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ABSTRACT
Recent work has defined an optimal reward problem (ORP)
in which an agent designer, with an objective reward func-
tion that evaluates an agent’s behavior, has a choice of what
reward function to build into a learning or planning agent to
guide its behavior. Existing results on ORP show weak miti-
gation of limited computational resources, i.e., the existence
of reward functions so that agents when guided by them do
better than when guided by the objective reward function.
These existing results ignore the cost of finding such good
reward functions. We define a nested optimal reward and
control architecture that achieves strong mitigation of lim-
ited computational resources. We show empirically that the
designer is better off using the new architecture that spends
some of its limited resources learning a good reward function
instead of using all of its resources to optimize its behavior
with respect to the objective reward function.

Categories and Subject Descriptors
H.4 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Planning

1. INTRODUCTION
Reinforcement learning (RL) and decision-theoretic plan-

ning approaches for solving sequential decision making prob-
lems typically start with an agent’s reward function and
focus on designing learning/planning architectures for the
agent that allow it to efficiently optimize some cumulative
measure of the given reward. Recently Singh et al. [1] have
argued that for many applications a more accurate and po-
tentially useful way to describe the applied RL setting is as
an agent designer who has an objective reward function that
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prescribes preferences over agent behavior, so that when
building an agent, the designer is free to choose any reward
function as parameters for the agent. In this view the de-
signer’s objective reward function (as preferences) evaluates
agent behavior while the agent’s reward function (as param-
eters) guides the agent’s behavior via its planning/learn-
ing algorithm. The conventional RL approach confounds
these two roles of rewards, evaluation and guidance, by us-
ing the objective reward for both. This raises the question of
what benefits, if any, might there be to breaking the conven-
tional equality between preferences and parameters? Singh
et al. formalize this question via a new optimal reward prob-
lem (ORP) that defines the optimal reward function as one
that—if used to guide agent behavior—ends up maximizing
the utility as evaluated by the agent designer’s objective re-
ward function. By solving the ORP for classes of agents and
environments, Sorg et al. [2] developed a key insight: good
reward functions mitigate agent boundedness, i.e., choos-
ing a reward function to guide the agent different from the
evaluatory objective reward function can improve agent per-
formance by mitigating inevitable agent limitations (e.g.,
bounds on architecture or on computational resources).

In this paper we draw a distinction between two ways in
which solving the optimal reward problem might be bene-
ficial to the agent designer. Weak mitigation is about the
existence of good reward functions — ones that improve
agent performance compared to using objective reward—
however they are found. Past work on solving the ORP has
largely focused on demonstrating and understanding weak
mitigation. Strong mitigation takes into account the cost of
finding good reward functions. Intuitively, strong mitigation
is demonstrated when it benefits the agent designer to spend
a portion of limited computational resources on a search for
good reward functions, rather than spending all on a search
for policies that optimize objective reward. Achieving strong
mitigation is much more practically consequential than weak
mitigation1 and is the focus of this paper.

The contributions of this paper are threefold. 1) We for-
malize a new distinction between weak mitigation and strong
mitigation of agent limitations. 2) We define a family of ab-
stract architectures we call Nested Optimal Reward and
Control or NORC that follows transparently from our def-

1Achieving weak mitigation may also have practical benefits
if the cost of the reward function search is amortized through
extended use of the discovered reward function



inition of strong mitigation. 3) We provide concrete ex-
amples of NORC architectures and demonstrate empirically
that they achieve strong mitigation in some simple domains
crafted to illustrate the connection between forms of good re-
ward and the types of agent limitations, as well as on Othello
to show scaling and applicability of the NORC architecture.

Other Approaches to Designing Reward Functions.
Inverse-RL [3] and preference elicitation [4] consider the
problem of determining a reward function, in the former
by observing behavior of a human and in the latter from
answers to queries asked of a human. Both are different
from ORP which assumes that the human’s objective re-
ward function is known to begin with. Reward shaping [5],
the idea of designing reward functions that accelerate learn-
ing, was shown to be a special case of ORP [6] (they also
showed the generality of ORP helps). In summary, while
these and other approaches to designing rewards exist, prior
work focuses on designing rewards from an understanding
of the environment and designer’s goals without taking into
account limitations of the agent (see Definition 1 below).

A key distinctive feature of the ORP is that the agent’s
limitations are integral to defining rewards. This is a poten-
tial strength because it can lead to greater benefit from a
good choice of rewards, but it is also a potential weakness be-
cause it makes the problem of finding good rewards harder.
Previous work on ORP has demonstrated the strength by
showing weak mitigation. In this paper we demonstrate that
the weakness can be overcome by showing strong mitigation.

