimality can obtain better quality solutions and estimate
more accurate error bounds compared with DALO-t for t=1-
distance-optimality and the bounded max-sum algorithm.
Furthermore, the run time for our algorithm for p=1-optimal
ity is much shorter compared to these existing algorithms.
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