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ABSTRACT
In many real-world settings, the structure of the environment con-
strains the formation of coalitions among agents. Therefore, ex-
amining the stability of formed coalition structures in such set-
tings is of natural interest. We address this by considering core-
stability within various models of cooperative games with struc-
ture. First, we focus on characteristic function games defined on
graphs that determine feasible coalitions. In particular, a coalition
S can emerge only if S is a connected set in the graph. We study
the (now modified) core, in which it suffices to check only feasi-
ble deviations. Specifically, we investigate core non-emptiness as
well as the complexity of computing stable configurations. We then
move on to the more general class of (graph-restricted) partition
function games, where the value of a coalition depends on which
other coalitions are present, and provide the first stability results in
this domain. Finally, we propose a “Bayesian” extension of parti-
tion function games, in which information regarding the success of
a deviation is provided in the form of a probability distribution de-
scribing the possible reactions of non-deviating agents, and provide
the first core-stability results in this model also.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Economics

Keywords
cooperative game theory, coalition formation, core

1. INTRODUCTION
Cooperative game theory, providing as it does a rich framework
for the study of coalition formation among rational players, has in
recent years attracted much attention in multiagent systems as a
means of forming teams of autonomous agents. The vast major-
ity of work in cooperative game theory assumes that, given a set
of agents, any coalition among them is allowed to form. However,
in many circumstances the environment imposes restrictions on the
formation of coalitions: for reasons that might range from physi-
cal limitations and constraints to legal banishments, certain agents
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might not be allowed to form coalitions with certain others. In
many multiagent coordination settings, agents might be restricted
to communicate or interact with only a subset of other agents in
the environment, due to limited resources or existing physical bar-
riers. In such settings, the environment can be seen to possess some
structure that forbids the formation of certain coalitions. This can
be captured by an undirected graph providing a path connecting
any two agents that can belong to the same coalition.

Specifically, sensor networks, communication networks, or trans-
portation networks, within which units are connected through bi-
lateral links, provide natural settings for cooperative games defined
over graphs. Another example is provided by hierarchies within an
enterprise, where the underlying graph corresponds to a tree.

In this paper we consider various models of cooperative games in
structured environments as above and study the stability of coali-
tion structures in such settings. Stability is one of the key issues
in cooperative game settings and examines whether agents have an
incentive to depart from an existing coalition structure. As an ex-
ample, airlines participating in a certain alliance may be willing
to move to an alliance that could guarantee them higher profits.
Here we focus on the celebrated cooperative stability concept of
the core [21], which is the set of outcomes that are stable against
deviations by any subset of agents. In our work, the definition of
the core has to be modified so that the only allowed deviations are
those by sets of connected coalitions.

Against this background, the rest of the paper is structured as fol-
lows. We start with the usual characteristic function games (CFGs)
setting, under the assumption, however, that the games are defined
over graphs. We introduce to the community recent results from
the economics literature, which establish the non-emptiness of the
core in games defined over a tree, and determine a procedure to find
a core element in such games [5]. We then focus on three natural
graph structures—lines, trees and cycles—and study the computa-
tional problems of (i) deciding the non-emptiness of the core; (ii)
finding an element in the core; and (iii) checking if a given outcome
belongs to the core. We show certain positive results when the un-
derlying graph is a line or a cycle, and when it is a tree and the game
is superadditive. These results are interesting from an applications
point of view, since many computer or sensor networks exhibit a
ring or tree topology. However, for non-superadditive games over
trees, certain negative complexity results are obtained.

Then, we move on to the more general class of partition func-
tion games (PFGs) over graphs, and initiate the study of stability in
that setting. In PFGs, the value of a coalition depends on the par-
tition currently in place [25]. Defining the core in the presence of
externalities is complicated and there is no unanimously accepted
solution as potential deviators in PFGs have to consider how non-
deviators—the “residual” players—would react to their deviation.



Since residual players can form any structure among themselves,
the value of any deviation relies on the resulting partition across
the space of agents. A common treatment in the literature is for the
deviators to either pessimistically assume that non-deviators will
partition so as to hurt them the most, or to optimistically assume
that the partition of the non-deviators will be the best possible [23,
8].We adopt both those views in turn, and provide the first core non-
emptiness results in PFG settings with structure. Operating first un-
der the assumption of pessimism, we define the (pessimistic) core
and then show that for any PFG, there is a corresponding CFG, such
that the core of the CFG is contained in the core of the PFG (but the
opposite is not always true). Interestingly, this differs from what is
known to hold for the class of PFGs where the coalition of all agents
is the partition with maximum social welfare (in which case the two
cores coincide [8]). This correspondence enables us to generalize
the CFG-related results, and show that the core is non-empty for
PFGs defined over trees. Furthermore, the same process as before
can be used to obtain a core-stable configuration in a PFG defined
over a tree, however this will not generally run in polynomial time.
We then adopt an optimistic view regarding the behaviour of non-
deviators, and show that, unlike the pessimistic one, the optimistic
core may be empty in PFGs over trees and even over lines. It re-
mains an interesting future work topic to obtain efficient algorithms
for special cases of PFGs. As explained in Section 3.1, this seems
to be computationally much harder, since it typically involves enu-
meration over too many partitions. We are not aware of any other
work that has tackled stability in PFG settings with structure.