2. FROM WEAK TO STRONG MITIGATION

ORP and weak mitigation. The following notation al-
lows us to define the ORP and weak mitigation. At time
step t, the agent (A) gets an observation ot from the envi-
ronment (M) and takes an action ut which causes a stochas-
tic transition in the state of the environment. The agent’s
history at time k is hk = o1u1 . . . ok−1uk−1ok. Reward func-
tions are mappings from agent histories to scalar rewards,
and are used both to evaluate and guide behavior. Given a
history h (of length |h|), the designer’s or objective utility

is UO(h)
def
= 1
|h|

∑|h|
t=1 R

O(ht) while the agent’s or guidance

utility is UA(h)
def
= 1
|h|

∑|h|
t=1 R(ht), where RO is the objec-

tive reward function and R is the agent’s reward function.
The designer’s objective is to build an agent whose behavior
maximizes expected objective utility. The agent’s objective
is to behave so as to maximize expected guidance utility.
Agent A, when guided by reward function R is denoted AR,
and when interacting with the environment produces his-
tory h ∼ 〈AR,M〉, where 〈AR,M〉 is the distribution over
histories. The expected objective utility obtained by the de-

signer from the agent is UO(A,M)(R)
def
= Eh∼〈AR,M〉[UO(h)].

The conventional RL agent is AR
O

and achieves expected
objective utility UO(A,M)(R

O). Separating the agent’s reward
function from the designer’s objective reward function leads
to the following definition.

Definition 1. (ORP [1])
Given environment M, agent A, and a set of reward func-
tions R, choose an optimal reward function

R∗
def
= arg max

R∈R
UO(A,M)(R)

def
= arg max

R∈R
Eh∼〈AR,M〉[U

O(h)].

Note that the set of optimal reward functions is a function
of the tripletA,M, RO. In other words the limitations of the
agent with respect to its environment play a role in defining
the optimal reward; this is the formal departure from other
(non-ORP) work on designing reward functions.

A number of results are available on ORP including: 1) If
RO ∈ R, then ∀(A,M), UO(A,M)(R

∗) ≥ UO(A,M)(R
O), i.e., us-

ing the optimal reward function to guide agent behavior can-
not be detrimental to the designer’s goals [1], 2) If RO ∈ R
and agent A is unlimited in capability with respect to en-
vironment M, then UO(A,M)(R

∗) = UO(A,M)(R
O), i.e., solving

the ORP only helps limited agents [2], 3) a number of empir-
ical and theoretical investigations that match agent limita-
tions (e.g., depth-limits on planning) with classes of mitigat-
ing reward functions (e.g., exploration based rewards) point
to possible prescriptions for good reward function choice [2],
and 4) a gradient based algorithm PGRD for learning re-
ward functions online for some planning agents [6]. These
results demonstrate what we define as weak mitigation.

Definition 2. (Weak Mitigation)
If UO(A,M)(R

∗) > UO(A,M)(R
O), then we say R∗ weakly miti-

gates A’s limitations in environment M for objective reward
function RO.

Crucially, weak mitigation demands only the existence of
a good reward function for the A,M, RO of interest. It
demands nothing of how easy or hard it is to find good
reward functions for it ignores that cost completely. We
consider this cost next.

NORC and Strong Mitigation. Solving the ORP in-
volves computation that may be better spent in the agent
elsewhere (e.g., in doing deeper planning). Accounting for
this cost of finding good rewards is this paper’s main contri-
bution, and is effectively a commitment to a new RL agent
architecture in which there is both a conventional search for
good value-functions/control-policies as well as a search for
good reward functions. Because the goodness of a policy is
only defined with respect to a reward function the search
for good policies has to be nested inside the search for good
reward functions. This leads to a two-level nested optimal
reward and control (NORC) architecture that is depicted in
the right panel of Figure 1. It splits the computational re-
sources available to the designer between a critic-agent (de-
noted C) that learns/plans good reward-function-policies to
guide the actor-agent A, and the conventional actor-agent
that learns/plans good control-policies in the actor environ-
ment to achieve high reward from the critic-agent.

