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ABSTRACT
This paper considers randomized strategyproof approxima-
tions to distance rationalizable voting rules. It is shown that
the Random Dictator voting rule (return the top choice of
a random voter) nontrivially approximates a large class of
distances with respect to unanimity. Any randomized vot-
ing rule that deviates too greatly from the Random Dictator
voting rule is shown to obtain a trivial approximation (i.e.,
equivalent to ignoring the voters’ votes and selecting an al-
ternative uniformly at random).

The outlook for consensus classes, other than unanimity
is bleaker. This paper shows that for a large number of
distance rationalizations, with respect to the majority and
Condorcet consensus classes that no strategyproof random-
ized rule can asymptotically outperform uniform random se-
lection of an alternative. This paper also shows that veto
cannot be approximated nontrivially when approximations
are measured with respect to minimizing the number of ve-
toes an alternative receives.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Theory

Keywords
voting, distance rationalization, strategyproof, approxima-
tion

1. INTRODUCTION
The Gibbard-Satterthwaite theorem [11, 16] states that

any natural voting procedure can be manipulated. A grow-
ing body of work in computation social choice has investi-
gated methods for circumventing the Gibbard-Satterthwaite

∗This research has been supported by an ONR DEPSCOR
Award # N000140911161.

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

theorem through hardness of computation [2, 3, 8]. For ex-
ample, the manipulation problem for many common voting
rules has been shown to be NP-hard. However, these are
worst case results and say nothing about the manipulation
problem on average. Conitzer and Sandholm [3] show that
many voting rules can be manipulated in polynomial time
for a large fraction of elections.

Recently, Procaccia [15] considered approximating score-
based voting rules by strategyproof randomized voting rules.
However, Procaccia’s approach is limited to rules that have
a natural measure of score. This paper studies the approxi-
mation of common voting rules with respect to the distance
rationalization framework. Approaching the approximation
of voting rules from the viewpoint of distance rationaliza-
tion permits the approximation of voting rules that do not
necessarily have a natural measure of score.

In many elections there is an alternative that is a clear
winner. For example, if every voter prefers alternative w to
every other alternative, then w is the clear winner. Simi-
larly, if w is the Condorcet winner (i.e., w is preferred to
every other alternative by a majority of the voters), then w
is the clear winner of the election. Both of the previous ex-
amples are different notions of consensus in an election. In
the second example, a consensus is said to exist in an elec-
tion whenever there is a Condorcet winner. The Condorcet
consensus class is the subset of elections in which their ex-
ists a Condorcet winner. The distance rationality framework
casts voting in the context of selecting an alternative that is
closest to being a consensus winner. The notion of closeness
in the distance rationalization framework is formalized by
employing distances over elections. The distances employed
provide a natural means by which to measure the approx-
imation ratio obtained by strategyproof randomized voting
rules.

This paper shows that under the distance rationalizability
framework, consensus with respect to Unanimity and arbi-
trary votewise distances with lp norms can be approximated
to a nontrivial factor1. Thus, all positional scoring rules and
their (pseudo-)distance rationalizations, given by Elkind et
al. [4] can be nontrivially approximated. Similarly, 2− 2

n
and

O(m) approximations are obtained for the standard distance
rationalizations of plurality and Borda voting, respectively.
These approximation ratios are significantly better than ran-
dom selection of an alternative, which results in a Ω(n) and
Ω(nm) approximation for plurality and Borda, respectively.

Surprisingly, the Random Dictator rule (select the first

1An approximation ratio is said to be trivial if it is achieved
by selecting an alternative uniformly at random.



choice alternative of a random voter) is shown to nontriv-
ially approximate all votewise distance rationalizations with
respect to Unanimity and lp norm. It is shown that devi-
ating too much from the Random Dictator rule results in a
trivial ratio under the l1 norm.

Lower bounds are provided for a number of distance ratio-
nalizations. For example, a bound of Ω(m) is proven for ap-
proximating the standard distance rationalization of Borda.

Approximation ratios obtained for a given voting rule are
highly dependent on the distance rationalization considered.
For example, under unanimity and the discrete distance,
plurality can be approximated to a factor of 2− 2

n
. However,

under the same distance and the majority consensus class,
plurality cannot be approximated better than Ω(n).

The outcome for consensus classes, other than unanimity
is bleaker. This paper shows for a number of other dis-
tance rationalizable voting rules that essentially one cannot
do better than uniform random selection of an alternative.

The remainder of this paper is as follows. Section 2 presents
preliminary definitions and related work. Section 3 presents
a number of upper and lower bounds on the approxima-
tions obtainable by randomized strategyproof voting rules
for a number of distance rationalizations. Section 4 con-
cludes with some final remarks.

2. PRELIMINARIES
This section begins by presenting the basic notation and

definitions employed throughout this paper and concludes
by discussing related work.

2.1 Elections and Strategy-Proofness
An election E = (A, V ) consists of a set of alternatives

A = {a1, · · · , am} and a tuple of voters V = {v1, · · · , vn}.
Each voter vi has a strict total preference order �i over the
set of alternatives A. Let v ∈ V and a ∈ A. Define v(a)
to be the rank of alternative a in v’s preference order. A
tuple of preference orders (�1, · · · ,�n) is referred to as a
preference profile. A voting rule f is a function that maps
each preference profile to a winning alternative.