Finally, we propose a natural extension of PFGs, namely Bayesian
partition function games (BPFGs). In short, instead of resorting
to pessimism or optimism, a coalition S of potential deviators in
BPFGs assumes that the reaction of the residual players (i.e., what
partition they will form if S deviates) is determined by a probabil-
ity distribution—an assumption that is more realistic and arguably
more useful from an AI perspective. We then go on to define the
core and initiate its study in this setting as well.

2. CHARACTERISTIC FUNCTION GAMES
ON GRAPHS

In this section, we study the issue of stability in the context of char-
acteristic function games defined on graphs. Let N = {1, . . . , n}
be a set of agents, with |N | = n. A subset C ⊆ N is called a
coalition. A characteristic function game (CFG)—or coalitional
game with transferable utility (TU-game)—is defined by its func-
tion v : 2N 7→ < that specifies the value v(C) of each coalition
C [21]. Intuitively, v(C) represents the maximal payoff the mem-
bers of C can jointly receive by cooperating, and the agents can
distribute this payoff between themselves in any way. A payoff
vector x = 〈x1, . . . , xn〉 assigning some payoff to each i ∈ N is
called an allocation. We denote

∑
i∈C xi by x(C). Given a par-

tition Π = {C1, . . . , Ck}, of the agents (we will also refer to a
partition as a coalition structure interchangeably), an allocation x
is called an imputation of Π if x(Cj) = v(Cj) for j = 1, . . . , k
and xi ≥ v({i} for all i. Note that if x is an imputation for Π,∑

i∈N xi =
∑

C∈Π v(C). The set of imputations for Π is I(Π).
Assume now that there exists a graph G, which determines the

allowed cooperation structures as follows: each node of the graph
represents an agent and a coalition C is allowed to form if and only
if for every two agents in C there exists a path in the subgraph in-
duced by C that connects them—i.e., the subgraph that is induced
by C is a connected subgraph. A characteristic function game on
graph G is then simply a CFG where v is defined only for coali-
tions allowed by G. We denote the set of such feasible coalitions

by F(G). Similarly, we will refer to feasible partitions of feasi-
ble coalitions, and we denote the set of all feasible partitions by
P (G). Such games can arise naturally in many situations where
lack of communication between certain agents makes it impossible
for some coalitions to form. Note that when G is a clique then we
are back to the usual CFGs where all coalitions are feasible. We
also assume that our graph is connected. If not, our findings apply
separately to each connected component.

The main stability solution concept in cooperative game theory
is, arguably, the core—the set of (Π,x) tuples, where Π is a par-
tition and x an imputation, such that no coalition has an incentive
to deviate. However, in our setting it suffices to check only the
incentives of the feasible coalitions [17, 4, 5].

DEFINITION 1. The core of a game with characteristic function
v(·) on graph G is the set

C(v,G) = {(Π,x) : Π ∈ P (G),x ∈ I(Π)∧ x(S) ≥ v(S) ∀S ∈ F(G)}

The following observation is straightforward:

FACT 1. If (Π,x) ∈ core, Π attains maximum social welfare,
where the social welfare of Π is: SW (Π) =

∑
C∈Π v(C).

Though in many games the grand coalition of all players might be
impossible to form [1], the assumption that it is the one with the
highest total welfare—or even the stricter assumption of superad-
ditivity, i.e., v(S∪T ) ≥ v(S)+v(T ) for any disjoint sets S, T—is
some times justified. Indeed, the vast majority of work in game the-
ory examines stability in games where the grand coalition emerges.
The question of stability then reduces to pairing the grand coalition
with an imputation of N .1

DEFINITION 2. WhenN attains the highest possible social wel-
fare, the core is the set

C(v,G) = {x ∈ Rn : x(N) = v(N) and x(S) ≥ v(S) ∀S ∈ F(G)}

In most scenarios of interest to multiagent systems, however, it is
natural for agents to split into groups to simultaneously perform
distinct tasks. Thus, unless explicitly stated, it is not required in our
games that the grand coalition achieves the highest social welfare.

Network structures have long been recognized as a natural frame-
work for the study of stability. Nevertheless, following the defini-
tion of Myerson value2 in [20], research has focused on the question
of building stable and efficient networks: (mainly pairwise) stabil-
ity is discussed essentially from a non-cooperative point of view—
i.e., w.r.t. the creation of stable network structures, through adding
or removing links among nodes [14]. In non-cooperative settings,
the structural properties of equilibria and the development of al-
gorithms to compute equilibria in graphical games which restrict
payoff influences among players have also been examined [15].