The departure in NORC is best understood by comparing
it to the other two architectures in Figure 1. The conven-
tional RL architecture (left panel) is an artificial agent that
simply receives the objective reward from the environment
and engages in a search for the best policy with respect to
it. For the weak mitigation architecture (middle panel), the
designer precomputes a good reward function outside the
architecture and builds it into a critic inside the actor-agent
(in effect“misleading”the artificial agent concerning the true
nature of the objective reward in order to help overcome its
limitations). Finally the new NORC agent (right panel),
like the conventional agent, simply receives the objective re-
ward from the environment, and then internally partitions
the computation between search for a better reward function
(the responsibility of the critic-agent) and the search for a
good policy (the responsibility of the actor-agent).



Figure 1: (Left) The conventional RL architecture’s agent environment diagram. (Middle) The weak mitiga-
tion architecture (from Singh et al. [1]). (Right) The new strong mitigation NORC architecture introduced
in this paper. See Section 2 for details.

Intuitively stated, strong mitigation holds when it is bet-
ter for the resource-bound designer to use a NORC agent
rather than a conventional agent, i.e., when learning rewards
in addition to learning behavior is a good decomposition of
limited resources within an agent. In other words, strong
mitigation suggests that reward functions are another im-
portant locus of learning or adaptivity within a bounded
agent. To formalize this consider a parameterized family
of conventional agents, A(Θ), where Θ is some set of pa-
rameters that impact resource consumption (e.g., one fam-
ily of agents used in the experiments reported here are fi-
nite depth planning agents with depth as resource parame-
ter; larger depth requires more CPU resource per decision).
Given a critic-agent C (we present concrete instances in the
next Section), we get a family of NORC agents {CA(Θ)}.
Let Res(A(θ ∈ Θ)) be the resource consumption of con-
ventional agent A(θ), and Res(CA(θ ∈ Θ)) be the resource
consumption of NORC agent CA(θ). The expected objec-
tive utility obtained by the designer with resource bound τ
via the NORC architecture is

UOM(CA(Θ); τ) = arg max
θ∈Θ s.t. Res(CA(θ))≤τ

Eh∼〈CA(θ),M〉[UO(h)],

(1)
and similarly, the expected objective utility obtained via the
conventional architecture is

UOM(A(Θ); τ) = arg max
θ∈Θ s.t. Res(A(θ))≤τ

Eh∼〈A(θ),M〉[UO(h)].

(2)

Definition 3. (Strong Mitigation)
If UOM(CA(Θ); τ) > UOM(A(Θ); τ), then we say that the critic-
agent C strongly mitigates the limitations of the family of
agents A(Θ) in environment M with objective reward func-
tion RO for a resource bound τ .

We emphasize that weak mitigation (cf. Definition 2) has
expected objective utility as a function of reward functions,
because that is what the designer chooses in the weak mit-
igation setting, while strong mitigation (cf. Definition 3)
has expected utility as a function of agent architectures (via
Equations 1 and 2) because that is what the designer chooses
in the strong mitigation setting.

3. CRITIC-AGENTS FOR NORC
Here we turn to providing concrete NORC agents by de-

veloping critic-agents; for actor-agents we simply use exist-
ing families of popular resource parameterized learning and
planning algorithms. The critic-agent’s environment is com-
posed of the actor’s environment and the actor-agent and

Algorithm 1 General NORC Psuedocode

for (t = 1 ,2 , . . .)
Observe ot from the environment

C observes ut−1 , Rt−1 , sat−1 , ot , RO(·t)
C chooses reward−funct ion−ac t i on Rt ∈ R

Set A ’ s reward func t i on to Rt
A observes ut−1 , ot
A chooses ac t i on ut

Take ac t i on ut in the environment

thus the state of the critic’s environment is (s, sa) where s
is the environment’s state and sa is the actor-agent’s state
(this is the state of the actor-agent program). The critic-
agent’s observation consists of both the environment obser-
vation o, and the actor-agent’s state sa. The critic-agent’s
action-space is the set of reward functions R. Recall that
the critic-agent is guided by RO in the NORC architecture
while the actor-agent is guided by whatever reward function
is provided to it by the critic-agent’s action choice

The NORC architecture involves two interacting explo-
ration/exploitation problems. The first (and inner) is the
conventional one faced by the RL actor-agent. The sec-
ond (and outer) is the new one faced by the critic-agent
of whether to stay with the policy for selecting reward func-
tions for the actor-agent that is best based on current knowl-
edge (exploit), or whether to choose reward functions for the
actor-agent to improve current knowledge to allow greater
objective reward in the future (explore). Unsurprisingly
then, the critic-agent is also usefully thought of as an RL
agent, only with reward functions (∈ R) as actions and the
joint actor-agent and actor environment as critic environ-
ment. This makes it possible to leverage the considerable
existing body of algorithms and analysis available for design-
ing RL agents. We consider two different classes of explo-
ration/exploitation problem formulations, the simpler ban-
dits and the more complex MDPs/POMDPs, as the basis
for critic-agent algorithms.

