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ABSTRACT
Decision making and game play in multiagent settings must often
contend with behavioral models of other agents in order to predict
their actions. One approach that reduces the complexity of the un-
constrained model space is to group models that tend to be behav-
iorally equivalent. In this paper, we seek to further compress the
model space by introducing an approximate measure of behavioral
equivalence and using it to group models.
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1. INTRODUCTION
Several areas of multiagent systems such as decision making and

game playing benefit from modeling other agents sharing the envi-
ronment, in order to predict their actions. In the absence of con-
straining assumptions about the behaviors of other agents, the gen-
eral space of these models is very large. Multiple researchers have
proposed grouping together behaviorally equivalent (BE) models [2,
6, 7] to reduce the number of possible models. Models that are BE
prescribe identical behavior, and these may be grouped because it
is the prescriptive aspects of the models and not the descriptive that
matter to the decision maker. The basic idea is to cluster behav-
iorally equivalent models of the other agents and select represen-
tative models for each cluster. By doing this, we are able to limit
the model space of the other agents while maintaining the solution
optimality of the modeling agent. One particular decision making
framework in which BE has received much attention is the interac-
tive dynamic influence diagram (I-DID) [5].

I-DIDs are graphical models for sequential decision making in
uncertain multiagent settings. I-DIDs concisely represent the prob-
lem of how an agent should act in an uncertain environment shared
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with others who may act in possibly similar ways. Previous I-DID
solutions, including both exact and approximate ones, mainly ex-
ploit the concept of BE to reduce the dimensionality of the state
space. For example, Doshi and Zeng [4] minimize the model space
by updating only those models that lead to behaviorally distinct
models at the next time step. While this approach speeds up solu-
tions of I-DIDs considerably and is the state of the art, it doesn’t
scale desirably to large horizons. This is because: (a) models are
compared for BE using their solutions which tend to be policy trees.
As the horizon increases, the size of the policy tree increases expo-
nentially; (b) the condition for BE is quite strict: entire policy trees
of two models must match exactly. While this can be done bottom
up [4], the complexity of this depends on the size of the policy tree.

Progress in the context of BE is possible by grouping models
that are likely to be BE. Because this will potentially result in more
models being clustered, the model space is partitioned into less
number of classes. In this paper, we introduce a way to identify
models that are approximately BE by limiting attention to paths
in a policy tree that are most likely. Models are approximately
BE and may be grouped together if these K most likely policy
paths are identical. Because we focus on a subset of the policy
tree for comparison, more models may be included in a single ap-
proximate BE group. However, computing the probability of an
action-observation path in a multiagent setting requires knowledge
of the actions of the modeling agent as well [3]. We address this
fundamental barrier by utilizing a more probabilistic choice model
for the other agent instead of using the traditional maximum utility
action(s). Specifically, we employ the quantal response model [1]
– fast emerging as a viable alternative choice model for agents –
to compute the policy. Our hypothesis is that by allowing for more
actions (not just those that have maximum utility) we consider a
larger number of possible paths and select the likely paths among
these. In computing the probability of a path, we do not consider
actions of the modeling agent, but those of the other agent only or
those of the subject agent modeled at a lower level by the other.

2. TOP K POLICY PATHS
We label the sequence of actions and observations experienced

by an agent participating in an interaction as a path. Formally, let
hqj = {atj , ot+1

j }qt=1 be the q-length path for an agent j where
oT+1
j is null for a T horizon problem (q ≤ T ). If atj ∈ Aj

and ot+1
j ∈ Ωj , where Aj and Ωj are agent j’s action and ob-

servation sets respectively, then the set of all q-length paths is,
Hq
j = Πq

1(Aj × Ωj). In a two-agent interaction, the probabil-
ity of j experiencing an observation depends on actions of both
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agents. Because an agent’s optimal actions are obtained from its
model (mt

j,l−1 for j andmt
i,l for the subject agent i), we define the

probability of a q-length path in a factored form as shown below:

Pr(hqj) = Πq
t=1Pr(a

t
j |mt

j,l−1)
∑
ai∈Ai Pr(o

t+1
j |ht−1

j , atj , a
t
i)

×Pr(ati|mt
i,l)

(1)
We then define the most probable path of T horizon below.