Networks have also provided inspiration for new representation
schemes for coalitional games [13, 3, 2]. Cooperative games with
an underlying graph structure have also been considered in the
seminal work of [6]. However, they consider games defined on a
weighted graph, where the value of a coalition S is the sum of
weights of edges that are contained in the subgraph induced by S.
Hence, any coalition is allowed to form and values are determined
by weights, while in our work not all coalitions are feasible and
1The core of Definition 1, examining the stability of coalition struc-
tures is sometimes referred to as the CS-core, while the concept
examining the stability of N is referred to simply as the core [7].
2The Myerson value determines that, while building a network by
adding agents one at a time, each agent is assigned his marginal
contribution, taking into account all possible orderings of agents.



the characteristic function can be arbitrary and not expressed via
weights. Thus, their results are unrelated to ours.

In contrast to the aforementioned approaches, here we care about
the stability of partition-imputation pairs given a fixed underlying
network structure that determines the allowed interactions. In par-
ticular, we study the complexity of three3 natural core-related algo-
rithmic questions (Table 1 summarizes our results):

1. CORE-NONEMPTINESS: Given a game on a graphG, de-
cide whether C(v,G) 6= ∅.

2. CORE-FIND: Given a game on a graph G, find an element
(Π, x) ∈ C(v,G) if C(v,G) 6= ∅ or output “C(v,G) = ∅”.

3. CORE-MEMBERSHIP: Given a game on a graph G and
an imputation (Π, x), decide whether (Π, x) ∈ C(v,G).

REMARK 1. We make the usual assumption that our games are
in compact form and are represented by the graph G and an oracle
that, for any S ∈ F(G), returns the value v(S) in time polynomial
in the size of G (e.g. see [9]).

Lines Trees Trees Cycles
(general) (superadd.) (general) (general)

NONEMPTINESS O(1) O(1) O(1) P
FIND P P NP-hard P
MEMBERSHIP P co-NP-complete co-NP-complete P

Table 1: Core-stability results for CFGs on graphs.

2.1 CORE-NONEMPTINESS and CORE-FIND
We start with the problems of determining whether the core is empty
or not and the complexity of finding elements in the core. Related
work on solution concepts in graph-restricted games [18, 26] has
not addressed issues from an algorithmic point of view, in most
cases. The work most relevant to ours is that of Le Breton et
al. [17], and Demange [4, 5]. In [17] and [4] it is shown that if a
game is superadditive and the graph is a tree, the core is non-empty.
However, their existential proof does not provide an efficient algo-
rithmic construction of a core element.

Later on, the follow up work of [5] showed that the core is non-
empty for trees, even for non-superadditive games. Moreover, De-
mange proposed a procedure that computes an element in the core.
We briefly recall this algorithm below as we will proceed to ana-
lyze its complexity, and will also use it in later sections. Originally
it was stated in the context of a slightly different model than ours,
involving directed graphs, but it is easy to reformulate as:

ALGORITHM 1. [5] Given a graph G which is a tree, and a
characteristic function v(·), first pick a vertex r as the root of the
tree. The algorithm consists of two steps.
Step 1: Starting from the leaves, compute the guarantee level ĝi of
each agent i, inductively: for leaves, ĝi is simply the reservation
value v({i}); for an agent that is not a leaf, let Ri be the set of
all subtrees that start at i, i.e., it is the set of all feasible coalitions
among i and the agents underneath i. Then: ĝi := max{v(T ) −∑

j∈T\{i} ĝj : T ∈ Ri}.
Step 2: Starting from the root r, pick the coalition T1 at which ĝr
was attained (breaking ties arbitrarily). Every agent in T1 receives
his guarantee level as a payoff, which is feasible by the definition
of ĝr . If T1 = N , we are done. Otherwise, pick a node i not in T1

whose father belongs to T1. Pick the coalition fromRi at which ĝi
3The first problem is included in the second one. However, we feel
it is important to study CORE-NONEMPTINESS separately from
CORE-FIND because their complexity varies significantly.

was attained, say T2. All agents in T2 receive their guarantee level
as well. If T1 ∪ T2 = N , we are done, otherwise we continue in
the same fashion until we cover N . This produces a partition Π in
which all agents receive their guarantee level as their payoff.

THEOREM 1 ([5]). The outcome produced by the above al-
gorithm belongs to the core.

To obtain more intuition, it is interesting to observe what the algo-
rithm does in some special cases:

REMARK 2. If the game is superadditive and the graph is a line
from 1 to n, the produced payoff allocation is simply the marginal
contribution: ĝi = v({1, . . . , i})− v({1, . . . , i− 1}).

The above theorem implies that CORE-NONEMPTINESS is triv-
ial when the graph is a tree (whether superadditive or not), since
the core is always non-empty. Regarding CORE-FIND however,
the computational complexity of Algorithm 1 was not addressed
in [5]. We therefore now proceed to analyze its complexity. In the
usual CFGs, where there is no restriction by a graph, the problem
of computing an element in the core, or deciding if the core is non-
empty has already been shown to be in co-NP, and co-NP-complete
for certain expressive representation schemes [11]. Here, the fact
that the graph may restrict the number of potential deviations gives
some hope that the problem may be easier. We show below that this
is indeed the case for graphs that are lines or superadditive trees.4

THEOREM 2. For a CFG where (i) the underlying graph is a
line or (ii) the game is superadditive and the graph is a tree, CORE-
FIND can be solved in polynomial time.