3.1 Bandit-based Critic-Agents
First we consider critic-agents that treat their exploration-

exploitation problem as a multi-arm bandit problem, i.e.,
they ignore critic-observations and treat each reward-function-
action (R ∈ R) as an arm and the objective reward as the
reward function. Pulling an arm, i.e., selecting a reward-
function-action, yields an objective reward through the re-
sulting action choice made by the actor-agent in the envi-
ronment. In a standard bandit formulation, when an arm



is pulled the reward obtained is an unbiased estimate of the
expected utility of that arm, and the choice of arm has no im-
pact on the rewards sampled from other arms in the future.
The critic-agent’s bandit problem violates these assump-
tions and thus faces the following challenges: (1) choices
of reward-function-action can affect the achievable objective
utility for other reward-function-actions by transitioning the
critic environment’s state (2) samples of immediate objec-
tive reward obtained on selecting a reward-function-action
are biased estimators for objective-utility for that reward-
function-action, and (3) the bias in the objective reward
samples can change over time due to dynamics of the actor-
agent. We consider two broad classes of bandit critic-agents,
corresponding to finite and infinite sets of reward functions.

Finite set of reward functions. When the set of re-
ward functions |R| is finite (and for practical purposes small)
there exist bandit (or experts) algorithms capable of deal-
ing with the exploration-exploitation challenges of the critic-
agent via one essential trick, namely that of holding the
arm (reward-function-action) fixed for a period of time to
alleviate bias and non-stationarity. Of course, how long to
hold a reward-function-action fixed is unknown for it de-
pends on the details of the actor-agent and the actor en-
vironment. There are several algorithms in the literature
that adopt different schemes for incrementally searching for
the right length while exploring and exploiting. The algo-
rithm AtEase (alternating trusted exploration and suspi-
cious exploration)[7] assumes finite but unknown ε-mixing-
times, i.e, assumes that if any reward-function-action were
held fixed for some unknown, but finite, amount of time the
actual average objective reward obtained will be ε-close to
the expected objective-utility of that reward-function-action
choice. A second algorithm, EEE [8], makes no such mixing-
time assumptions, and as a result offers weaker guarantees.
We focus only on AtEase here.

We do not present the AtEase algorithm in detail here
(see [7])), but we sketch a result for an AtEase-critic-based
NORC architecture (denoted AtEase-CA(θ)) that follows
directly from Theorem 1 in Talvitie & Singh [7].

Theorem 1. For environment M and critic-agent reward-
function-actions R, let A(θ) be such that NORC architecture
AtEase-CA(θ) satisfies any applicable resource-bounds and
for which the finite ε-mixing-time assumption holds for every
AR∈R(θ). Then, with high probability (1 − δ) for a number

of actions t polynomial in: ε-mixing-time of AR
∗
(θ) acting

in M, 1/ε, 1/δ and other parameters related to the size of
M, a history h ∼ 〈AtEase-CA(θ),M〉 of length t, will have
objective-utility UO(h) that is ε-close to UO〈A(θ),M〉(R

∗).

In words, if the finite-mixing-time assumption holds, the
NORC architecture with an AtEase-critic-agent will, with
high probability, and after a number of steps polynomial
in the parameters defined above, achieve nearly the same
objective-utility as agentAR

∗
(θ) (the weak-mitigation result

with apriori-provided optimal reward function R∗). This
also means, of course, that the NORC agent will compare

favorably with the conventional architecture’s agent AR
O

(θ)

(since the conventional agent performs no better thanAR
∗
(θ)).

Infinite set of reward functions. When the space of
reward-function-actions is infinite, the above bandits algo-
rithms do not apply. However, it turns out that PGRD [6]
(policy gradient for reward design), a recently introduced

algorithm for finding good rewards by approximately solv-
ing the ORP in differentiably parameterized infinite reward
spaces, can be interpreted as a critic-agent algorithm in the
NORC architecture. It requires computing the gradient of
the objective utility with respect to the reward-function-
action parameters. This is only feasible if the actor-agent’s
procedural mapping from actor-histories to behavior poli-
cies (which in turn determine the objective utility) is differ-
entiable. When this condition is satisfied PGRD can treat
the actor-agent as a policy parameterized by the reward-
function-action parameters and ascend the objective-utility
gradient using a policy gradient algorithm. Sorg et al. devel-
oped approximate gradient computations for depth-limited
planning and UCT[6]; we will use resulting PGRD-critic-
agent algorithms for these two families of actor-agents in
our experiments.

