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ABSTRACT
This paper describes an innovative multiagent system called
SAVES with the goal of conserving energy in commercial build-
ings. We specifically focus on an application to be deployed in
an existing university building that provides several key novelties:
(i) jointly performed with the university facility management team,
SAVES is based on actual occupant preferences and schedules, ac-
tual energy consumption and loss data, real sensors and hand-held
devices, etc.; (ii) it addresses novel scenarios that require negotia-
tions with groups of building occupants to conserve energy; (iii) it
focuses on a non-residential building, where human occupants do
not have a direct financial incentive in saving energy and thus re-
quires a different mechanism to effectively motivate occupants; and
(iv) SAVES uses a novel algorithm for generating optimal MDP
policies that explicitly consider multiple criteria optimization (en-
ergy and personal comfort) as well as uncertainty over occupant
preferences when negotiating energy reduction – this combination
of challenges has not been considered in previous MDP algorithms.
In a validated simulation testbed, we show that SAVES substan-
tially reduces the overall energy consumption compared to the ex-
isting control method while achieving comparable average satisfac-
tion levels for occupants. As a real-world test, we provide results of
a trial study where SAVES is shown to lead occupants to conserve
energy in real buildings.
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Intelligence
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Figure 1: The actual research testbed (RGL) at the University of
Southern California

Limited availability of energy sources has led to the need to de-
velop efficient measures of conserving energy. Motivated by this
need, researchers at AAMAS have been developing multiagent sys-
tems to conserve energy, both for deployment in smart grids and in
buildings, with a particular focus on residential buildings [10, 16,
17, 21].

Inspired by this prior work, we describe an innovative multia-
gent system called SAVES (Sustainable multi-Agent building ap-
plication for optimizing Various objectives including Energy and
Satisfaction), where agents communicate and negotiate with human
occupants to conserve energy. SAVES focuses on energy conser-
vation in commercial (including office and educational) buildings
given their significant burden on energy consumption, e.g., in 2008
buildings in the U.S. consumed 18.5 QBtu, representing 46.2% of
building energy consumption and 18.4% of U.S. energy consump-
tion [1]. To this end, this paper specifically focuses on an appli-
cation to be deployed at Ralph & Goldy Lewis Hall (RGL) at the
University of Southern California (shown in Figure 1).

SAVES provides the following key novelties. First, jointly per-
formed with the university facility management team, our research
is based on actual occupant preferences and schedules, actual en-
ergy consumption and loss data, real sensors and hand-held de-
vices, etc. Second, SAVES addresses novel scenarios that require
agents to negotiate with groups of building occupants to conserve
energy; previous work has typically focused on agents’ negotia-
tion with individual occupants [3, 12]. Third, it focuses on non-
residential buildings, where human occupants do not have a di-
rect financial incentive in saving energy. Furthermore, commercial
buildings offer new opportunities for energy conservation, since oc-



cupants may follow a more regular schedule, allowing SAVES to
plan ahead for energy conservation. Finally, SAVES uses a novel
algorithm for generating optimal BM-MDP policies that explicitly
considers multiple criteria optimization (energy and personal com-
fort) as well as uncertainty over occupant preferences when negoti-
ating for energy reduction – this combination of challenges has not
been considered in previous MDP algorithms [5, 6, 8, 13].

We provide three sets of evaluations of SAVES. First, we con-
structed a detailed simulation testbed, with details all the way down
to individual electrical outlets in our targeted building and vari-
ations in solar gain per day; and then validated this simulation.
Within this simulation testbed, we show that SAVES substantially
reduces the overall energy consumption compared to existing con-
trol methods while achieving comparable satisfaction level of oc-
cupants. Second, we show the benefits of BM-MDPs by showing
that it gives a well-balanced solution while considering multiple
criteria. Third, as a real-world test, we provide results of a human
subject study where SAVES is shown to lead human occupants to
significantly reduce their energy consumption in real buildings.

In Section 2, we describe our testbeds. This includes both the
real educational building where SAVES is to be deployed, and
our simulation testbed, which we validate by comparing with real
building data. Next, in Section 3, we describe the SAVES mul-
tiagent system, and the novel BM-MDP algorithm at the heart of
SAVES. Section 4 provides evaluations discussed above.

2. TESTBEDS

2.1 Educational Building Testbed
SAVES is to be deployed in an actual educational building. Fig-

ure 1 shows the real testbed building (RGL) and the floor plan of
3rd floor. It is a multi-functional building that has been designed
with a building management system, and it provides a good envi-
ronment to test various control strategies to mitigate energy con-
sumption. In particular, this campus building has three floors in
total and is composed of different types of spaces including class-
rooms, offices for faculty and staff, and conference rooms for meet-
ings. Each floor has a large number of rooms and zones (a set of
rooms that is controlled by specific piece of equipment) with var-
ious physical properties including different building devices, ori-
entation, window size, room size and lighting specifications. For
instance, the 3rd floor has 24 zones and 39 rooms.