Informally, a voting rule is manipulable if there exists a
preference profile under which some voters can benefit (pos-
sibly in expectation) by misrepresenting their true prefer-
ences. A voting rule is strategyproof if it is not manipulable.
That is, f is manipulable if there exists a preference profile
P = (�1, · · · ,�n), a voter vi and a preference order �′i
such that f(P ′) �i f(P ) where P ′ = (�1, · · · ,�′i, · · · ,�n).
If f is a randomized voting rule, then f is manipulable if
a voter can increase its expected utility by misrepresenting
her preferences under some preference profile.

The following two classes of deterministic voting rules are
used throughout this paper.

Definition 1. A deterministic voting rule is said to be uni-
lateral if it is a function of exactly one voters’ vote.

Definition 2. A deterministic voting rule is said to be duple
if it always elects one of two fixed alternatives.

The following result provides necessary conditions for a
randomized voting rule to be strategyproof.

Theorem 1 ([12]). If R is a strategyproof randomized voting
rule, then R is a probability distribution over unilateral and
duple rules.

2.2 Distance Rationalization
A consensus in an election E = (A, V ) is a clear winner2

w ∈ A. For example, if every voter in V ranks alternative w
first, then w can be considered the consensus winner. For-
mally, a consensus class K = (E ,W) is a tuple, where E is
a set of elections and W : E → A is a function that deter-
mines for each election E ∈ E the consensus winner. We
consider three consensus classes in which there exists a clear
winner [4, 5, 6, 13, 14].

1. Unanimity (U): Consists of all elections in which every
voter ranks the same alternative first. The consensus
winner is the alternative preferred by all voters.

2. Majority (M): Consists of all elections in which some
alternative is ranked first by a strict majority of the
voters. The consensus winner is the unique alternative
that more than half of the voters rank first.

3. Condorcet (C): Consists of all elections in which there
exists a Condorcet winner (i.e., an alternative that de-
feats every other alternative in a pairwise election).
The Condorcet winner is the consensus winner.

A consensus class can be extended to a voting rule over
arbitrary elections by defining the winning alternative in an
election E to be the alternative that is closest to being a
consensus winner. Such an extension requires a notion of
distance between elections.

Informally, a distance function d : X×X → R∪{∞} on a
set X is a function mapping pairs of elements in X to a non-
negative real value representing the distance between the
elements. A pseudo-distance function is similar to a distance
function but there may be distance 0 between two distinct
members of X. We are interested in (pseudo-)distances over
the set of elections.

Definition 3. Let K = (E ,W) be a consensus class and d a
(pseudo-)distance function on the set of elections. A voting
rule, f , is (K, d)-rationalizable if for every election E

f(E) ∈ argmin
a∈A

{
min

E′∈E : a∈W(E′)

{
d(E,E′)

}}
.

Refer to value d(a) = minE′∈E : a∈W(E′) {d(E,E′)} as the
distance score a. Distance rationalizable voting rules select
an alternative with the least distance score. In general, there
may be multiple alternatives that tie for the best distance
score. Voting rules break ties in such situations.

Some of the results in this paper apply to arbitrary dis-
tances of a particular form. Let d be a distance over prefer-
ence orders and let N be a norm on Rn. Then the function

d̂(E,E′) :=


∞ if A 6= A′ or

|V | 6= |V ′|

N(d(v1, v
′
1), · · · , d(vn, v

′
n)) otherwise

is a distance over preference profiles. Distances of the above
form are referred to as votewise distances [5].

Many of the norms used in votewise distances in the lit-
erature (and in the results presented in this paper) are the
lp norms (p ∈ N ∪ {∞}) defined for each r1, · · · , rn ∈ R as

lp(r1, · · · , rn) :=

{
(rp1 + · · ·+ rpn)

1
p if p ∈ N

max{r1, · · · , rn} if p =∞.
2Sometimes multiple consensus winners are allowed.



Unless otherwise stated, it is assumed that the norm N
in the definition of d̂ is the l1 norm (i.e., the sum of the
distances over individual votes). For any norm N and any
distance over preference orders d, define N ◦ d to be the
corresponding votewise distance.

Several common votewise distances are employed through-
out this paper.

1. dswap(v, v
′) represents the number of adjacent pairs

that must be swapped in the preference order v in order
to obtain v′.

2. ddisc(v, v
′) is 0 if v = v′ and 1 otherwise.

3. Fix m numbers α1 ≥ · · · ≥ αm. Define the distance:
dα(v, v′) =

∑
a∈A |αv(a) − αv′(a)|.

We also consider the following non-votewise distance, dins.
dins is defined as follows. Let E = (A, V ) and E′ = (A, V ′)
be elections. For each vi ∈ V let�vi be vi’s preference order.
Likewise, for vi ∈ V ′, let �′vi be vi’s preference order. Then
dins(E,E

′) = |V \V ′|+ |V ′\V |+2|{vi ∈ V ∩V ′ :�vi 6=�′vi}|.
Elkind et al. [7] show that dins under C is essentially equiva-
lent to considering the number of voters that need be added
to an election to make a given candidate the Condorcet win-
ner. More formally, Elkind et al. show that given an election
E = (A, V ) and an alternative a ∈ A, there exists an election
E1 = (A, V ∪ V1) such that a is the Condorcet winner and
|V1| ≤ k, if and only if there exists an election E2 = (A, V2)
such that dins(E,E2) ≤ k.