PROOF. (i) For finding an element in the core it is easy to see
that Algorithm 1 runs in polynomial time for lines. To prove this,
we need to see how many coalitions we need to check when we
compute the ĝi values for each agent i. Suppose wlog that the
agents are placed in a line starting from agent 1 up to agent n.
For agent 1, since it is a leaf, the only coalition we consider is the
singleton {1}. For player 2, to compute ĝ2, we need to consider
{2} and {1, 2}. Moving on this way we see that for agent n − 1
we need to consider {n− 1}, {n− 2, n− 1}, . . . , {1, . . . , n− 1}.
And finally for agent n, the allowed coalitions are {n}, {n−1, n},
. . . ,{1, . . . , n}. In total for all players we need to consider 1 + 2 +
· · · + (n − 1) + n = O(n2) coalitions. Hence it is a polynomial
time algorithm.
(ii) Suppose now that the game is superadditive and the graph is
a tree. The computational problem that may arise on a tree is the
following: if a node i has k children then computing its guaran-
tee level in step 1 of Algorithm 1 requires looking at exponen-
tially many subtrees starting at i, i.e. the set Ri contains at least
2k subtrees corresponding to all possible subsets of the children.
However, when the game is superadditive, this is not necessary, as
implied by the following:

LEMMA 1. For a node i, let Di be the tree that starts at i and
contains all nodes downwards from i. When the game is superad-
ditive, the guarantee level of every node in step 1 of Algorithm 1 is
achieved precisely at Di.

The proof of Lemma 1 follows by induction and we omit it here.
Given Lemma 1, we can conclude that Algorithm 1 can be imple-
mented in polynomial time in this case.
4Notice, however, that testing whether a game is indeed superaddi-
tive could still be a hard problem—e.g., it is coNP-complete in the
absence of structured environments [10].



Given the results of the above theorem, and Fact 1, it is straightfor-
ward to obtain the following corollary:

COROLLARY 1. For a CFG where the underlying graph is a
line, or it is superadditive and the graph is a tree, a partition with
maximum social welfare can be found in poly-time.

When the game is not superadditive, however, CORE-FIND be-
comes intractable for trees. To see this, we first define:
The social welfare maximization (SW) problem: Given a game
on a graph G, and a rational number k, is there a partition Π with
SW (Π) ≥ k?

THEOREM 3. The SW problem when the underlying graph is a
tree is NP-complete.

PROOF. That SW is in NP is trivial. Just guess a partition and
calculate its social welfare. To show that it is NP-hard, we reduce
from the PARTITION problem, which is the following: given n
positive numbers a1, . . . , an is there a subset S of these numbers
such that

∑
j∈S aj =

∑
j 6∈S aj?

Consider an arbitrary instance of the PARTITION problem with
numbers a1, . . . , an. We construct a CFG on a graph which is a
tree. In particular, we define a graph with n + 1 vertices, namely
the vertices {0, 1, . . . , n}. The only edges are the edges (0, i) for
i = 1, . . . , n. Hence the graph is a tree rooted at vertex 0. To de-
termine the game’s characteristic function, notice first that feasible
coalitions of size at least 2 are forced to contain the root, otherwise
they are not connected. Therefore the only allowable coalitions are
singletons and sets that contain vertex 0. For the singleton {0},
set v({0}) = 0. For the rest of the singletons, set v({i}) = ai.
Finally, the value of coalitions S that contain the root is:

v(S) =

{ ∑
j∈S\{0} aj if

∑
j∈S\{0} aj 6=

∑
j 6∈S aj ,

1 +
∑

j∈S\{0} aj otherwise

By the definition of v(S), it is easily seen that given a1, . . . , an,
a polynomial time oracle for v(S) can be constructed. Set now k =
1 +

∑n
j=1 aj . This completes the description of the SW instance.

We can now prove that there exists a set S such that
∑

j∈S aj =∑
j 6∈S aj in the PARTITION problem if and only if there exists a

feasible partition with social welfare at least k. Suppose there exists
such a set S. Then for the coalition S ∪ {0} the value is exactly
1 +

∑
j∈S\{0} aj . Hence with the remaining nodes as singletons,

we get a partition with social welfare at least k. For the reverse,
suppose that there exists a partition with social welfare at least 1 +∑

j aj . If there is no set S that solves the PARTITION problem,
then by construction the values of all coalitions are just the sum
of the corresponding numbers, and hence the social welfare of any
feasible partition is at most

∑n
j=1 aj , a contradiction.

Now, we can see why our problem of finding an element in the
core is unlikely to have a polynomial time algorithm5:

THEOREM 4. For a general CFG where the underlying graph
is a tree, CORE-FIND is NP-hard.

PROOF. Given Fact 1, any algorithm that finds an element (Π,x)
in the core can solve the SW problem, by just calculating the social
welfare of the returned Π.