Within this building, components and equipment include HVAC
(Heating, Ventilating, and Air Conditioning) systems, lighting sys-
tems, office electronic devices such as computers and AV equip-
ment, and different types of sensors and energy meters. Human
occupants of the building are divided into two main categories: per-
manent and temporary. Permanent occupants include office users
such as faculty, staff, researchers and laboratory residents. Tempo-
rary occupants include scheduled occupants like students or faculty
attending classes or meetings and unscheduled occupants who are
students or faculty using common lounges or dining spaces.

In this domain, there are two types of energy-related occupant
behaviors that SAVES can influence to conserve energy use: indi-
vidual behaviors and group behaviors. Individual behaviors only
affect an environment where the individual is located. They in-
clude adjusting light sources and temperature in individual offices
and turning on/off computers and other electronics. Group behav-
iors lead to changes in shared spaces and require negotiation with a
group of occupants in the building. For instance, SAVES may nego-
tiate with a group of occupants to adjust the lighting level and tem-
perature in their shared office or to relocate a meeting to a smaller
office. As we will show later, energy savings by considering such

group negotiations together are significant.
The desired goal in this educational building is to optimize mul-

tiple criteria, i.e., achieve maximum energy savings without trad-
ing off the comfort level of occupants. The research on this testbed
building is intended to be generalized to other building types, where
we can observe many different types of energy-use and the behav-
ioral patterns of occupants in the buildings.

2.2 Simulation Testbed
As an important first step in deploying SAVES in the actual

building described in the previous section, we test SAVES in a
realistic simulation environment using real building data. To that
end, we have constructed a simulation testbed based on the open-
source project OpenSteer (http://opensteer.sourceforge.net/), which
provides a 2D, OpenGL environment. It can be used for efficient
statistical analysis of different control strategies in buildings before
deploying the system.
Building Components: Our simulation considers three building
component categories: HVAC devices, lighting devices, and ap-
pliances. The HVAC components control the temperature of the
assigned zone. The lighting devices control the lighting level of
the room. The appliances in our simulation are either desktop or
laptop computers. These components have two possible actions:
“on” and “standby”. When the lighting or appliance devices are
on, they consume a fixed amount of energy. We attempt to very
accurately reflect the energy consumed by each of the three com-
ponent categories in the simulation. The energy consumption of
HVACs is calculated based on changes in air temperature and air-
flow speeds, and gains from natural light source and appliances in
the space. To calculate the energy consumption of the lighting and
appliance devices, we collected actual energy consumption data in
the testbed building. For the appliances, a desktop computer spends
0.150 kW/h and 0.010 kW/h when it is on and standby, respectively.
A laptop computer spends 0.050 kW/h when it is on and 0.005 kW/h
when it is on standby.1

Human Occupants: We built two types of human occu-
pants in our simulation using the agent behavior framework
presented in [20]. Permanent occupants stay in their of-
fices or follow their regular schedules. Temporary occupants
stay in the building for classes and leave once classes end.

Figure 2: Actual Temp. Preference

Each occupant has
access to a subset
of the six available
behaviors accord-
ing to her/his
type — wander,
attend class, go
to meeting, teach,
study, and perform
research — any
one of which may
be active at a given
time, where the be-
havior is selected
based on class and meeting schedules. Occupants also have a
satisfaction level based on the current environment, modeled as a
percentage between 0 and 100 (0 is fully dissatisfied, 100 is fully
satisfied).

To model the satisfaction level in this simulation, we use a Gaus-

1The detailed equations to compute the energy consump-
tion and actual parameter values are presented here:
http://teamcore.usc.edu/junyounk/energy/AAMAS12-SAVES-
supplementary.pdf



Figure 3: Energy Consumption Validation

sian distribution N(µ, σ) for each occupant. The mean (µ) of each
individual Gaussian is drawn from actual occupant preference data
shown in Figure 2 (e.g., for 18% of permanent occupants, µ=76◦F).
This data was gathered from 40 permanent occupants and 202 tem-
porary occupants in RGL over two weeks in the spring of 2011.
We use this actual data instead of the ASHRAE standard, which
fails to account for individual preferences. The standard deviation
(σ) of each Gaussian is selected uniformly randomly from a range
of 3–5◦F [11]. Based on the constructed Gaussian model for each
occupant, the satisfaction level is computed as follows:

S(t) =

{
100, if t = µ
f(t)
f(µ)
× 100, if t 6= µ

(1)

where S(t) is the satisfaction function, f(x) is the probability den-
sity function of N(µ, σ), and t is the current temperature.
Validation: Before testing SAVES in simulation, we first validate
the simulation testbed. Specifically, we compare the energy con-
sumption calculated in the simulation testbed with actual energy
meter data using the 3rd floor of the actual testbed building.

Figure 3 shows that daily energy use comparison data (y-axis)
measured for 30 sample weekdays throughout different seasons (x-
axis; 3 weekdays in 2011 Spring, 10 weekdays in 2011 Summer,
17 weekdays in 2011 Fall). The energy consumption includes the
amount consumed by HVACs, lighting devices and appliances. We
use measured parameter values such as solar gain and outdoor tem-
perature and real parameter values for the building obtained from
the facility management system. We set the starting indoor tem-
perature using real data. The likelihood value for human occupants
to “turn off” lights and appliances when they leave their offices is
76%, based on a survey of the testbed building. Students follow
2010 Fall, 2011 Spring and 2011 Fall class schedules, and faculty,
staff and students follow their meeting schedules.