2.3 Voting Rules
Several common voting rules considered in this paper are

now defined. The employed voting rules assign alternatives
a score based upon the voters’ preferences and then select
the alternative with the best score. We present the defini-
tions of the voting rules for situations where no ties in score
occur. When multiple alternatives tie for the best score,
an arbitrary, but fixed, tie breaking scheme is employed to
select a single alternative. All of the presented results are
unaffected by the actual tie breaking scheme employed.

1. Positional Scoring Rules: Let α = (α1, · · · , αm) be
a vector of m integers with α1 ≥ · · · ≥ αm. Under
the voting rule Rα, alternative a is awarded αk points
for each voter that ranks a in position k. The win-
ner under Rα is the alternative with the largest score.
Plurality is defined by α = (1, 0, · · · , 0), Borda by α =
(m−1,m−2, · · · , 1, 0) and veto by α = (1, 1, · · · , 1, 0).

Elkind et al. [4] show that every positional scoring rule
Rα is pseudo-distance rationalizable with respect to
(U , d̂α). Further, plurality and Borda are rationaliz-

able with respect to U with the distances d̂disc and
d̂swap, respectively.

2. Maximin: The Maximin score of an alternative a in an
election E is

sc(a) = min
b∈A\{a}

{|{vi ∈ V : a �i b}|} .

That is, the Maximin winner of an election E is the
alternative that performs the best in their worst pair-
wise election against any other alternative. Maximin
is (C, dins)-rationalizable [4].

3. Dodgson: The Dodgson score of an alternative a in an
election E = (V,A) is the minimum number of swaps
of adjacent alternatives in the preferences of voters to
make a the Condorcet winner. The winner is the al-
ternative with the smallest Dodgson score. Dogdson is
(C, d̂swap)-rationalizable.

2.4 Related Work
The manipulation problem has received much attention [1,

10, 15]. For a recent survey, see Faliszewski and Procac-
cia [9].

Recent work has investigated the approximation of com-
mon voting rules by randomized voting rules that are strat-
egyproof (or almost strategyproof). Procaccia [15] recently
quantified the level of approximation that can be obtained
for a number of score based voting rules.

Birell and Pass [1] relax the requirement that the random-
ized approximation be strategyproof. Rather, Birell and
Pass consider randomized voting rules such that no voter
can improve their expected utility by more than ε by voting
untruthfully. On a positive note, Birell and Pass show that
for ε sufficiently large (ω( 1

n
)), every deterministic voting rule

can be approximated by an ε-strategyproof randomized rule.
However, for ε = o( 1

n
), every ε-strategyproof voting rule is

a distribution over unilateral and duple rules (just as strat-
egyproof randomized voting rules are).

One drawback of Procaccia’s approach is that it is lim-
ited to score based voting rules. Birell and Pass [1] measure
the quality of an approximation by the minimum number
of votes that must be changed in order to elect the ap-
proximate winner. Hence, Birell and Pass’ results apply
to arbitrary voting rules. This paper investigates the use of
the distance rationalization framework to measure the qual-
ity of approximations obtained by randomized strategyproof
voting rules. Like Birell and Pass’ approach, our approach
allows for defining approximations to non-score based rules.

3. RESULTS
All of the results in this paper are stated for particular

distance rationalizations. For example, rather than saying
plurality can be approximated well, we state the distance
rationalization by which we are approximating. It will be
shown that the same voting rule can be approximated to
different degrees, depending upon the rationalization used.
Hence, it is meaningless to say, in this framework, that, for
example, plurality can be approximated well, since it de-
pends on which rationalization of plurality is employed.

Let (K, d) be a distance rationalization. Let E be an
election and let w be the winning alternative under (K, d).
A natural measure of the approximation ratio of a strat-
egyproof randomized voting rule R with respect to (K, d)

is E
(
d(R(E))
d(w)

)
, with the understanding that 0

0
= 1 and

n
0

= +∞ for any n > 0. It is straightforward to observe
that for the Majority and Condorcet consensus classes that
no strategyproof voting rule is guaranteed to return a con-
sensus winner when one exists. Hence, the approximation
ratio obtained by any strategyproof voting rule to distance
rationalizations with respect to Majority or Condorcet is
+∞. However, simply stating an approximation ratio of
+∞ for these consensus classes is less than desirable as it
may be the case that, for example, when there is a majority
winner, the given strategyproof voting rule always selects



an alternative that is close to being a consensus winner.
Therefore, our lower bound results consider the approxima-
tion ratio obtained by randomized strategyproof voting rules
on elections where there is no consensus winner.

The presented upper bounds, with respect to U all employ
a strategyproof randomized voting rule that is consistent
with U . A unanimous winner, if it exists, is always selected.
Hence, if E is a member of the consensus class, then the
result is a perfect approximation.

3.1 Upper Bounds
Surprisingly the following strategyproof randomized vot-

ing rule obtains a nontrivial approximation ratio with re-
spect to (U , d̂), when d is any votewise distance and d̂ = lp◦d.