3.2 MDP-based Critic-Agents
The more general case concerns a critic-agent that learns

a policy mapping critic-histories to reward-function-actions
(∈ R). The strongest results in the RL literature for learn-
ing policies are in the context of MDPs. When is the critic-
agent’s exploration-exploitation problem an MDP? The state
of the critic environment is given by (s, sa), and since the
state of the actor-agent is always observable, when the ac-
tor environment is fully observable, that is ot = st, the
critic environment is also fully observable (and therefore
the critic-agent’s problem is an MDP with reward func-
tion RO). However, if the actor-agent’s dynamics are non-
stationary, then the critic’s problem will be a non-stationary
MDP. For depth-limited planning and UCT with fixed and
given models, the actor-agent’s dynamics are stationary. In
such settings, any algorithm for solving MDPs can be used
as a critic-agent algorithm. In particular, simple RL algo-
rithms such as ε-greedy Q-learning become applicable (and
for finite-state critic environment and a finite set of reward-
function-actions, are guaranteed to converge to the optimal
reward-function-action policy). In cases where either the ac-
tor environment is not fully observable or the actor-agent’s
dynamics are non-stationary, more sophisticated RL algo-
rithms can be used, but we do not explore those here.

4. EXPERIMENTS
The following set of experiments together are intended to

show the robustness of the strong mitigation phenomenon
across different families of actor-agents (depth-limited plan-
ning, the recent TDPlanning algorithm [9], and state-of-
the-art UCT), across different kinds of actor-agent limita-
tions (limited-depth, incorrect modeling assumptions, lim-
ited sampling and search control) as well as across different
spaces of reward functions (those based on domain indepen-
dent features such as inverse-recency and inverse-frequency,
as well as those based on domain-dependent sub-goal fea-
tures).

Common Structure in Experiments. For each ex-
periment we will describe 1) the environment and objec-
tive reward function, 2) the family of resource-parameterized
planning algorithms used both as conventional agents and as
actor-agents for NORC, 3) the critic-agent algorithms used,
and 4) the space of reward functions that determine the ac-
tions available to the critic-agents. In all experiments, the
resource bounds we consider are limits on the CPU-time per
decision and we compare the conventional agent with mul-
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Figure 2: Illustration of environments. Thick black
lines are impassable walls. In the foraging domains
(a,b,d), small circles represent inexhaustible food,
the large circle is one possible location for the con-
sumable food, ‘P’ are pits, and ‘D’ are dark rooms.

tiple NORC agents for various limits on time per decision.
Intuitively, in each experiment we expect a threshold on time
per decision below which the NORC agent will outperform
the conventional agent, demonstrating strong mitigation.

4.1 Learning in Bandit-Based Critic-Agents
Our first set of results are for critic-agents using the bandit

algorithms described above (for finite sets of reward func-
tions) and PGRD (for continuous reward functions).

4.1.1 Bounded planning depth
Here we contrast weak and strong mitigation for a fam-

ily of actor-agents directly parameterized by planning depth
(which indirectly parameterizes time per decision).

Environment and objective reward: An agent nav-
igates a 5 × 3 grid (shown in figure 2a) choosing among
actions: North, South, East, West, and Eat. Movements
fail with probability 0.1 resulting in a random movement
in any other direction. At the end of each corridor is an
inexhaustible food source which when eaten gives objective
reward +0.01. A second, consumable, food is at the end of
one of the three corridors which when eaten provides +1 and
is then replaced by another at the end of a different corridor.
Family of actor-agents: Agents employing full width, lim-
ited depth planning, with parameters Θ = {d} for planning
depths d ∈ {3, . . . , 11} (which determine CPU-time per de-
cision).
Critic-agents: Algorithms described in section 3: AtEase,
and PGRD2. We also included other bandit algorithms for
comparison: EEE [8], Exp3 [10], and ε-greedy.
Reward functions: The reward functions were linear com-
binations of three domain-independent features: (1) inverse-
recency (used e.g., by [2]) given by φinv-rec(h) = 1−1/c(o|h|)
where c(o|h|) is the number of steps since observing the cur-
rent observation o|h| (recall this domain is fully observable
so this is the same as the number of steps since visiting
the current state s|h|). A reward function with a posi-
tive coefficient on this feature encourages the actor-agent
to visit less-recently-visited states, resulting in persistent
exploration. (2) inverse-frequency given by φinv-freq(h) =
1/n(o|h|−1, u|h|−1) where n(o|h|, u|h|) is the total number
of times the agent has taken action u|h| after observing
o|h|. A positive coefficient on this feature encourages the