As shown in the figure, the difference between actual energy me-
ter data and energy use from the simulation testbed was between
0.17% – 8.71% (mean difference: 3.37%), which strongly supports
our claim that the simulation testbed is realistic.

3. SAVES
In this section, we describe the key components of SAVES and

how to optimally plan negotiations with groups of occupants to
conserve energy in our application.

3.1 Agents in SAVES
At the heart of SAVES are two types of agents: room agents and

proxy agents (Figure 4). There is a dedicated room agent per office
and conference room, in charge of reducing energy consumption in
that room. It can access sensors to retrieve information such as the

Figure 4: Agents & Communication Equipment in SAVES. An agent
in SAVES sends feedback including energy use to occupants.

current lighting level and temperature and energy use at different
levels (building-level, floor-level, zone-level, and room-level) and
impact the operation of actuators. A proxy agent [18] is on an in-
dividual occupant’s hand-held device and it has the corresponding
occupant’s preference and behavior models. Proxy agents commu-
nicate on behalf of an occupant to the room agent. Such proxy
agents’ adjustable autonomy – when to interrupt a user and when
to act autonomously – is recognized as a major research issue [18,
19], but since it is not our focus, we use preset rules instead. Room
agents may directly communicate with occupants without proxy
agents if needed. Finally, different room agents coordinate among
themselves via proxy agents, e.g., if two separate conference room
agents wish to move a meeting to one occupant’s office, the proxy
of that occupant allows one of the room agents to proceed, blocking
the other’s request (see Figure 4).

Room agent reasoning is based on a new model called Bounded
parameter Multi-objective MDPs (BM-MDPs), which is one of the
contributions of this research. BM-MDPs are a hybrid of MO-
MDPs [5, 13] and BMDPs [8]. BM-MDPs are responsible for plan-
ning simple and complex tasks. Simple tasks include turning on the
HVAC before a class or a meeting, and do not need the full power
of the BM-MDPs. Complex tasks were why BM-MDPs were cre-
ated; these include negotiating with groups of individuals to relo-
cate meetings to smaller rooms to save energy, negotiating with
multiple occupants of a shared office to reduce energy usage in the
form of lights or HVACs, and others. Before describing BM-MDPs
in depth, we motivate their use by elaborating on the meeting relo-
cation negotiation scenario.

Group Meeting Relocation Negotiation Example Consider a
meeting that has been scheduled with two attendees (P1 and P2) in
a large conference room that has more light sources and appliances
than smaller offices. Since the meeting has few attendees, the
room agent can negotiate with attendees to relocate the meeting
to nearby small, sunlit offices, which can lead to significant
energy savings. The room agent handles this negotiation based
on BM-MDPs. There are three objectives (i.e., three separate
reward functions) that the room agent needs to consider during this
negotiation: i) energy saving (R1), ii) P1’s comfort level change
(R2), and iii) P2’s comfort level change (R3). The room agent
first checks the available offices. Assuming there are two available
offices A and B, the room agent asks each attendee if she or he
will agree to relocate the meeting to one of the available offices. In
asking an attendee, the room agent must consider the uncertainty
of whether an attendee is likely to accept its offer to relocate



the meeting. Since asking incurs a cost (e.g., cost caused by
interrupting people), the room agent needs to reason about which
option is preferable considering P1 and P2’s likelihood to accept
each option (A or B) and the reward functions for each option to
reduce the required cost and maximize benefits. Assuming A is
preferable, the optimal policy of the agent is “ask P1 first about
A”–“if P1 accepts, ask P2 about A”–“if P1 does not reply, ask P1

about A again”–“repeat the process with B”–“if both agree, relo-
cate the meeting”–“if both disagree, find other available options.”
While this is a simplified example, in practice the problem is more
difficult, as there may be more than two attendees in a meeting.
The room agent must also first communicate with the proxies of
the owners of offices A and B and there may be uncertainty in
their agreement to have a meeting in their office; further adding to
the challenge of sequential decision making under uncertainty. In
addition, the agent must decide if it should ask P1 first and use that
result to influence P2, etc.

Thus, BM-MDPs must reason with multiple objectives, but si-
multaneously must reason with the uncertainty in the domain. In
fact, in a complex domain such as ours, the probabilities of atten-
dees’ or others’ acceptance of the room agent’s offer, or the proba-
bilities of other outcomes may not be precisely known — we may
only have a reasonable upper and lower bound over such probabil-
ities. Indeed, precisely knowing the model is very challenging, and
we ended up building BM-MDPs to address both these challenges
and requirements. However, before explaining BM-MDPs, we first
explain MO-MDPs on which BM-MDPs are built.