We now focus on games where the underlying graph is a cycle.
These are interesting, as ring topologies are common in networks
5Since our problem is a search problem, it will not belong to NP.
Our proof essentially shows that our problem is at least as hard as
solving an NP-complete problem.

of many kinds. It can be shown through examples that trees (and
forests, if G is disconnected) are the only graphs that guarantee
stability irrespective of the function v(·). The presence of cycles
can create instances with empty core, even in superadditive games.

THEOREM 5. For any n ≥ 3, there exist games on n players,
where the underlying graph is a cycle and C(v,G) = ∅.

For n = 3, Theorem 5 follows by the abundance of regular unre-
stricted CFG’s with empty core (since a cycle is a clique for n = 3,
and hence all coalitions are allowed). For n ≥ 4 we can con-
struct simple examples of superadditive characteristic functions on
cycles, which we omit here.

Hence, the problem CORE-NONEMPTINESS for cycles is not
as trivial as in the case of trees. We will show however that we can
still have a polynomial time algorithm. We start with superadditive
games on cycles. The crucial observation is the following Lemma:

LEMMA 2. For lines and cycles, the number of feasible coali-
tions is O(n2).

PROOF. A feasible coalition has to be connected and it corre-
sponds to an interval from an agent i to some agent j. This implies
a total of O(n2) since we have at most n choices for i and after
fixing i, there can be at most n − 1 choices for j (multiplied by 2
for cycles, since we then have two paths connecting i and j).

THEOREM 6. CORE-NONEMPTINESS and CORE-FIND are
in P for superadditive games on cycles.

PROOF. From superadditivity, we know that we are looking for
an imputation x of the grand coalition. Hence we can check if the
following system of linear inequalities has a solution:∑

i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) ∀S ∈ F(G)

By Lemma 2, we know that this system has polynomially many
constraints and hence can be solved in polynomial time.

Note that we could have applied the same argument for superad-
ditive games on lines. However, for lines we prefer to use Algo-
rithm 1, since it works for non-superadditive games as well, and it
provides a more direct and intuitive way of finding a core element.

One cannot directly use the arguments in Theorem 6 for non-
superadditive games on cycles, as an optimal partition is not known
a priori, and there are exponentially many candidate partitions.
However, if one has access to an algorithm that computes an opti-
mal partition Π, then an allocation vector x so that (Π,x) is in the
core, if such an x exists, can be computed via linear programming,
by the arguments above. Hence, we need to address the question
of whether an optimal partition can be computed in poly-time over
cycles. Let C be a cycle over n nodes, and let L1, ..., Ln be the n
lines that can be obtained by removing exactly one edge. Then, it
is easy to see that the optimal partition of C is either C itself, or
the best partition over the optimal partitions of L1, ..., Ln. Thus,
one can just run Alg. 1 on L1, ..., Ln and compare the various solu-
tions with the value of the grand coalition. This proves that CORE-
NONEMPTINESS and CORE-FIND are in P for general games on
cycles. Credit for this proof (provided to us in personal correspon-
dence) goes to G. Greco, E. Malizia, L. Palopoli and F. Scarcello.

Finally, we conclude this subsection with an observation on how
to identify more core elements if one has access to algorithms that
identify alternative optimal partitions (a result also shown in [10]).

THEOREM 7. For any game on G, if (Π,x) ∈ C(v,G), then
(Π′,x) ∈ C(v,G), for any social welfare maximizing Π′.



2.2 CORE-MEMBERSHIP
In this section we deal with the membership problem. First we
show that it can be solved efficiently for lines or cycles.

THEOREM 8. For a CFG where the underlying graph is a line
or a cycle, CORE-MEMBERSHIP can be resolved in P.

PROOF. Given (Π,x), it is trivial to check if x is an imputation
of Π. To check for a successful deviation, we can check all feasible
coalitions. By Lemma 2 the proof is complete.

Concerning trees, the problem is not as easy. We first show that
the reduction we used in the proof of Theorem 3 yields a hardness
result for general games on trees.

THEOREM 9. CORE-MEMBERSHIP is co-NP-complete for gen-
eral CFGs on trees.

PROOF. To check that a (Π,x) does not belong to the core,
it suffices to exhibit a coalition with an incentive to deviate, or
check that x is not an imputation of Π. Hence there is a poly-
nomially sized certificate to verify this, which implies that CORE-
MEMBERSHIP belongs to co-NP(also follows from a result in [10]).

We now show that checking whether (Π,x) does not belong to
the core is NP-hard. We use the reduction from the proof of Theo-
rem 3. Given an instance of the PARTITION problem (a1, . . . , an),
we construct the game described in Theorem 3 and we consider as a
candidate core element the tuple (Π,x) = (N, 〈0, a1, . . . , an〉)—
i.e., we look at the grand coalition with the imputation where the
root receives nothing and every other node receives its correspond-
ing number. We claim that (Π,x) does not belong to the core if
and only if there exists a set S that is a solution to the PARTITION
problem. To see this, suppose first that there exists a set S such that∑

j∈S aj =
∑

j 6∈S aj . Then, by construction and the definition of
the characteristic function, the grand coalition is not welfare maxi-
mizing, and thus cannot belong to the core (there exists a partition
with social welfare at least 1 +

∑n
j=1 aj).