Random Dictator. Uniformly at random, select a voter
v. Return v’s first choice.

Theorem 2 shows that Random Dictator obtains a good
approximation to many distance rationalizations.

Theorem 2. Let d be a distance over preference orders,
p ∈ N ∪ {∞}, and let d̂ = lp ◦ d be the corresponding dis-
tance over elections. For preferences over m alternatives
and x ∈ A, let dMax(m,x) be the maximum distance be-
tween any preference order �, that does not rank x first,
to the closest preference order to � that does rank x first.
Let dMax(m) = maxx∈A{dMax(m,x)}. Let dMin(m,x) be
the minimum distance between any preference order �, that
does not rank x first, to any preference order that does rank
x first. Let dMin(m) = minx∈A{dMin(m,x)}.

Random Dictator approximates (U , d̂) to within a factor
of (

1− 1

n

)
·
(
dMax(m)

dMin(m)
+ 1

)
.

Proof. Let E = (A, V ) be an election with n voters and m

alternatives. Let w ∈ A be a winning alternative in (U , d̂)
and let x be the number of voters that rank w first. If w is
the unanimous winner, then Random Dictator selects w and
obtains a perfect approximation. So assume that x ≤ n− 1.

For a ∈ A, let pa be the probability that a is selected by
Random Dictator. That is, pa is the ratio of the number
of voters that rank a first to the total number of voters n.
Hence, pw = x

n
.

Note that if an alternative a ∈ A \ {w} is selected by
Random Dictator, then a must be ranked first by at least
one voter. If p = ∞, then the maximum possible distance
score of any candidate is dMax(m) and the minimum possible
distance score of w is dMin(m). Thus, the expected distance
score is

E

(
d̂(R(E))

d̂(w)

)
≤ x

n
+
n− x
n
· dMax(m)

dMin(m)

≤
(

1− 1

n

)(
dMax(m)

dMin(m)
+ 1

)
.

Similarly, if p ∈ N, then the maximum distance score of a

possible winner under Random Dictator is (n−1)
1
p dMax(m).

Likewise, the minimum possible distance score of w is (n−
x)

1
p dMin(m). Thus, the approximation ratio obtained by

Random Dictator is

E

(
d̂(R(�))

d̂(w)

)
=

1

d̂(w)

[∑
a∈A

pad̂(a)

]

=
1

d̂(w)

x
n
d̂(w) +

∑
a∈A\{w}

pad̂(a)


≤ x

n
+

1

d̂(w)

∑
a∈A\{w}

pa(n− 1)
1
p dMax(m)

≤ x

n
+
n− x
n
· (n− 1)

1
p dMax(m)

(n− x)
1
p dMin(m)

=
x

n
+

(n− x)
1− 1

p

n
· (n− 1)

1
p dMax(m)

dMin(m)

≤ n− 1

n
+

(n− 1)
1− 1

p

n
· (n− 1)

1
p dMax(m)

dMin(m)

≤
(

1− 1

n

)(
dMax(m)

dMin(m)
+ 1

)
.

Recall that every positional scoring rule is pseudo-distance
rationalizable with respect to unanimity under the votewise
distance d̂α = l1 ◦ dα [4]. Note that if αi 6= αj whenever
i 6= j, then dMin(m) = 2(α1 − α2) and dMax(m) = 2(α1 −
αm). Corollary 1 shows that all positional scoring rules with
αi 6= αj are approximated by Random Dictator to within a
nontrivial factor.

Corollary 1. If Rα is a positional scoring rule, such that
αi 6= αj whenever i 6= j, then Random Dictator approxi-

mates (U , d̂α) to within a factor of(
1− 1

n

)
·
(
α1 − αm
α1 − α2

+ 1

)
.

If α1 = α2 6= α3, then Random Dictator does not ap-
proximate (U , d̂α) well. Consider the election in which each
voter ranks alternative w second and no other alternative is
ranked first more than once. The distance score of w is 0,
but the distance score of every other alternative is at least
(n − 1)(α1 − α3). However, Random Dictator never selects
w in such elections.

Theorem 2 allows one to obtain nontrivial approxima-
tion ratios with respect to the standard distance rational-
izations of common voting rules. For example, Plurality is
known to be (U , d̂disc)-rationalizable. Since, under d̂disc,
dMin(m) = dMax(m) = 1, Random Dictator approximates

(U , d̂disc) to within a factor of 2− 2
n

. Hence, Random Dicta-
tor is significantly better than uniform random selection of
a candidate, which obtains an approximation ratio of Ω(n)
in the worst case (e.g., when some w ∈ A is ranked first by
all but one voter).

Similarly, Borda is (U , d̂swap)-rationalizable. Notice that
in this case dMax(m) = Θ(m) and dMin(m) = 1. Hence,
Random Dictator obtains a O(m) approximation. Note that
uniformly at random selecting an alternative obtains an ap-
proximation ratio of Θ(nm) to (U , d̂swap) (e.g., when one al-
ternative is ranked first by all but one voter and every other
alternative obtains the same distance score of Θ(nm)).