3.2 Multi-objective MDPs
The negotiation scenarios described earlier require SAVES to

consider multiple objectives simultaneously: energy consumption
and satisfaction level of multiple individuals. To handle such mul-
tiple objectives, MDPs have been extended to take into account
multiple criteria assuming no model uncertainty. Multi-Objective
MDPs (MO-MDPs) [5, 13] are defined as an MDP where the re-
ward function has been replaced by a vector of rewards. Specif-
ically, MO-MDPs are described by a tuple 〈S,A, T, {Ri}, p〉,
where Ri is the reward function for objective i and p denotes the
starting state distribution (p(s) ≥ 0). In the meeting relocation ex-
ample shown in Section 3.1, specifically, the multiple reward func-
tions, {Ri}, include energy consumption (which is the reduction
in energy usage in moving from a conference room to a smaller
office), and comfort level defined separately for each individual
(based on data related to their temperature comfort zones).

The key takeaway from MO-MDPs towards BM-MDPs is an un-
derstanding of how to generate a policy in the presence of such
multiple objectives that are not aggregated into one single value.
The key principle we rely on, given the current domain of non-
residential buildings is one of fairness; we wish to reduce energy
usage, but we cannot sacrifice any one individual’s comfort en-
tirely in service of this goal. To meet this requirement, we focus
on minimizing the maximum regret instead of maximizing the re-
ward value based on a min-max optimization technique [14] to get
a well-balanced solution.

To minimize the maximum regret, we first need to compute the
optimal value for each objective using the MDP framework relying
on the following standard formulation:

minV ∗(s) (2)

s.t. V ∗(s) ≥ R(s, a) + γ
∑
s′∈S

T (s, a, s′) · V ∗(s′), (3)

0 ≤ γ < 1 (4)

where V ∗ is an optimal value, and γ is a discount factor.
We define the regret in MO-MDPs as following:

Definition Let Hα
i (s) be the regret with respect to a policy α for

objective i and state s. Formally,

Hα
i (s) = V

α∗i
i (s)− V αi (s), (5)

where V α
∗
i

i (s) is the value of the optimal policy, α∗i , and V αi (s) is
the value of the policy α for objective i and state s.

Therefore, we can minimize the maximum regret in MO-MDPs
using the following optimization problem:

minD (6)

s.t. D ≥
∑
s∈S

p(s) · [V ∗i (s)− Vi(s)] , ∀i ∈ I, (7)

Vi(s) =
∑
a∈A

α(s, a)

[
Ri(s, a) + γ

∑
s′∈S

T (s, a, s′) · Vi(s′)

]
,

(8)∑
a∈A

α(s, a) = 1,∀s ∈ S, 0 ≤ γ < 1 (9)

where V ∗i is the constant value pre-calculated by (2) of the MDP
formulation using the reward function for objective i, Ri, and I is
a set of objectives.

Unfortunately, in BM-MDPs, we have an upper and lower bound
on transition probabilities and rewards, and thus this optimization
problem cannot be directly used. Nonetheless, it helps us under-
stand the key difference in minimizing max regret between MO-
MDPs and BM-MDPs — specifically in addressing such upper and
lower bounds in BM-MDPs, we end up with different transition
probabilities Ti for each objective i, as discussed below, and hence
rely on a different approach to compute regret.

3.3 BM-MDPs
We now extend MO-MDPs, using ideas from BMDPs [8], to cre-

ate BM-MDPs. BMDP (represented by tuple 〈S,A, T̂ , R̂, p〉) is
an extension to the standard MDP, where upper and lower bounds
on transition probabilities and rewards are provided as closed real
intervals. In addition to representation of uncertainty over transi-
tion probabilities and rewards, a key takeaway for BM-MDPs from
BMDPs is the algorithm to generate policies. This algorithm is
based on the notion of Order-Maximizing MDPs [8], which selects
transition probabilities from the given intervals. Order-maximizing
MDPs crucially take the order of states as an input – this order is
ascending if we are to return a pessimistic policy (based on lower
bound values), and it is descending for an optimistic policy (based
on upper bound values). More specifically, using this order as an in-
put, order-maximizing MDPs construct the transition function, and
generate a policy as an output relying on value iteration. We rely
on order-maximizing MDPs to generate policies in our BM-MDPs
as well (but manipulate the order of states input). To provide some
intuition behind the operations of the order-maximizing MDPs, we
provide a simple example to show how transition values are as-
signed from their intervals using the given order in the following
example. For more details, please refer to [8].

Example of Order Maximizing MDPs Consider a BMDP with
two states: s1 and s2. The transition ranges are T (s1, a, s1) = [0.5,
0.9], T (s1, a, s2) = [0.2, 0.6]. Let us assume that the upper bound
of value is Vub(s1) = 3 and Vub(s2) = 2 at a certain iteration of
order-maximizing MDP value iteration. In BMDP, the intuition is



that for calculating the optimistic value, we require movement to s1
as much as possible within the given range of transition probability
(since it has a higher upper bound value). Therefore to create an op-
timistic policy, the input to the order-maximizing MDPs is to sort
the states in a descending order based on the upper bounds. Given
this input, the transition probabilities in the order-maximizing MDP
for calculating optimistic value would be T ′(s1, a, s1) = 0.8 be-
cause T ′(s1, a, s2) should be at least 0.2, and T ′(s1, a, s2) = (1 -
0.8). Based on these transition probabilities, we obtain a new set
of expected values via value iteration, generate a new descending
order, and iterate until convergence.