2AtEase used ε = ∞ (so it is not suspicious when exploit-
ing) and l = 90, PGRD used discount γ = 0.99, temperature
100, and learning rate α = 5−5 (see references for details).
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Figure 3: Experiments on small foraging domain;
(top) compares single conventional agent — a depth
5 planner — with corresponding NORC agents. All
NORC agents outperform the conventional agent
showing weak mitigation, but not strong mitigation.
(bottom) shows both objective utility and computa-
tional resources required for a family of actor-agents
and corresponding NORC agents. For a resource
bound less than that indicated by the vertical line,
NORC agents outperform conventional agents, thus
showing strong mitigation.

actor-agent to visit less-frequently-visited transitions. (3)
distance-to-goal heuristics, specifically we used Manhattan
distance to the consumable food (φdist(h)). The reward
function space is composed of linear functions:

R(h) =RO(h) + θ1φinv-rec(h) + θ2φinv-freq(h) + θ3φdist(h)

The bandit algorithms used a coarse discretization of the pa-
rameter space with (θ1, θ2, θ3) ∈ {−1,−0.1, 0, 0.1, 1}3 yield-
ing a total of |R| = 53 reward functions, while PGRD opti-
mized over the continuous space (θ1, θ2, θ3) ∈ R3.
Results Figure 3 (top) shows performance as a function
of number of steps for an actor-agent with planning depth
5. Unsurprisingly Agent AR

∗
(denoted OptimalReward) did

the best since it was given the optimal reward function for
guidance from the start. In particular it did far better than
the conventional agent that used the objective reward; this
is a weak mitigation result because it ignores bounds on
CPU-time. Interestingly, all NORC agents obtained greater
cumulative objective reward than the conventional agent.
This sets up the possibility of strong mitigation which we
explore in Figure 3 (bottom) that shows objective-utility
(over 20,000 steps) plotted against CPU-time per decision
(τ) for three agents. For τ less than about 0.22ms the agent
designer is better off choosing an agent with smaller plan-



ning depth using the NORC architecture than choosing a
conventional agent with larger planning depth. This is the
key strong mitigation result. As the resource bound gets
looser (τ > 0.22ms), choosing the conventional agent be-
comes better (in fact, at depth 11, the conventional agent
acts optimally).

4.1.2 Bounded sample-based planning
This experiment shows strong mitigation for a second fam-

ily of actor-agents using the popular and efficient Monte
Carlo tree-search algorithm UCT [11].
Environment and objective reward Similar to Experi-
ment 1, but larger, and with the addition of pits that trans-
port the agent to a random location in the top row (see
Figure 2b), eating the inexhaustible food yields objective
reward +0.001.
Family of actor-agents: UCT with parameters Θ = {(d, t)}
for planning depths d ∈ {5, 15, 35} and trajectory counts
t ∈ {50, 100, 500, 1000}; together these parameters deter-
mine CPU time per decision over 20,000 steps. UCT builds
a search tree by simulating (from the current state) t trajec-
tories of depth d where decisions in the trajectory generation
are treated as a bandit problem solved with the UCB1 al-
gorithm. We performed two experiments, one in which the
actor-agent was given a perfect environment model and a
second in which the actor-agent learned a model using the
empirical probabilities observed in the data. To provide ex-
ploration, the model-learning actor-agents had a 0.1 proba-
bility of taking a random action.
Critic-agents: AtEase, and PGRD with the same param-
eters as in the previous experiment.
Reward functions: The form of the reward function was
similar to the previous experiment, but the Manhattan dis-
tance heuristic feature was replaced by a model error fea-
ture φmodel-error measuring inaccuracy of the agent’s model
for each transition (as described by Sorg et al. [2]). Reward
functions with positive coefficients on the model-error fea-
ture encourage an agent to explore less-well-modeled transi-
tions. AtEase used the same discretization of the parameter
space as before.
Results: Results are in Figure 4a and 4d. When the model
was given, for CPU-time per decision τ less than about 8ms,
choosing a NORC agent is better than a conventional agent.
Again, showing strong mitigation, in this case for UCT-
based actor-agents. When the model was learned, for the
range of t, d parameters explored, the NORC agents domi-
nate conventional agents in part because the reward func-
tions provided by the critic-agent improved model-learning
speed through rewarding persistent exploration (this is ev-
ident in that for the largest CPU-time per decision, the
NORC agents achieved objective-utility much closer to their
given-model counterparts than did the conventional-agent).