For the other direction suppose that there is no set S for which∑
j∈S aj =

∑
j 6∈S aj . This implies that the grand coalition is a

welfare maximizing partition and it is also easy to see that every
coalition achieves its value v(S) under the imputation x. Hence
(Π,x) belongs to the core.

The reduction above does not imply anything for superadditive
trees since it produces non-superadditive instances as well. One
could hope that superadditivity makes things easier as was the case
for CORE-FIND. The following theorem however reveals that CORE-
MEMBERSHIP is hard even for superadditive trees. The proof is
based on a simple adaptation of a reduction used for unrestricted
games in [10][Theorem 4.1].

THEOREM 10. CORE-MEMBERSHIP is co-NP-complete even
for superadditive CFGs on trees.

PROOF. (Sketch.) Checking that the problem is in co-NP is as
in Theorem 9. We now give a reduction from SAT. Consider a SAT
formula φ on n boolean variables X1, . . . , Xn. Let L denote the
set of literals, L = {X1,¬X1, X2,¬X2, . . . }. Given S ⊆ L, with
|S| = n, we say that S is consistent if ∀Xi |S ∩ {Xi,¬Xi}| = 1.
For a consistent S, let also σ(S) be the truth assignment where all
variables that belong to S are set to true and the rest to false.

Given φ, we construct a tree with 2n+ 1 nodes. The root is de-
noted by node 0 and it is connected to 2n nodes corresponding toL.
This is a star where the only allowable coalitions are either single-
tons or coalitions containing the root. For any singleton coalition
{i} we set v({i}) = 0. All remaining coalitions are of the form

{0} ∪ S for some S ⊆ L. The value of v({0} ∪ S) is set to the
value of the set S in the proof of [10][Theorem 4.1]. Namely:

v({0} ∪ S) =


|S|/n, if |S| > n,
1 + 1/2n if |S| = n, S is consistent,

and σ(S) satisfies φ
0, otherwise

It can be easily proved that this game is superadditive. Furthermore,
one can also prove that the allocation where node 0 receives 0 and
every other node 1/n belongs to the core if and only if the formula
φ is not satisfiable. We omit the details from this version.

3. PARTITION FUNCTION GAMES
As mentioned in the introduction, in many circumstances the value
of a coalition S does not depend solely on S but is affected by
externalities—i.e., v(S) depends on the coalition structure formed
by the rest of the agents. To capture such requirements, one is then
obliged to move to the more general setting of partition function
games. Naturally, therefore, it is of interest to extend the results
of Section 2 to partition function games with structure. As dis-
cussed, the core of PFGs has been studied in economics under spe-
cific assumptions. Moreover, recent work has focused on efficient
PFG representations and coalition structure generation in PFG set-
tings (Michalak et al. [19]; Rahwan et al. [22]). However, to date
there has been no work on the stability of PFGs defined on graphs.

We begin with some definitions. A PFG is determined by a func-
tion V (·, ·), specifying the value of a coalition in a certain partition.
For S ∈ Π, V (S,Π) is the value of S when Π forms. In our setting,
to define a PFG on a graph G, we further impose that the function
V (·, ·) is defined only for feasible partitions Π ∈ P (G). We let
V (N) denote V (N,N).

Extending the notion of the core to PFGs is not straightforward.
This is because, in the presence of externalities, a potential set of
deviators S needs to make an assumption on how the rest of the
agents behave (i.e., what is the partition that will form in N \ S)
once they deviate. In this section, we focus on the two most com-
mon approaches found in the literature, a pessimistic and an opti-
mistic one (see [16] for an overview of PFG solution concepts).

3.1 The Pessimistic Core
We start by defining the core in the case that deviators have a pes-
simistic view regarding the reaction of the remaining players. For
this we need a notion of dominance.

For a given coalition structure Π = (S1, . . . , Sk) ∈ P (G), a
payoff allocation x = (x1, . . . , xn) is feasible for Π if :∑

j∈Si

xj ≤ V (Si,Π), i = 1, . . . , k

Let Φ(Π) denote the set of feasible payoff vectors of a partition Π
and let Φ =

⋃
Π∈P (G) Φ(Π). We also define the pessimistic value

of a set S ∈ F(G) to be v̂(S) = minΠ∈P (G),S∈ΠV (S,Π).
Consider two payoff vectors x and x′ of Φ and a coalition S. We

say that x′ dominates x via S if (i)
∑

j∈S x
′
j ≤ v̂(S) and (ii) x′j >

xj for all j ∈ S. The idea behind this type of dominance is that
the agents of S are not content with x because there exists another
allocation (possibly on a different partition), by which they all get
better off without exceeding the total payoff that is guaranteed to S
in the worst case partition (which is v̂(S)).