Similar to BMDPs, the transition and reward functions in BM-
MDPs have closed real intervals. Whereas BMDPs are limited to
optimizing a single objective case (i.e., the BMDP model requires
one unified reward function), BM-MDPs can i) optimize over mul-
tiple objectives (i.e., a vector of reward functions) with ii) differ-
ent degrees of model uncertainty. Specifically, BM-MDPs are de-
scribed by a tuple 〈S,A, T̂ , {R̂i}, p〉, where R̂i represents the re-
ward function for objective i.

Algorithm 1 SOLVEBMMDP()
1: for i = 1 ∈ I do
2:

〈
V∗i,lb,V

∗
i,ub

〉
← SolveBMDP(BMDPi)

3: {V
′
i,lb} ← ∞ ; {Vi,lb} ← 0

4: while |{V′i,lb} − {Vi,lb}| > ε do

5: {Vi,lb} ← {V
′
i,lb}

6: for i = 1 ∈ I do
7: Oi ← SortIncreasingOrder({Vi,lb})
8: Mi ← ConstructOrderMaximizingMDP(Oi);
9: {V′i,lb} ← SolveMOMDPPessimistic({Vi,lb}, {V∗i,lb}, {Mi})

10: αpes ← ObtainPessimisticPolicy({Vi,lb})
11: {V

′
i,ub} ← ∞ ; {Vi,ub} ← 0

12: while |{V′i,ub} − {Vi,ub}| > ε do
13: {Vi,ub} ← {V′i,ub}
14: for i = 1 ∈ I do
15: Oi ← SortDecreasingOrder({Vi,ub})
16: Mi ← ConstructOrderMaximizingMDP(Oi);
17: {V′i,ub} ← SolveMOMDPOptimistic({Vi,ub}, {V∗i,ub}, {Mi})
18: αopt ← ObtainOptimisticPolicy({Vi,ub})
19: return {〈αpes, αopt〉}

To solve BM-MDPs, we introduce a novel algorithm that is a hy-
brid of BMDPs and MO-MDPs. Specifically, our algorithm mar-
ries the minimization of max regret idea from MO-MDPs with
that of order maximizing MDPs to handle uncertainty over tran-
sition function and rewards. The overall flow is described in Al-
gorithm 1. At a higher level, we have three stages: (i) computing
the optimal value bounds

〈
V∗i,lb,V∗i,ub

〉
for each objective i using

BMDPs (lines 1–2), (ii) using the MO-MDP idea to optimize mul-
tiple objectives based on a min-max formulation (lines 3–9 & 11–
17), and (iii) obtaining a policy α based on the final value functions
〈{Vi,lb}, {Vi,ub}〉 (lines 10 & 18). The output of this algorithm is
in the form of two policies (pessimistic and optimistic), and we
leave it to the user to determine which one is used.

We now describe the computation of the pessimistic policy (lines
3–10). The optimistic policy (lines 11–18) is similarly computed.
The pessimistic policy minimizes the maximum regret with respect
to the optimal lower bound values of all objectives ({V ∗i,lb}) over
all states; this computation is iteratively performed in line 9. For
each objective i, we first get an ascending order of states using
the current lower bound values Vi,lb (line 7) to construct the order-
maximizing MDP (line 8). This set of order-maximizing MDPs,

{Mi}, is an input to the function SolveMOMDPPessimistic() to
optimize multiple objectives by directly computing regret on line
9. This computation is performed by Eq. (6) with a different tran-
sition probability function Ti in the given Mi instead of T . This in
turn influences the sorting order of states, and the process continues
until the expected values {Vi,lb} converge.

4. EVALUATION OF SAVES
In this section, we provide three sets of evaluations: two sets of

results tested in the simulation testbed and a set of results tested in
the real-world.

4.1 Simulation: Overall Evaluation
We evaluate the performance of SAVES using both 2nd and 3rd

floors of RGL in the simulation environment. We test BM-MDPs
using a pessimistic setting and compare it with two other control
heuristics discussed below.
Manual Control: The manual control strategy is the baseline
system that represents the current strategy operated by the facility
management team in the real testbed building (RGL). In this strat-
egy, temperature is regulated by the facility managers according to
two set ranges for occupied (70◦F–75◦F) and unoccupied periods
(50◦F–90◦F) of the day. In this control setting, HVACs always at-
tempt to reach the pre-set temperature regardless of the presence
of occupants and their preferences in terms of temperature. Light-
ing and appliance devices are controlled by human occupants. The
same likelihood value for human occupants to “turn off” lights and
appliances was used as in Section 2.2.
Reactive Control: We consider the reactive control heuristic
for comparison purposes since it can be easily implemented us-
ing cheap sensors in the real building, and recently, some build-
ings have already started adopting this simple heuristic to reduce
energy use. The lighting and appliance devices are now automati-
cally controlled and turned on and off according to the presence of
people. Additionally, as in [9], appropriate temperature set points
of HVACs are computed based on the average preference of human
occupants. HVACs automatically turn on and off according to the
presence of people and temperature set points.

We focus on measuring two different criteria — total energy con-
sumption (kWh) and average satisfaction level of occupants (%).
The experiments were run on Intel Core2 Duo 2.53GHz CPU with
4GB main memory. All techniques were evaluated for 100 indepen-
dent trials throughout this section. We report the average values.