4.1.3 Incorrect model representation
In this experiment we show strong mitigation for UCT-

based actor-agents with an incorrect modeling assumption
in the model (both learned and given).
Environment and objective reward Like previous ex-
periment except the environment is partially observable: be-
tween each corridor is a 2-square dark room through which
the agent can move as normal, but cannot distinguish its
location. See Figure 2c.
Actor-agents, critic-agents, rewards Like previous ex-

periment; both the given and learned models made the first-
order Markov assumption which is incorrect due to the dark-
room. Also, notice negative coefficients on the model error
feature encourage agent to avoid the dark room transitions.
Results: Results are in Figure 4b and 4e. When the model
was given, the PGRD-NORC agents performed significantly
better than the conventional agent for τ < 2ms CPU-time
per decision. Evidence of strong mitigation again, in this
case with the additional limitation of incorrect modeling as-
sumptions in the face of partial-observability. For the sec-
ond experiment when the actor-agent learned a first-order
Markov model, the NORC agents dominated conventional
agents for all parameters tested (as in the learned model
instance of the previous Experiment for similar reasons).

4.2 Learning in MDP-based Critic-Agents
Here we depart from previous experiments with bandit-

based critic-agents to explore MDP-based critic-agents that
learn reward-function-action policies conditioned on abstrac-
tions of critic-histories.
Environment and objective reward: The taxi domain
(seen in Figure 2d) was introduced by Dietterich [12]. The
agent controls a taxi tasked with delivering a passenger from
one of four pickup locations (labeled R,Y,G,B; random on
each episode) to one of four (also random) destinations.
There are six actions: North, South, East, West, Pick Up
Passenger, and Drop Off Passenger. Objective reward gives
+1 if passenger is dropped off at the correct destination (in
which case the episode ends), -0.5 if dropped off incorrectly,
and -0.05 on other transitions. State is fully observable and
factored into three features s = (φtaxi, φpssngr, φdest).
Family of actor-agents: Planning agents using TDPlan-
ning [9] which is similar to UCT, but rather than building
a search tree, it learns a value function3 through t simulated
trajectories of maximum length d. Depths and transition
count parameters Θ were identical to the UCT experiments
above. We also performed the same experiment using UCT
actor-agents with similar results (not shown).
Critic-agents: ε-greedy Q-Learning4 (actor-agent had no
persistent state so critic environment state was actor envi-
ronment state), and AtEase with parameters before.
Reward functions: Each was a single reward feature mul-
tiplied by a scalar for the inverse-recency feature φinv-rec

and state features φtaxi and φpssngr. Let δ be the Kro-
necker delta function, then we have one reward functions
for each taxi location: δ(φtaxi, l)∀l ∈ {1, · · · , 25}, each pas-
senger location δ(φpssngr, p)∀p ∈ {1, 2, 3, 4, 5}, for a dis-
crete set of weights on the inverse-recency θφinv-rec∀θ ∈
{−1,−.1, 0, .1, 1}, and the objective reward function RO to-
taling 36 reward functions (actions for the critic-agent).
Results: Results are in Figure 4c and 4f. The critic-agent
using Q-Learning successfully learned a policy over reward
functions allowing the NORC-QL agent to perform much
better than the conventional agents for CPU-time limita-
tions τ less than about 4ms. However, NORC-AtEase
where the critic-agent learned an unconditional reward pol-
icy, did not perform well because no single reward function
in the set is particularly useful unless chosen as a function of
state. When the actor-agent learns a model, the NORC-QL

3In our TDPlanning algorithm, the value function was
learned with ε-greedy Q-Learning, ε = 0.1, learning rate
α = 0.4
4ε = 0.1 and learning rate of α = 0.9
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In the graphs above, the points for each agent read from left to right correspond to actor-agent parameters:
(depth, trajectories): (5,50),(5,100),(15,50),(15,100), (35,50),(5,500),(35,100),(5,1000),(15,500),(15,1000),(35,500),(35,1000)

Figure 4: (left column) strong mitigation with bounded sample-based planning actor-agents (UCT) and
critic-agents learned unconditional selection of reward functions; (center column) same as experiment in left
column, but actor-agents had incorrect modeling assumption; (rightmost) strong mitigation in Taxi where the
NORC-QL critic learned a policy over reward functions (NORC-AtEase did not, and as a result performed
poorly in this experiment). The line drawn for each agent shows the highest score achieved up to a given
resource level (this is a visual aid approximating the best performance per cpu time across parameters).

agent does not perform well, this may be because the non-
stationarity of the actor-agent misleads the QL critic-agent.