It may be expected that the voting rules presented by
Procaccia [15] will outperform Random Dictator, since an



alternative is selected with probability proportional to its
score. However, electing an alternative with probability pro-
portional to its Borda score obtains a Θ(nm) approximation

to (U , d̂swap). Consider the election in which each voter has
the same preference order. Let A′ be the set of alternatives
ranked in the lower m

2
positions by each voter. The sum

of the scores of alternatives in A′ is Ω(nm2). Thus, the
probability that some alternative in A′ is selected is Θ(1).
Therefore, selecting an alternative with probability propor-
tional to its Borda score results in a Ω(nm) approximation.
In the case of Plurality, the strategyproof randomized voting
rule given by Procaccia [15] is the Random Dictator rule.

3.2 Lower Bounds
All of the presented lower bounds employ Yao’s Minimax

principle [17]. Consider the following two player game. The
space of the first player’s strategies consist of all duple and
unilateral voting rules and the second player’s strategies con-
sist of all preference profiles. Given a choice of a pure strat-
egy for each player, the outcome is defined to be the approxi-
mation ratio obtained by the unilateral or duple rule selected
by the first player on the preference profile selected by the
second player. Since the first player’s pure strategies con-
sist of all unilateral and duple rules, the first player’s mixed
strategies contain all strategyproof randomized voting rules.

Let P be any probability distribution over preference pro-
files. In this setting, Yao’s Minimax principle states that the
approximation ratio obtained by any strategyproof random-
ized rule is at most the approximation ratio obtained by the
best deterministic duple or unilateral rule over P . Hence,
the performance of any strategyproof randomized voting rule
can be lower bounded by constructing a probability distribu-
tion over preference profiles on which no unilateral or duple
rule performs well in expectation.

When employing Yao’s principle for proving lower bounds,
there are two cases to be considered: unilateral rules and
duple rules. For our purposes, it will suffice to treat a duple
rule as a set of two alternatives. Hence, for a duple rule
D, we may treat D as a set of two alternatives as we are
indifferent to how D selects a winner.

Let d̂ = l1◦d be a votewise distance. Let � be a preference
profile over m alternatives and let a ∈ A. Let da(�) be
the minimum distance between � and any other preference
profile �′ that ranks a first. We say that d and (U , d̂) are
rank based if da(�) depends only on the rank of a in �.
Thus, da(�) is independent of how the alternatives in A\{a}
are ranked and is also independent of the alternative a. That
is, if �a is any preference order that ranks a in position
k and �b is any preference order that ranks b in position
k, then da(�a) = db(�b). Hence, there exists a function
rd : N→ R≥0 such that da(�) = rd(k), where k is the rank
of a in �. Note that all the votewise distances defined in
this paper are rank based. Define dAve(m) = 1

m

∑m
k=1 rd(k).

The Random Dictator rule is not very desirable as it ig-
nores the preferences of all but one randomly selected voter.
However, as the next result shows, it is not possible to de-
viate too greatly from the Random Dictator rule and still
obtain a nontrivial approximation to (U , d̂), where d̂ is any
rank based votewise distance.

Theorem 3. Let (U , d̂) be rank based and let R be a strat-
egyproof randomized voting rule, such that with probability
p, R selects a duple rule and with probability q, R selects

a unilateral rule that does not select the voter’s first choice
alternative. If p = Ω(1) or q = Ω(1), then R obtains an
approximation ratio of Ω(ndAve(m)).

Proof. The proof of Theorem 3 employs Yao’s Minimax prin-
ciple, to that end we define a randomized procedure for gen-
erating preference profiles. The procedure constructs a pref-
erence profile as follows:

1. Let n = n′ + 1, m ≥ 4, and let m− 1 divide n′. Select
w ∈ A uniformly at random.

2. Choose permutations π over A \ {w} and σ over V
uniformly at random.

3. Define the preferences of the voters as follows. For
i ∈ {1, · · · , n′}, vσ(i) ranks alternative π(k) in position
π(k+ i)+1 (where the addition k+ i is modulo m−1)
and ranks w first. Voter vσ(n) ranks w second and
ranks the other alternatives arbitrarily.

Let E be a random election drawn from the above distri-
bution. By construction, there is some w ∈ A that is ranked
first by all but one voter. Hence, the distance score of w
is rd(2), as w is ranked second by one voter and the norm
is l1. For fixed distance function d, rd(2) = Θ(1). Also,
since m − 1 divides n′, every other alternative is ranked in

position k by at least n′

m−1
voters, for each k = 2, · · · ,m,

and is ranked first by at most one voter. Hence, every al-
ternative other than w achieves a distance score of at least
rd(1) + n′

m−1
·
∑m
k=2 rd(k) = Θ(n · dAve(m)), since rd(1) = 0.

Consider first the case where p = Ω(1). That is, when
R selects a duple rule D with at least constant probability.
Since w is selected from A at random, the probability that
w ∈ D is at most 2

m
. Hence, with probability at least m−2

m
≥

1
3
, an alternative with distance score Θ(n ·dAve) is returned.

Therefore the approximation ratio of R is at least Θ(pn ·
dAve) = Ω(ndAve(m)).

Now consider the case where q = Ω(1). Since w is ranked
first by all but one alternative and the voter that does not
rank w first is selected uniformly at random, with proba-
bility q · n−1

n
, R selects an alternative other than w with a

distance score of Θ(n·dAve). Thus, again, the approximation
ratio of R is at least Θ(q · n−1

n
· ndAve) = Ω(ndAve).