We will say that x′ pessimistically dominates x and will write
x′dompesx simply if there exists S such that x′ dominates x via
S. We define the pessimistic core (p-core) to be the set of vectors
of Φ that are not (pessimistically) dominated by any other member
of Φ. This is an extension of the pessimistic core of [8], which was



defined for domains without structure and with the grand coalition
as the social welfare-maximizing partition.

p-core = {(Π,x) : Π ∈ P (G),x ∈ Φ(Π), 6 ∃x′ ∈ Φ s.t.x′ dompes x}

Given a PFG on a graph G, we will associate with it the following
CFG: the set of players and the graph is the same and the charac-
teristic function is v̂(S). The core of this CFG is denoted by:

C(v̂, G) = {(Π,x) : Π ∈ P (G), x(S) ≥ v̂(S)∀S ∈ F(G) ∧ x ∈ I(Π)}

where I(Π) denotes the set of imputations in Π. We now provide
a relationship between p-core and C(v̂, G).

THEOREM 11. For any PFG on a graph G, let (N, v̂,G) be the
corresponding (pessimistic) CFG. Then C(v̂, G) ⊆ p-core.

PROOF. Consider a tuple (Π,x) that belongs to C(v̂, G). Sup-
pose that (Π,x) 6∈ p-core. Then either x is not feasible for Π
or x is dominated by some other feasible vector y. But since
(Π,x) ∈ C(v̂), then x ∈ Φ(Π), therefore the only possibility is
that x is dominated by some other feasible vector. Hence, by defi-
nition, there exists a vector y ∈ Φ and a set S ∈ F(G) s.t. y domi-
nates x via S. That is, yj > xj for all j ∈ S and

∑
j∈S yj ≤ v̂(S).

Hence
∑

j∈S xj <
∑

j∈S yj ≤ v̂(S), which is a contradiction
with (Π,x) ∈ C(v̂, G).

However, the reverse direction is not generally true, as the follow-
ing example demonstrates:

EXAMPLE 1. Consider 4 players placed on a line starting from
1 up to agent 4. The idea is to setup the numbers so that the socially
optimal partition is Π∗ = {{12}, {34}}, with V ({12},Π∗) =
V ({34},Π∗) = 10 and v̂({12}) < 10, v̂({34}) < 10. Then one
can check that (Π∗,x) with x = (5, 5, 5, 5) belongs to the p-core
but not to C(v̂, G). In some detail, x = (5, 5, 5, 5) cannot belong
to C(v̂, G), as x is not a valid imputation of partition Π∗ in the
CFG described by v̂, because v̂({12}) < 10 and v̂({34}) < 10
(in a PFG setting, every S may have a different partition where
its pessimistic value v̂(S) is achieved). On the other hand, x is
feasible for Π∗ in this specific PFG game (and belongs to p-core).

Note that Theorem 11 does not depend on the structure of the graph
and holds for any PFG. This result is interesting for two reasons.
First, it demonstrates the differences between domains where the
maximum social welfare is achieved by the grand coalition (and
by no other partition) and domains where this does not hold. Un-
like [8], where they show that, in the former case, the pessimistic
core coincides with the core of the CFG, here this is no longer true.
Second, Theorem 11, combined with Theorem 1, allows us to es-
tablish the non-emptiness of the core in PFGs on trees.

THEOREM 12. For PFGs where the underlying graph is a tree,
the p-core is non-empty.

For PFGs on trees, the problem of finding an element in the core
is NP-hard and the membership problem is co-NP-complete, since
the class of PFGs contains the class of CFGs. Theorem 12 allows
us to use Alg. 1 to find an element of the p-core. But even for lines,
the algorithm cannot be implemented in polynomial time, unlike
CFGs. The problem arises as we need to compute the function v̂(·)
to run Alg. 1, because of the exponentially many partitions.

THEOREM 13. For a PFG on a line and a singleton S, it is
NP-hard to compute v̂(S).

The same holds whenever |S| = O(1). We omit the proof, which
is based on viewing a partition in a line as what is known in com-
binatorics as an “integer composition” [24]. Algorithmic problems

on PFGs are, naturally, computationally more demanding, as the
value of a coalition varies across the exponentially many partitions.
It would be interesting to identify special classes of PFGs on trees
or lines for which a p-core element can be computed in polynomial
time. Finally, because of Theorem 5, p-core non-emptiness cannot
be guaranteed for PFGs where the underlying graph is a cycle.

3.2 The Optimistic Core
We now consider the opposite approach. Although it is perhaps less
intuitive to be optimistic about the reaction of non-deviators, opti-
mism is a well established concept in game theory and economics,
as the assumption can be quite natural in certain application do-
mains. For instance, in security games, where players in computer
networks attempt to fend off attackers, optimistic players may in-
vest only in self-protection, hoping that the other players will con-
tribute to the overall network protection.6 As we will see, having
optimistic deviators results in higher expectations on their part, and
thus the optimistic core may be empty, unlike what was established
for the p-core in Theorem 12.