These results show strong mitigation when the critic-agent
learns a policy over reward-function-actions. In this exper-
iment, the critic-agent essentially chose subgoals that could
be achieved by an actor-agent using far less computational
resources than necessary to act well given only the objective
reward.

5. STRONG MITIGATION IN OTHELLO
Our final results show the practical import of NORC and

strong mitigation on the board game of Othello, a large do-
main with a long history in AI.
Environment and objective reward: We experiment us-
ing both a 6 × 6 board and the standard 8 × 8 board. The
8 × 8 game has roughly 1028 states and a large branching
factor determined by the number of legal moves at each step.
For our experiments, the agent played against a fixed oppo-
nent agent planning with conventional UCT (depth 20 and
trajectory count 100). The objective reward was +1 for a
win, 0.5 for a draw, and 0 for a loss. The agents were eval-
uated and learned while playing against an opponent rather
than learning with self play (a common paradigm in com-
puter game playing).
Family of actor-agents: UCT with parameters given by

5For each agent, reading points from left to right on the graph, the
parameter pairs are (depth, trajectories):(5,50), (10,50), (5,100),
(15,50), (20,50), (25,50), (10,100), (15,100), (20,100), (5,250),
(25,100), (10,250), (15,250), (5,500),(20,250), (25,250), (10,500),
(15,500), (20,500), (25,500)

the 20 combinations of depths {5, 10, 15, 20, 25} and trajec-
tory limits {50, 100, 250, 500}. We did not provide the agent
with an opponent model, instead UCT generated a mini-
max planning tree by choosing actions for both black and
white players as described by Gelly and Silver [13] for their
master level computer GO player.
Critic-agent: PGRD-UCT with learning rate 10−7 and
temperature parameter 100.
Reward functions: We used the weighted piece counter
(wpc) [14] feature representation where φwpc(o) consists of
64 features, one for each location on the board, with value
+1 if that location contains a black piece 0 if empty and
−1 if white. Reward functions were linear combinations of
these features evaluated on the state reached after taking an
action: R(h) = R(o, a, o′) = θTφwpc(o

′).
Results: Each NORC and conventional agent was evalu-
ated over 12 trials of 30, 000 games; for half of these trials
our agent plays white and for the other half black. Re-
sults are shown in Figure 5. It is immediately clear that
the NORC agents required much more computation than
the corresponding conventional agents (with same (d, t) pa-
rameters). For example, with depth 25 and trajectory count
500 the NORC agent required nearly twice the time per deci-
sion as the corresponding conventional agent. Nevertheless,
we see strong mitigation: the reward functions learned by
the critic-agent allow the UCT actor-agent to achieve higher
quality planning with less computation, so given equivalent
CPU time, a designer is better off choosing a NORC agent.
Learned reward functions can improve UCT in a variety of
ways such as providing better terminal evaluation and by im-
proving search control via encouraging exploration of more
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Figure 5: Othello results. NORC agents re-
quired significantly more computation than the cor-
responding conventional agents, but allowed the
bounded UCT planning actor-agents to choose bet-
ter actions even with less computational time (fewer
and shallower sample trajectories). Several param-
eter pairs (depth, trajectories) are labeled5.

fruitful trajectories in planning (as discussed by Sorg et. al.
[6]). Furthermore, in these experiments the NORC agents
are more robust across the space of parameters.

6. CONCLUSION
The previously defined optimal reward problem (ORP)

takes the agent’s limitations expressed in its environment
into account when designing rewards; this was in contrast
to other approaches for designing rewards. Building on ORP
this paper distinguishes between weak mitigation, the sub-
ject of previous ORP work, and the more practical strong
mitigation developed here. We showed how strong mitiga-
tion implies a nested optimal reward and control (NORC)
architecture and developed concrete NORC instantiations
that allowed us to demonstrate over a variety of actor-agent
planning algorithms that it can be better to nest the search
for good policies inside a search for good reward functions.
Our strong mitigation results on Othello demonstrate the
scalability of the NORC architecture. Finally, our results
with NORC suggest it might be beneficial to treat reward
functions as a locus of learning and adaptivity within an
autonomous agent – just as it might be beneficial to learn
value functions or policy functions.
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