Roughly speaking, Theorem 3 shows that for a strate-
gyproof randomized voting rule R to obtain a nontrivial ap-
proximation ratio to (U , d̂), Rmust, with probability tending
toward 1 for increasing numbers of voters and alternatives,
select an alternative that is ranked first by some voter.

Theorem 4. No strategyproof randomized voting rule ap-
proximates (U , d̂disc) (plurality) to a ratio less than 2− 2

n
.

Proof. Define the following procedure for constructing ran-
dom preference profiles:

1. Select w ∈ A uniformly at random. For ease of ex-
position, assume the members of A \ {w} are the first
m− 1 integers: 0, · · · ,m− 2.

2. Choose permutations π over A \ {w} and σ over V
uniformly at random.

3. For i ∈ {1, · · · , n − 1}, vσ(i) ranks w first and ranks
alternative k in position π(k+i)+1 (where the addition
is modulo m−1). vσ(n) ranks alternative k in position
π(k) and ranks w last.



In any elections drawn from the given distribution, the
distance score of w is 1 (as all but one voter ranks w first).
The distance score of any other alternative is at least n− 1.

First, consider a duple rule D. Since w is selected uni-
formly at random, the probability that w ∈ D is at most 2

m
.

Thus, the probability that an alternative other than w is
selected is at least m−2

m
≥ 1

3
. Therefore, with probability at

least 1
3
, D selects an alternative other than w with distance

score at least n − 1, resulting in an approximation ratio of
at least n−1

3
.

Now consider a unilateral rule, U . Since U is unilateral,
there exists a single voter vi that determines the winner of
the election under U . The probability that vi ranks w first is
n−1
n

. Since w is ranked first or is ranked last by every voter,
any unilateral rule maximizes the probability of selecting w
when it always returns either the first or last ranked alterna-
tive of vi. Hence, U maximizes the probability of selecting
w when it always returns vi’s first choice alternative. There-
fore, any unilateral rule U selects w with probability at most
n−1
n

and with probability at least 1
n

, U selects an alterna-
tive other than w. Hence, the approximation ratio of U is
at least n−1

n
+ 1

n
· n−1

1
= 2 − 2

n
. Thus, no strategyproof

randomized voting rule approximates (U , d̂disc) to a factor
less than 2− 2

n
.

The remainder of the presented lower bound proofs use
the following procedure (or a slight variation) for creating a
distribution, P, on preference profiles.

1. Let n be even, m ≥ 4, and let m− 1 divide n
2

. Select
w ∈ A uniformly at random. For ease of exposition,
assume the members of A \ {w} are the first m − 1
integers: 0, · · · ,m− 2.

2. Choose permutations π over A \ {w} and σ over V ,
uniformly at random.

3. For i ∈ {1, · · · , n
2
}, let vσ(i) rank w first and rank

alternative k in position π(k+i)+1 (where the addition
k + i is modulo m − 1). For i ∈ {n

2
+ 1, · · · , n}, let

vσ(i) rank w second and rank alternative k in position
π(k+ i) + 2 if π(k+ i) 6= 1 and in position 1 otherwise.

Based on the above procedure, it is observed that the
selected alternative w is “close” (under most natural defini-
tions of distance) to being a consensus winner, since half of
the voters rank it first and the other half second. Since ev-
ery other alternative is ranked cyclically by the voters and
m−1 divides evenly into n

2
, each alternative other than w is

ranked in position k by the same number of voters. Let P ′
be the distribution over preference profiles identical to P, ex-
cept that for i ∈ {n

2
+1, · · · , n}, vσ(i) ranks w last. Lemma 1

will be employed in many of the lower bound proofs.

Lemma 1. Let K be a consensus class and let d be a dis-
tance over elections. Let E be an election drawn from P
or P ′. If for each alternative a ∈ A \ {w}, d(a) ≥ dmin,
then the approximation ratio achieved by any strategyproof
randomized voting rule to (K, d) is at least 1

2
· dmin
d(w)

.

Proof. Let R be any strategyproof randomized voting rule.
Let p be the probability that R selects a duple rule and 1−p
the probability that R selects a unilateral rule.

Consider first a duple rule, D. Since w is selected uni-
formly at random, the probability that w ∈ D is at most 2

m
.

Hence, the expected distance approximation of the alterna-
tive selected is at least

2

m
+
m− 2

m

dmin
d(w)

≥ 1

2

dmin
d(w)

,

since m ≥ 4.
Now consider a unilateral rule, U . Since w is ranked first

by exactly half of the voters and second by the other half
(last by the other half in the case of P ′) and those voters that
rank w first are randomly distributed amongst all voters,
the probability that U selects w is at most 1

2
. Hence, the

probability that U selects an alternative other than w is at
least 1

2
. The expected distance approximation is at least:

1

2
· d(w)

d(w)
+

1

2
· dmin
d(w)

>
1

2
· dmin
d(w)

.

Therefore, the approximation ratio obtained by R is at
least 1

2
· dmin
d(w)

.

Lemma 1 allows one to lower bound the approximation
ratio achievable for a number of distance rationalizations
by strategyproof randomized voting rules. In particular,
for scoring rules with α1 6= α2, Theorem 5 obtains a lower
bound close to the upper bound obtained by Corollary 1.

