Representation of Coalitional Games
with Algebraic Decision Diagrams

(Extended Abstract)

Karthik .V. Aadithya
Department of Electrical
Engineering and Computer
Sciences
The University of California,
Berkeley, CA, USA
kv.aadithya@gmail.com

ABSTRACT

With the advent of algorithmic coalitional game theory, it is im-
portant to design coalitional game representation schemes that are
both compact and efficient with respect to solution concept compu-
tation. To this end, we propose a new representation for coalitional
games, which is based on Algebraic Decision Diagrams (ADDs).
Our representation is fully expressive, compact for many games
of practical interest, and enables polynomial time Banzhaf Index,
Shapley Value and core computation.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multi-Agent Systems;
1.2.4 [Knowledge representation formalisms and methods]; F.2
[Theory of Computation]: Analysis of Algorithms and Problem
Complexity

General Terms

Algorithms, Theory, Economics

Keywords

Coalitional game theory, Algebraic Decision Diagrams

1. ALGEBRAIC DECISION DIAGRAMS

ADDs are highly optimized representations for ordered decision
trees on boolean decision variables. In general, a decision tree is
of size exponential in the number of decision variables. However,
the observation is that most practically encountered decision trees
contain a significant amount of duplication, i.e., there exist many
subtrees within the decision tree that are isomorphic to one another.

For example, consider the ordered decision tree shown in Fig. 1 (a).
In the figure, each terminal node (leaf node) is labelled with a real
number, while each non-terminal node (decision node) is labelled
with a boolean decision variable. Therefore, each decision node has
exactly two edges leading away from itself: a dashed edge (leading
to the decision node’s left child) corresponding to the decision vari-
able being set to FALSE, and a solid edge (leading to the decision
node’s right child) corresponding to the decision variable being set

Cite as: Representation of Coalitional Games with Algebraic Decision Di-
agrams (Extended Abstract), Karthik .V. Aadithya, Tomasz P. Michalak and
Nicholas R. Jennings, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 26, 2011, Taipei, Taiwan, pp. 1121-1122. 1[I0

@ 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1121

Tomasz P. Michalak
School of Electronics and
Computer Science
University of Southampton, UK University of Southampton, UK
tpm@ecs.soton.ac.uk

Nicholas R. Jennings
School of Electronics and
Computer Science

nri@ecs.soton.ac.uk

to TRUE. It is readily seen that this decision tree contains signifi-
cant duplication (e.g., consider the identical sub-trees rooted at the
nodes labelled x3, as pointed out in Fig. 1 (a)).

The fundamental idea behind the ADD is that: it is wasteful to
maintain multiple identical copies of duplicated subtrees; instead,
such isomorphic subtrees should be merged together, thereby re-
sulting in a much smaller (but equivalent) directed acyclic graph
(DAG) [1,2]. To this end, three reduction rules have been formu-
lated for compressing a decision tree into a DAG [2]:

Rule 1: Merge isomorphic terminal nodes. That is, if two terminal
nodes u and v carry the same value, delete u and redirect all its
incoming edges to v.

Rule 2: Delete dummy nodes. That is, if the left child of a decision
node u is the same as its right child, then delete u and redirect all
its incoming edges to this (only) child.

Rule 3: Merge isomorphic decision nodes. That is, if two decision
nodes u and v have (a) identical labels, (b) identical left children
and (c) identical right children, delete » and redirect all its incom-
ing edges to v.

For example, the decision tree of Fig. 1 (a) contains four isomor-
phic terminal nodes with value 1, six isomorphic terminal nodes
with value 4 and four isomorphic terminal nodes with value 9. To
get rid of all this duplication, Rule 1 (above) is applied 3+5+3=11
times in succession, resulting in the DAG of Fig. 1 (b). This DAG
is not free from isomorphic nodes either. In fact, as shown in
Fig. 1 (b), it has two sets of three isomorphic nodes each, which
can be merged by applying Rule 3 four times in succession, thereby
resulting in the DAG of Fig. 1 (c). This DAG again contains two
isomorphic nodes (as shown in Fig. 1 (c)), which are merged by a
single application of Rule 3. This results in the DAG of Fig. 1 (d),
which is maximally compressed in the sense that it cannot be made
smaller by any further application of Rules 1-3. Such a maximally
compressed DAG (which can be shown to be a unique and canon-
ical representation for the original decision tree) is called an Alge-
braic Decision Diagram.

2. REPRESENTING COALITIONAL GAMES

This section describes how ADDs can be used to represent coali-
tional games.

A coalitional game g is defined as a tuple ¢ = (N, v), where
N = {x1,22,...,2,} is a set of agents and v : 2% — Risa
characteristic function that maps every subset (or coalition) of N
to a real number, with () = 0 [3].

A

--"" Identical
subtrees

L)
, , (a) |
) () 9 (9 ()
Iﬁlillil

Figure 1: Constructing an ADD from a decision tree.