DEFINITION 1 (MOST PROBABLE PATH). Define the most prob-
able path, hTj , for the level l − 1 agent j as:

hTj = argmax
hTj ∈HTj

Πq
t=1Pr(a

t
j |mt

j,l−1)
∑
ai∈Ai Pr(o

t+1
j |ht−1

j ,

atj , a
t
i)Pr(a

t
i|mt

i,l)

Intuitively,K-most probable paths are then thoseK paths that have
the largest probabilities among all the paths of T horizon.

Although Eq. 1 provides us with a way to compute path proba-
bilities, it requires the solution of the subject agent i’s model (in the
term, Pr(ati|mt

i,l)). This is a fundamental barrier to using the ex-
act path probabilities because agent i’s level l solution is what we
seek and is not known. Clearly, exact path probabilities may not
be available for use in any approach for solving I-DIDs (or other
such frameworks). Another challenge is that the number of paths
grows exponentially with time. However, we address this issue by
focusing on K paths only at every time step.

One way around the problem of computing exact path probabil-
ities is to utilize a quick but inexact solution for i’s model with the
guarantee that optimal actions are given higher utility in the inexact
solution as well. To the best of our knowledge, we are unaware of
such an approximation technique. Instead, we utilize a more prob-
abilistic solution of j’s models that would allow for more paths
considered plausible while continuing to assign higher probabili-
ties to optimal actions, thereby compensating for not knowing i’s
action probabilities. We utilize the quantal response [1] model,
which assigns a probability to each action in proportion to its util-
ity. Formally, the quantal response is defined in Eq. 2:

Pr(atj |mt
j,l−1) =

eλEU(atj)∑
atj∈Aj e

λEU(atj)
(2)

Non-negative parameter λ quantifies the rationality of the actions.
In order to identify the top K paths, we replace the decision

nodes in j’s level l − 1 I-DID (or DID) with the corresponding
chance nodes effectively turning the DID into a dynamic Bayesian
network (DBN). In order to avoid searching over an exponential
number of policy paths, |Aj ||Ωj |T−1 where T is the horizon, we
identify exactlyK paths at every time step. Specifically, at time t =
0, we compute the probabilities for |Aj ||Ωj | action-observation
combinations and select K-most probable ones. Thereafter, at any
time step until T − 1, we compute the probabilities of K|Aj ||Ωj |
paths and selectK most probable paths (as per Def. 1) among them.
Consequently, we obtain K most probable paths while avoiding an
exponential number of path probability computations.

Models that have identical topK paths are grouped together. We
pick a representative model from each group and prune all other
models in the group. All the representative models are retained and
updated. We point out that unlike exact BE, we compare just a sub-
set of the policy paths in order to group the models. On the other
hand, because we use the quantal response the top K paths are not
necessarily the most probable paths in the original policy tree ob-
tained when the maximum expected utility is used. Consequently,
models that were originally BE may not be grouped together. As a

result, we are unable to precisely characterize the error in predict-
ing j’s actions due to this approach.

3. RESULTS
We implemented this approach (TopK) within the framework of

I-DIDs. In order to demonstrate the suitability of using the quan-
tal response model for j’s actions, we implemented a baseline ap-
proach that selects top K paths using randomized response for j’s
actions. In Fig. 1(a), we show that TopK maintains a relatively
high chance of fully intersecting the actual K most probable paths.
Increasing K improves the likelihood as we may expect.
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Level 1 T Time (s)
DMU TopK

Tiger 10 2.7 1.4
14 77 45.6
20 * 238
25 * 697

MM 8 0.6 0.2
10 3.1 1.9
14 91 60.3
20 * 805

UAV 6 6.5 4.9
8 166.6 111
10 * 462
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Figure 1: (a) TopK captures the K-most probable paths with a large
probability in the multiagent tiger problem. (b) TopK scales signifi-
cantly better than DMU to larger horizons. All experiments are run on
a dual processor Xeon 2.0GHz, 2GB memory and WinXP platform.

In Fig. 1(b), we show the reduced running times and improved
scalability of TopK compared with the DMU approach [4] over
three domains. We were able to solve I-DIDs over more than 25
horizon using TopK. More significantly, for the large UAV domain
we achieved solutions to I-DIDs for horizon of more than 10.
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