Theorem 5. If Rα is a positional scoring rule with α1 6= α2,
then no strategyproof randomized voting rule approximates
(U , d̂α) to within a factor less than

α1

α1 − α2
− S − α2

(m− 1)(α1 − α2)
,

where S =
∑m
k=1 αk.

Proof. Let E be an election drawn from P. Note that the
distance score of w is n(α1 − α2). Let k ∈ N such that
k(m − 1) = n

2
. Such a k exists, as m − 1 divides n

2
. Every

alternative a ∈ A \ {w} is ranked first k times, second k
times, and in position i ≥ 3, 2k times. If voter vi ranks a
in position r, then vi contributes 2(α1 −αr) to the distance
score of a, since the distance to the closest preference order
to vi in which a is ranked first is 2(α1−αr). Thus, for every
a ∈ A \ {w}

d(a) = k [2(α1 − α2)] + 2k

[
m∑
i=3

2(α1 − αi)

]

≥ 2k

[
2(m− 2)α1 − 2

m∑
i=2

αi

]
= 2k [2(m− 2)α1 − 2(S − α1)]

= 4k(m− 1)α1 − 4kS

= 2nα1 − 2

(
n

m− 1

)
S

By Lemma 1, the approximation ratio of any strategyproof
randomized voting rule is lower bounded by

1

2

2nα1 − 2
(

n
m−1

)
S

n(α1 − α2)
=

α1

α1 − α2
− S − α2

(m− 1)(α1 − α2)
.

Theorem 6. The approximation ratio obtained by any strat-
egyproof randomized voting rule to (U , d̂swap) (Borda) is Ω(m).



Proof. Notice that in an election E drawn from P, d(w) = n
2

since w is ranked first by n
2

voters and second by n
2

voters.
Let k(m − 1) = n

2
. For any other alternative a ∈ A, a is

ranked in position 1 and 2, k times and in position r =
3, · · · ,m, 2k times. Each voter that ranks a in position r
contributes r−1 to d(a), as a must be swapped with at least
r − 1 alternatives in order for a to be ranked first. Hence

d(a) = k · 1 + 2k

m∑
r=3

(r − 1)

≥ 1

2
· n

m− 1

m∑
r=2

(r − 1)

=
1

2
· n

m− 1

(m− 1)m

2
= Ω(nm).

By Lemma 1 every strategyproof randomized voting rule
achieves an approximation ratio of Ω(m) on (U , d̂swap).

Lemma 2. Let E be an election drawn from P ′ and let a ∈
A \ {w}. There exists a set Aa ⊆ A \ {w} with |Aa| = Θ(m)
such that at least 3n

4
voters prefer all members of Aa to a.

Proof. Let E be an election drawn from P ′. Let π and σ be
the random permutations over A \ {w} and V used to con-
struct E. Let k ∈ N such that k(m−1) = n

2
. Since m−1 di-

vides n
2

, such a k exists. Among the voters, vσ(1), · · · , vσ(n
2
),

a is ranked last k times. Let vσ(i1), · · · , vσ(ik) be the k voters
that rank a last among the voters vσ(1), · · · , vσ(n

2
). By con-

struction, all the voters vσ(ij) have the same preference or-
der. Let Aa be the set of m

10
−1 alternatives that immediately

precede a in the voters vσ(ij)’s preference order. That is,
Aa consists of those alternatives that are ranked among the
bottom m

10
positions, other than a. For each ij , by construc-

tion, voter vσ(ij−l) ranks a in position m− l, for l < m− 1.
Thus, all alternatives in Aa are ranked above a by the voters
vσ(ij)−l, for each 0 ≤ l ≤ m − m

10
= 9m

10
. Therefore among

the voters vσ(1), · · · , vσ(n
2
), there are k · 9m

10
≥ 9(m−1)k

10
= 9n

20
voters that rank all alternatives of Aa above a.

A similar argument applies to the voters among vσ(n
2
+1),

· · · , vσ(n) that rank a second to last. Hence, among the vot-
ers vσ(n

2
+1), · · · , vσ(n), all members of Aa are ranked above

a by at least 9n
20

voters. Hence, the number of voters that

prefer all members of Aa to a is greater than 3n
4

.

Theorem 7. The approximation ratio obtained by any strat-
egyproof randomized voting rule to (C, d̂disc) is Ω(n).

Proof. Let E be an election drawn from P ′. By Lemma 2,
for any alternative a ∈ A \ {w} to become the Condorcet
winner, Ω(n) voters must change their vote. However, for
w to become the Condorcet winner, only one voter must
change their vote. By Lemma 1, the approximation ratio of
any strategyproof randomized voting rule is Ω(n).

Theorem 7 roughly shows that no strategyproof random-
ized voting rule can outperform uniform random selection
of an alternative, since under d̂disc the maximum distance
score of any alternative is at most n.

Theorem 8. The approximation ratio obtained by any strat-
egyproof randomized voting rule to (C, d̂swap) (Dodgson) is
Ω(n).

Proof. Let E be an election drawn from P ′. To make a
the Condorcet winner, a must be swapped with at least
|Aa| = Θ(m) alternatives in the preferences of Ω(n) vot-
ers. To make w the Condorcet winner, it suffices that w
be swapped with all the alternatives in the preference or-
der of one voter that ranks w last. Thus, d(w) = O(m).
By Lemma 1, every strategyproof randomized voting rule
obtains an approximation ratio of Ω(n).