Note that the set of all coalitions of N is in one to one correspon-
dence with the set of truth assignments of the n boolean variables
{z1,22,...,zs}, with the boolean variable x; being set to TRUE
(FALSE) accordingly as the agent x; is present (absent) in the coali-
tion. Thus, in effect, the characteristic function v is a real-valued
function of the boolean variables {z1,z2,...,2,}. So v can be
represented by an ordered decision tree over the same boolean vari-
ables, and this decision tree can be further compacted into an ADD
(using the 3 rules of the previous section).

Therefore, every coalitional game g can be represented by an ADD.
For example, the coalitional game played by the set of 4 agents
N = {z1, %2, 23, x4}, where v(C) = (size of C)? for every C' C
N, is represented by the ADD of Fig. 1 (d).

3. FORMAL DEFINITION

We now formally define our ADD-based representation for coali-
tional games.

In the ADD representation, a coalitional game g = (IV, v/) is speci-
fied by a tuple (N, <,G(V, E, Lv, Lg)), where

o N is a finite set (the set of agents)
& < is a strict total order defined on NV

o G(V,E,Lv,Lg) is a vertex-labelled, edge-labelled, directed
acyclic graph (the ADD) that satisfies the following:

o V is a finite set (the set of ADD vertices)

o E CV x V is afinite set (the set of ADD edges)

o Ly : V. — N URis a function that labels each ADD ver-
tex with either an agent (for non-terminal vertices) or a real
number (for terminal vertices)

o Lg : E — {SOLID, DASHED} is a function that labels
each ADD edge as either SOLID or DASHED

o @ contains exactly one root/source vertex, i.e., exactly one
vertex of in-degree zero

o For all non-terminal vertices v and v, if (u,v) € E, then
Ly (u) < Ly (’U)

o For each non-terminal vertex u, there exists exactly one ver-
tex v, called the left child of u, such that (u,v) € F and
Lg((u,v)) = DASHED

o For each non-terminal vertex u, there exists exactly one ver-
tex v, called the right child of w, such that (u,v) € E and
Le((u,v)) = SOLID

o The reduction rules 1-3 of Section 1 cannot be used to sim-
plify G any further.

4. v(c) EVALUATION

We now formally outline an algorithm for evaluating the character-
istic function in the ADD-based coalitional game representation.

Given an ADD representation (N, <, G(V, E, Ly, Lg)) for a coali-
tional game g, and a coalition C' C N. Algorithm 1 formally spec-
ifies how to evaluate the characteristic function value v(C').

1122

Algorithm 1: Characteristic function evaluation with ADDs
Inputs: (a) Coalitional game I'=(N, <, G(V, E, Ly, Lg))
(b) Coalition C C N.
Output: The characteristic function value v(C).
ADDNode u = the root (source node) of GG;
while v is not a terminal node of G do
if agent Ly (u) ¢ C then
| w =left child of u;
else
| u= right child of w;
end
end
return Ly (u);

S. NOTEWORTHY PROPERTIES OF ADDS

Our ADD representation for coalitional games possesses the fol-
lowing properties:

1. ADDs are fully expressive (i.e., can be used to represent any
coalitional game)

2. There are many games of practical interest whose ADD repre-
sentations are exponentially more compact than their MC-Net rep-
resentations (MC-Nets are described in [4]).

3. Banzhaf Indices and Shapley Values of all agents can be com-
puted in time polynomial in the size of the ADD representation.

4. ADDs enable polynomial time algorithms for several core-related
questions, such as testing if a given vector is in the core, checking if
the core is empty and computing the smallest e such that the strong-
€ core is non-empty.

5. ADDs enable polynomial time Cost of Stability [S] computa-
tion.

Due to space constraints, we are unable to prove the above proper-
ties in this paper. Instead, we refer the reader to [6].

6. REFERENCES

[1] R.L Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic Decision Diagrams and their applications. Formal
Methods in System Design, 10(2-3):171-206, 1997.

[2] R.E. Bryant. Symbolic boolean manipulation with ordered Binary Decision
Diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

[3] A.Rapoport. N-person game theory: Concepts and applications. Dover Pubs.,
2001.

[4] S.Ieong and Y. Shoham. Marginal contribution nets: A compact representation
scheme for coalitional games. In ACM EC ’05, pages 193-202, 2005.

[5] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe, and

J. Rosenschein. The cost of stability in coalitional games. In Algorithmic Game

Theory, volume 5814 of Lecture Notes in Computer Science, pages 122—134.

Springer, Berlin, 2009.

K. V. Aadithya, T. P. Michalak, and N. R. Jennings. Representation of coalitional

games with Algebraic Decision Diagrams. Technical report, Department of

Electrical Engineering and Computer Sciences, The University of California,

Berkeley, CA, USA, 2011. http://www.eecs.berkeley.edu/Pubs/

TechRpts/2011/EECS-2011-8.html.

[6