4.1.1 Result: Total Energy Consumption
We compared the cumulative total energy consumption mea-

sured during 24 hours for all control strategies. Figure 5(a) shows
the cumulative total energy consumption on the y-axis in kWh and
time on the x-axis. We report the average total energy consump-
tion measured over the same 30 weekdays used in Figure 3. As
shown in the figure, the manual control strategy showed the worst
result since it does not take into account behaviors or schedules
of human occupants and building components simply follow the
predefined policies. The reactive control strategies showed lower
energy consumption than the manual setting by 16.06%. SAVES
showed the best results compared to other control heuristics and
statistically significant improvements (t-test; p < 0.01) in terms
of energy used in the testbed building. Specifically, our algorithm
with the ideal compliance rate (i.e., SAVES-IDEAL: occupants al-
ways accept the suggestions provided by the SAVES room agents to
conserve energy) reduced the energy consumption by 42.45% when
compared to the manual control strategy. If we use the compliance
rate (68.18%) of human subjects shown in Table 3 (as measured



(a) Total Energy Consumption

(b) Average Satisfaction Level

Figure 5: Performance Evaluation of SAVES

in our real-world experiments), SAVES achieved energy savings
by 31.27% (40% of the savings due to SAVES came out of group
tasks, such as reducing energy consumption in shared offices, relo-
cating meetings, and others) as compared to the manual setup. This
is double the rate of the reactive approach.

4.1.2 Result: Average Satisfaction Level
Here, we compare the average satisfaction level of human oc-

cupants under different control strategies in the simulation testbed.
Figure 5(b) shows the average satisfaction level in percentage on
the y-axis and time on the x-axis. As shown in the results, the man-
ual setting and our novel algorithm showed the best results. This is
because the manual setting makes HVACs attempt to reach the de-
sired temperature set point as soon as possible while disregarding
the resulting energy consumption, and our method plans ahead of
the schedules; thus, these two can achieve the desired comfort level
faster than the reactive control strategy.

The manual strategy, however, is very sensitive to the given tem-
perature range. In our experiment, the temperature set point was set
by the facility management team (e.g., 70–75◦F) based on the av-
erage preference model, thus it achieved high comfort level in the
testbed. However, if the actual preferred temperature in the build-
ing is different from the average model, it fails to meet the occu-
pant’s desired level. This phenomenon can be seen when occupants
stay during the unoccupied time (after typical working hours). As
we can see at 18 on the x-axis (i.e., 6pm) in the figure, the average
comfort level drops significantly. Due to the delayed effects in tem-
perature change, the reactive control strategy showed significantly
lower satisfaction results than other methods. For instance, it has a
satisfaction level below 60% at 14 on the x-axis (i.e., 2pm). Thus,
SAVES not only provides superior energy savings, but also avoids
the reduction in comfort level that a reactive strategy may cause.

Table 1: Average Maximum Regret Comparison
Problem Set MDPs BM-MDPs Difference

m1 168.62 4.72 163.90
m2 359.44 164.17 195.27
m3 448.15 164.97 283.18
m4 291.27 138.59 152.68
m5 143.32 95.88 47.44

Table 2: Example of the Meeting Relocation Negotiation
Max. Regret

Objective MDPs BM-MDPs
Energy Savings 443.54 162.83

P1’s Comfort Lv. Change 15.34 162.84
P2’s Comfort Lv. Change 15.34 97.58

4.2 Simulation: Multi-objective Optimization
In this section, we perform more analysis on our novel algorithm.

Table 1 shows the average maximum regret comparison tested in 5
different problem sets between the standard MDP with a unified re-
ward based on the weighted sum method [22] and BM-MDPs (in
this case, we assume no transition or reward uncertainty). The uni-
form weight distribution was applied to the weighted sum method.
Our goal is to show that BM-MDPs give lower maximum regrets,
which indicates well-balanced solutions as discussed earlier.

Each problem is an instance of the meeting relocation negotia-
tion task, having its own reward structure but the same transition
function. The problem instances are divided into five groups (prob-
lem sets m1–m5) based on the percentage of objectives that have
positive rewards in all objectives. Recall that in the meeting reloca-
tion scenario, the different objectives include energy reduction and
change in comfort level of individual participants. Specifically, in
problem set m1, relocating a meeting leads to positive rewards in
over 75% of objectives (76–100%) and negative rewards in the rest
of objectives, problem set m2 has 51–75% of objectives with posi-
tive rewards, and similarly for the remaining sets, so that in problem
set m5, all objectives have negative rewards if the meeting is relo-
cated. Each problem set has 100 independent problem instances.
We then measured the average maximum regret of each method in
each problem set. As shown in Table 1, BM-MDPs always showed
lower maximum regrets (column 3) compared to the MDP with
uniform weight (column 2), which suggests that our method gives
well-balanced solutions regardless of reward characteristics.