Theorem 9. The approximation obtained by any strate-
gyproof randomized voting rule to (C, dins) (Maximin) is Ω(n).

Proof. Recall that the dins score of an alternative a is equal
to the minimum number of voters that must be added to
make a the Condorcet winner. Let E be an election drawn
from P ′. The dins score of w is 1, since the addition of a
single voter that ranks w first will make w the Condorcet
winner. However, the dins score of every other alternative
is Ω(n), since to make any alternative a ∈ A \ {w} the Con-
dorcet winner Ω(n) voters must be added that rank a the
members of Aa. Hence, by Lemma 1, the approximation
ratio obtained by any strategyproof randomized voting rule
is Ω(n).

Notice that any alternative a can be made the Condorcet
winner by the addition of at most n + 1 voters that rank a
first. Hence, (C, dins) cannot be nontrivially approximated
by any strategyproof randomized voting rule.

Theorem 10. The approximation ratio obtained by any
strategyproof randomized voting rule to (M, d̂disc) is Ω(n).

Proof. Let E be an election drawn from P. To make w the
majority winner, a single voter that ranks w second must
change his vote. Every other alternative is ranked first by

n
2(m−1)

voters. Hence, to make any other alternative the

majority winner, at least n
2

+ 1− n
2(m−1)

= Ω(n) votes must

be changed. By Lemma 1, every strategyproof randomized
voting rule obtains an approximation ratio of Ω(n).

Theorem 11. Plurality is (M, d̂disc)-rationalizable.

Proof. Clearly, a majority winner is also the plurality win-
ner. Assume there is no majority winner. For alternative
a ∈ A, the distance from E to the closest election in which
a is a majority winner is bn

2
c+ 1− sc(a) (where sc(a) is the

plurality score of alternative a). Hence, the alternative with
the highest plurality score also has the lowest distance.

The distance rationalizations (U , d̂disc) and (M, d̂disc) have
a large difference in approximation ratios achievable by strat-
egyproof randomized voting rules even though they imple-
ment the same voting rule.

Procaccia [15] showed that veto can be approximated well
with respect to maximizing the selected alternative’s score.
We show that veto cannot be approximated well with respect
to minimizing the number of vetoes.

Let V be the consensus class consisting of elections in
which some alternative is not vetoed. The consensus win-
ner(s) are those alternatives that receive no vetoes.

Theorem 12. Veto is (V, d̂disc)-rationalizable.



Proof sketch. It suffices to observe that the distance score
of an alternative a is simply the number of vetoes that it
receives. If alternative a has fewer vetoes than alternative
b, then the distance score of a is less than that of b.

For a ∈ A, let v(a), be the number of voters that veto a.
Since the total number of vetoes by all voters is n, uniform
randomly selecting an alternative results in an approxima-
tion ratio of 1

m

∑
a∈A v(a) = n

m
.

Theorem 13. The approximation ratio obtained by any
strategyproof randomized voting rule to (V, d̂disc) is Ω( n

m
).

Proof sketch. Let P ′′ be a distribution over preference pro-
files constructed similarly to P, except a single voter, se-
lected uniformly at random, ranks w last. Let E be an
election drawn from P ′′. Since w is vetoed by a single voter,
d(w) = 1. However, each a ∈ A \ {w} is vetoed by Ω( n

m
)

voters. The Theorem then follows by Lemma 1.

4. CONCLUSIONS
This paper explores the idea of measuring the approxi-

mation ratio achieved by a strategyproof randomized voting
rule with respect to a particular distance rationalization.
Indeed, if a particular voting rule is employed in a given do-
main due to a domain specific distance rationalization, then
the most natural measure of approximation is with respect
to that rationalization.

This paper shows that the unanimity consensus class can
be approximated well for a large class of distances by a single
strategyproof randomized voting rule. It is shown that the
Random Dictator voting rule (select the first choice alterna-
tive of a randomly selected voter) nontrivially approximates
a large number of distance rationalizations with respect to
unanimity. For a number of these distances, nearly tight
lower bounds are presented. It is shown that deviating too
greatly from the Random Dictator rule results in a trivial
approximation ratio (i.e., the ratio obtained by ignoring the
preference profile and selecting a random alternative).

The outlook for consensus classes, other than unanimity
is bleaker. It is also shown that no strategyproof random-
ized voting rule nontrivially approximates many distance ra-
tionalizations with respect to the Majority and Condorcet
consensus classes.

There exist a number of other distance rationalizations of
common voting rules other than those considered in this pa-
per. For example, the Copeland rule selects the alternative
that maximizes the number of pairwise elections it wins and
is rationalizable with respect to the Condorcet consensus
class [13]. Future work will investigate the quality of strate-
gyproof approximations obtainable to such rationalizations.

Another line of future work is to consider rationalization
frameworks other than distance rationalization. For exam-
ple, under the maximum likelihood estimation framework,
one can measure the approximation ratio achieved by a ran-
domized voting rule as a function of the likelihood of the
alternative selected by that rule to being the true winner
compared to the likelihood of the actual winner.
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