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ABSTRACT
This paper presents a novel approach to intrusion detec-
tion using curious agents to detect anomalies in network
data. Curious agents use computational models of novelty-
seeking behavior and interest, based on human curiosity, to
reason about their experiences in their environment. They
are online, single-pass agents that respond to the similar-
ity, frequency and recentness of their experiences. As such,
they combine a number of important characteristics required
for intrusion detection. This paper presents a generic, curi-
ous reflex agent model for network intrusion detection and
the results of experiments with a number of variants of this
model. Specifically, five different models of curiosity are
compared for their ability to detect first instances of attacks
in the KDD Cup data set. Results show that our curious
agents can achieve high detection rates for intrusions, with
moderate false-positive rates.
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1. CURIOUS REFLEX AGENTS FOR NET-
WORK INTRUSION DETECTION

Our curious agent model uses three reasoning processes
to monitor the network: sensation, curiosity and activation.
These processes are discussed in detail in the following sec-
tions.

1.1 Sensation
An agent monitors its environment, in this case a net-

work, using its sensors. In the experiments in this paper,

Cite as: A Curious Agent for Network Anomaly Detection (Extended
Abstract), Kamran Shafi and Kathryn Merrick,Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 1075-1076.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the agent’s sensors read simulated network data (connec-
tion records) from a comma-separated value file. This raw
data is converted into two structures to assist further rea-
soning. The first is an observation vector and the second
an event. An observation vector O(t) = (o1(t), o2(t), · · · oj(t))
represents the network data packet at the time t. An event
E(t) represents the change in observed network data between
time t and time t− 1

1.2 Curiosity
The curiosity process models the behavior of a network

and uses this model to compute a curiosity value C(t) for
each observation or event. The curiosity process has up
to three layers. The first layer is the clustering layer. In
this layer, an unsupervised learning algorithm is used to
cluster observations or events. Each time an observation or
event is presented to the clustering layer a winning cluster-
center K(t) = (k1(t), k2(t), · · · kj(t)) is chosen or created to
best match the observation or event.

The second layer is the habituating layer [1]. The ha-
bituating layer comprises of one neuron for each cluster-
center in the clustering layer. The activity of the winning
cluster-center (and its neighbors in the case of the SOM)
are propagated along the synapse to the habituating layer
as a synaptic value ς(t) = 1. Losing cluster-centers give an
input of ς(t) = 0 to the habituating layer. Synaptic efficacy,
or novelty, N(t), is then calculated as a stepwise solution to
Stanley’s model [3] by approximating N(t) as follows:

τ
dN(t)

dt
= α[N(0) −N(t)]− ς(t)

N(t) = N(t−1) +
dN(t−1)

dt

The habituation function controls the rate of change in nov-
elty values, which permits tuning of the alarm load on the
human security supervisor.

The third layer is the interest layer. In this layer, a single
interest value is computed using the Wundt curve [4] with
the novelty value from the winning habituating neuron as
input. The interest function moderates novelty values over
time and frequency, providing finer control over the detec-
tion versus false-alarm trade-off. Curiosity can thus be con-
sidered as a function of the similarity of an observation to
previous observations (computed using the clustering layer),
its recentness (which impacts its novelty) and the frequency
with which it occurs (which impacts its interest). A compar-
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ison of two broad variants of this model is shown in Figure
1. The first models curiosity C(t) as novelty (i.e. C(t) =
N(t)), while the second models curiosity as interest (i.e. C(t)

= I(t)).
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Figure 1: Novelty and interest in response to time
and a changing stimulus observation or event.

1.3 Activation
The activation process reflexively raises an alarm when a

highly curious, and thus potentially anomalous, observation
or event is sensed. The notion of high and low curiosity
implies a curiosity threshold Ψ below which network data is
ignored and above which an alarm is raised.

2. EXPERIMENTS
This section details an experiment with four variations of

the general curious agent model described above. We use the
benchmark KDD Cup data set, as the network environment
to be inhabited by the agents. We analyze the following
variants of curious agents:
SOM-I: A three layer approach reasoning about observa-
tions using a SOM clustering layer, a habituating layer to
compute novelty and an interest layer. Curiosity is equal to
interest using this model.
SOM-N: A two layer approach reasoning about observa-
tions using a SOM clustering layer and a habituating layer
to compute novelty. There is no interest layer in this model.
Curiosity is equal to novelty.
KMEANS-N: A two layer approach reasoning about obser-
vations using a K-means clustering layer and a habituating
layer to compute novelty.
SART-N: A two layer approach reasoning about observa-
tions using a SART clustering layer and a habituating layer
to compute novelty.

2.1 Measurement Approach
In this paper we use a weighted measure to identify true-

positives. In particular, we are interested in only the first
i (for the experiments in this paper, we used i = 1) in-
stances of any attack sequence, where an attack sequence
may consist of one or more back-to-back connection records
belonging to a particular attack type which are disjointed
by normal or other types of attack connections. It implies
that in a production network an alarm is raised only i times
for the network administrator. It is assumed that, for an
IDS operating in real-time, the network administrator would
take some action to prevent further instances in the attack
sequence from occurring at all.

Table 1: Weighted true-positive detection rates (%)
for attack categories and unweighted false positive
rates for normal data at t=500,000. Only the agents
reasoning about observations are shown.

Category SOM-I SOM-N KMEANS-N SART-N
Probe 44.44 88.89 95.56 97.78
DOS 26 74 76 88
U2R 43.48 91.3 95.65 95.65
R2L 47.62 54.76 69.05 80.95
Normal 53.41 31.85 15.09 36.29

Table 2: Weighted true-positive detection rates (%)
for attack categories and unweighted false positive
rates for normal data at t=800,000. Only the agents
reasoning about observations are shown.

Category SOM-I SOM-N KMEANS-N SART-N
Probe 55.13 48.86 74.14 89.54
DOS 38.85 42.57 37.16 40.2
U2R 61.71 62.29 69.71 88.57
R2L 48.3 38.92 41.84 65.61
Normal 57.45 37.5 22.39 47.64

2.2 Results and Discussion
Tables 1 and 2 summarize the category-wise results for the

four agents at t = 500, 000 (training data set only) and t =
800, 000 (training and test data sets). We can conclude that
the KMEANS-novelty agent has the best trade-off between
true-positive and false-positive rate when the nature of the
data being sensed is unchanging.

Almost all of the agents tested in this paper achieved high
detection rates on the two rare classes (U2R and R2L) in the
KDD Cup data sets. This is in contrast to most published
results using traditional machine learning algorithms. For
example, the winner the KDD Cup achieved a test accuracy
of just 13.16% and 8.40%, on U2R and R2L attacks. Like-
wise, the runner up achieved a test accuracy of 11.84% and
7.32% on U2R and R2L attacks. Our approaches achieved
up to 95% accuracy for detecting first instances of these at-
tack types. This is very encouraging given that the agents
are single pass and completely unsupervised.

In summary, the results presented in this paper do show
promise for curious agent based anomaly detection approaches
to real-time intrusion detection. However, further testing
is required to better understand their performance on real
traffic data.
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