The next question is what the well-balanced solution means in
our energy domain. Let us take the meeting relocation example
with two attendees (P1 and P2) discussed in Section 3.1. In Ta-
ble 2, column 1 shows three objectives (energy savings and two at-
tendees’ comfort level change) and columns 2–3 indicate the maxi-
mum regret from MDPs and BM-MDPs, respectively. As shown in
the table, MDPs generated a policy that almost entirely disregards
energy-savings, leading to significantly large regrets (row 3, col-
umn 2). BM-MDPs, on the other hand, were able to achieve small
regrets over all objectives (rows 3–5, column 3).

Lastly, we test our BM-MDP algorithm considering different
degrees of model uncertainty. Figure 6 shows the average max-
imum regret tested over 100 different problem instances on the
y-axis. We choose 1 problem from each problem set (m1, m2,
· · · , m5) from the previous test. The noise of each model
is proportional (20%) to the mean reward value and transition
probability. MDPs and MO-MDPs generate policies ignoring
the model’s uncertainty and BM-MDPs generate two types of
policies (BM-MDP-Pes: pessimistic, BM-MDP-Opt: optimistic)
that explicitly account for the uncertainty. We then randomly



generate 20 different instances within the range for each prob-
lem (e.g., for m1, we generate m1,1, · · · , m1,20). Each gen-
erated policy is evaluated over those 20 problem instances and
the average maximum regret is computed for each algorithm.

Figure 6: Performance of BM-MDPs

For the other 4
problems (m2, · · · ,
m5), we repeat the
same procedure and
report the overall
average value. As
shown in the figure,
BM-MDPs have the
best performance
(i.e., lowest average
maximum regret),
which means BM-
MDPs are capable
of generating more robust and well-balanced solutions compared
to previous work when there is model uncertainty. However, the
solution quality between the pessimistic and optimistic BM-MDPs
was not significantly different and their performance is domain
dependent. Note that the results shown in Figure 6 are average
maximum regrets over all problem instances, and in some particu-
lar instances, MO-MDP might outperform either BM-MDP-Pes or
BM-MDP-Opt (but not both even in this case). We leave this issue
for future investigation.

4.3 Real-world Test: Human Experiments
As a real-world test, we design and conduct a validation experi-

ment on a pilot sample of participants (staff on campus). We con-
duct this investigation: i) to verify if SAVES can lead to changes
in occupants’ behaviors and to reduce energy consumption in com-
mercial buildings, ii) to validate the parameter values used during
the negotiation process such as the acceptance/compliance rate for
the suggestion and iii) to understand what types of feedback are
most effective to affect occupants’ energy-related decisions.

In this study, we consider two test conditions: i) feedback with-
out motivation (Test Group I) (e.g., please reduce the lighting level
in your office), and ii) feedback with motivation including partici-
pant’s own energy use, and environmental motives (Test Group II)
(e.g., if you reduce your lighting for working hours, the annual en-
ergy savings at the building level are 26000kWh on average, which
is equivalent to the reduction of CO2 emissions of 2.2 homes for
one year). From this experiment, we answer the following ques-
tion by comparing change in energy behavior patterns and possible
estimated energy consumption between test groups I and II.

HYPOTHESIS 1. More informed feedback (provided to subjects
in Test Group II) will be more effective to conserve energy than
feedback without motivation (Test Group I).

We tested the hypothesis above as follows: we first recruited 22
staff from 7 buildings at the University of Southern California who
are over 18 years old. Subjects were tested under two different con-
ditions, and each test group had 11 individuals respectively, each of
whom has her/his own office. Since we tested using a simple light-
ing negotiation scenario, each participant must be able to adjust the
lighting levels in her/his office. With participants’ agreements, we
installed lighting sensors (Figure 4) in their offices. During the ex-
periment, participants were supposed to stay in their own offices
and do their regular work. We then measured the baseline energy
behavior and energy consumption, and SAVES provided feedback
via emails based on sensed lighting level (two times per day, at
11am and 2pm, for three consecutive weekdays). In each message,

Table 3: Lighting Negotiation Results (*: p < 0.05)
Avg. Accep. Rate (%) User Rating (Max: 5.0)

Group I 28.79 (11.03) 3.82 (0.26)
Group II 68.18 (9.65) 4.18 (0.18)

Mean Diff. 39.39∗ 0.36

participants received a simple suggestion for lighting level with a
certain type of feedback (e.g., please reduce the lighting level in
your office). We systematically observed and logged their energy
behavior during the entire experiment using the light sensors. At
the end of the experiment, each participant was required to take a
short survey (i.e., the reasons why they agree or disagree with a pro-
vided suggestion). We conducted this study for two weeks in the
fall of 2011 and collected data from human subjects using multiple
sensors and routers.

In Table 3, column 2 displays the average acceptance rate in per-
centage (0–100%) of two test groups, and column 3 represents the
average user rating of the provided feedback during the experiment.
The range of ratings is between 0 and 5, and 0 indicates that the
feedback was not helpful at all, and 5 means that the feedback was
extremely helpful. In both columns, values in parentheses indicate
the standard errors. The last row shows a mean difference between
two groups for each value.

Table 3 shows that when we provided more informed feedback
including environmental motives (Group II), occupants showed sta-
tistically significantly higher compliance acceptance rate (68.18%),
which provides strong evidence for the above hypothesis (t-test;
p < 0.05). In addition, human subjects in Group II felt that the
provided feedback was more helpful during the negotiation pro-
cess. However, the difference in user ratings between two groups
was not significant, and thus we took a quick survey from partici-
pants at the end of the experiment to further analyze their decisions.
In contrast with Group I, in Group II, the main reason why partici-
pants who agreed to reduce the lighting level in their offices (over
80% of conformers in Group II) was because the feedback signif-
icantly improved awareness of energy use. In addition, more than
half of all participants strongly believed that this study will be very
helpful by encouraging occupants to think about energy usage. This
discrepancy in average user ratings and acceptance rates remains an
issue for future work.

In this trial study, we have learned that although occupants in
commercial buildings do not have a direct financial incentive in
saving energy, proper motivations can achieve a higher compliance
rate for the energy-related suggestion. This study specifically gives
us the insights that there is a significant potential to conserve en-
ergy by investigating effective and tailored methods to improve oc-
cupants’ motivation to conserve energy.

5. RELATED WORK
In discussing related work, a key point we wish to emphasize is

the uniqueness of our work in combining research on multiagent
systems, specifically our multi-objective MDP algorithm that han-
dles uncertainty, and negotiations with human subjects, in an inno-
vative application for energy savings. It is this specific combination
of attributes that sets SAVES apart from previous research.
Multiagent Energy Systems: Multiagent systems have been con-
sidered to provide sustainable energy for smart grid management.
Voice et al. [21] provided a game-theoretic framework for model-
ing storage devices in large-scale systems where each storage de-
vice is owned by a self-interested agent that aims to maximize its
monetary profit. In addition, [10] addressed research challenges to
integrate plug-in Electric Vehicles (EVs) into the smart grid.



To model and optimize building energy consumption, Ramchurn
et al. [16] considered more complex deferrable loads and managing
comfort in the residential buildings. Rogers et al. [17] addressed
the challenge of adaptively controlling a home heating system in
order to minimize cost and carbon emissions within a smart grid
using Gaussian processes to predict the environmental parameters.
Our domain is different in focusing on energy savings in commer-
cial buildings, and the representation and approaches are also dif-
ferent from previous work by allowing consumers (i.e., occupants)
to play a part in optimizing the operation in the building instead of
managing the optimal demand on buildings.
Energy Literacy via Feedback: Abrahmase et al. [2] reviewed
38 interventions aimed to reduce household energy consumption,
and they concluded that normative feedback about energy use is
the most promising strategy for reducing and maintaining low
consumption. However, it focused on residential environments,
which is different from our work. In a recent study, Carrico and
Riemer [4] provided monthly normative feedback via email to oc-
cupants of a commercial building about their own buildings’ energy
use in comparison with and other, similar buildings. Unfortunately,
the study relied on self-reporting to assess the behaviors. Instead,
our work relies on real sensors to observe their energy behavior
in real-time. Faruqui et al. [7] reviewed past experiments and pi-
lot projects to evaluate the effect of in-home displays (IHDs) on
energy consumption. Our work is different because we simultane-
ously consider multiple criteria including energy consumption and
occupant comfort level.
Multi-objective Optimization Techniques: There has been a sig-
nificant amount of work done on multi-objective optimization. The
most common approaches to multi-objective optimization are to
find Pareto optimal solutions [15], use the weighted sum method
to aggregate multiple objectives using a prior preference [22], or
consider the weighted min-max (or Tchebycheff ) formulation that
provides a nice theoretical property in terms of sufficient/necessary
conditions for Pareto optimality [14].

Recently, Chatterjee et al. [5] considered MDPs with multiple
discounted reward objectives. They theoretically analyzed the com-
plexity of the proposed approach and showed that the Pareto curve
can be approximated in polynomial time. Ogryczak et al. [13] fo-
cused on finding a compromise solution in multi-objective MDPs
for a well-balanced solution. They compared their approach rely-
ing on the Tchebycheff scalarizing function to the weighted sum
method. On the other hand, there has been some significant ad-
vances to handle model uncertainty on standard MDPs including [6,
8]. Our work is different from them as we assume model uncer-
tainty while simultaneously optimizing multiple criteria in MDPs.

6. CONCLUSION
In this work, we presented an innovative multiagent system

called SAVES with the goal of conserving energy in commercial
buildings. There are several key novelties in SAVES: (i) SAVES
is based on a real building and uses actual building data, including
energy data, occupant preferences and schedules; (ii) it investigates
both individual and group negotiations to save energy in smaller
offices and shared rooms; (iii) it focuses on a commercial build-
ing, which requires a different mechanism to effectively motivate
occupants since they do not have a direct financial incentive in con-
serving energy; and (iv) SAVES’s reasoning is based on a novel
BM-MDP algorithm for generating optimal policies that explicitly
considers multiple criteria optimization as well as uncertainty over
occupant preferences. We justified SAVES in a validated simula-
tion testbed and showed that it can provide solutions to significantly
reduce energy consumption while achieving comparable satisfac-

tion levels of building occupants. As a real-world test, we provided
results of a human subject study where SAVES is shown to lead
occupants to conserve energy in real buildings.
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