To begin, we need to define a modified notion of dominance,
which we denote by domopt. Consider two payoff vectors x and
x′ of Φ and a coalition S. We say that x′ domopt x (via S) if there
exists a partition Π with S ∈ Π such that (i)

∑
j∈S x

′
j ≤ V (S,Π)

and (ii) x′j > xj for all j ∈ S. The idea here is that since members
of S are optimistic, it suffices that they find some partition Π and
an allocation, feasible for Π, in which they are all better-off.

The optimistic core (o-core) is then the set of tuples (Π, x) such
that x is not (optimistically) dominated by any other member of Φ.

o-core = {(Π,x) : Π ∈ P (G),x ∈ Φ(Π), 6 ∃x′ ∈ Φ s.t.x′ domopt x}

The following fact is easy to verify:

FACT 2. o-core ⊆ p-core.

We will see shortly that the reverse is not true. First we will identify
a necessary condition for the o-core to be non-empty. This will be
done by establishing a connection of the o-core with the following
CFG: the set of players and the graph structure is the same, and, in
analogy to Section 3.1, we define now the optimistic value of a set
S ⊆ N to be v∗(S) = maxΠ∈P (G),S∈ΠV (S,Π). The resulting
CFG is (N, v∗, G), and its core is denoted by:

C(v
∗
, G) = {(Π,x) : Π ∈ P (G), x(S) ≥ v

∗
(S)∀S ∈ F(G)∧x ∈ I(Π)}

Then, for a tuple (Π,x) to belong to the o-core, a necessary con-
dition is that for every S,

∑
i∈S xi ≥ v∗(S), as implied by the

following theorem.

THEOREM 14. For any PFG on a graph G, let (N, v∗, G) be
the corresponding (optimistic) CFG. Then o-core ⊆ C(v∗, G).

PROOF. Consider a tuple (Π,x) that belongs to the o-core. Sup-
pose that (Π,x) 6∈ C(v∗, G). Then by definition, either

∑
i∈N xi 6=∑

Sj∈Π v
∗(Sj) or there exists a set S such that

∑
i∈S xi < v∗(S).

In the first case, since x ∈ Φ(Π), it follows that
∑

i∈N xi <∑
Sj∈Π v

∗(Sj), which implies that there exists some set Sj ∈ Π

for which
∑

i∈Sj
xi < v∗(Sj). Hence we can conclude that in

both cases there is some set S for which
∑

i∈S xi < v∗(S). But
then we can construct the following vector y: Let Π′ be the par-
tition where v∗(S) is achieved. We can have a payoff allocation
to S so that

∑
j∈S yj ≤ v∗(S) and yj > xj ∀ i ∈ S. Fur-

thermore, for the remaining players, we can simply allocate pay-
off to them so as to ensure that for every S′ ∈ Π′, other than S,
6Harikrishna et al. [12] have recently introduced a cooperative
model against security attacks, but without explicitly examining
how the network structure influences agent cooperation decisions.



∑
j∈S′ yj ≤ V (S′,Π′). This results in a vector y ∈ Φ(Π′) (and

hence y ∈ Φ) such that y domopt x via S, which is a contradiction
with the fact that (Π,x) ∈ o-core.

However, the reverse direction is not generally true, as demon-
strated below for games defined on lines.

THEOREM 15. There exist PFGs, where the underlying graph
is a line, for which the o-core is empty.

PROOF. We consider a graph that forms a line from agent 1 to
agent 4 (in a similar manner one can generalize the example to
lines with a larger number of agents). This gives rise to 8 feasible
partitions, with corresponding coalitional values as follows.

Partition Value Value of coalitions
{1}, {2}, {3}, {4} 12 (3, 3, 3, 3)
{1}, {2}, {3, 4} 11 (2, 2, 7)
{1}, {2, 3}, {4} 11 (2, 7, 2)
{1}, {2, 3, 4} 11 (2, 9)
{1, 2}, {3}, {4} 19 (11, 4, 4)
{1, 2}, {3, 4} 20 (10, 10)
{1, 2, 3}, {4} 18 (15, 3)
{1, 2, 3, 4} 19 19

We can show that for any of these feasible partitions, there can
be no vector x with x ∈ Φ(Π) such that (Π,x) ∈ o-core. To see
this, consider for example the welfare maximizing partition Π =
({1, 2}, {3, 4}). For any x ∈ Φ(Π), we know that x1 + x2 ≤
10. But then we can construct a vector y, feasible for the partition
({1, 2}, {3}, {4}), in which y1 + y2 ≤ 11 and y1 > x1, y2 > x2.
This means that y domopt x and (Π,x) cannot belong to the o-
core. If we consider the partition Π′ = ({1, 2}, {3}, {4}), then
we know that for any x ∈ Φ(Π′), x3 + x4 ≤ 8. But then we can
construct in a similar manner a vector y that is feasible for Π and
dominates x via the set {3, 4}. By using similar arguments, we can
also conclude that for the remaining 6 partitions, we cannot find a
vector that would be feasible for them and undominated.

On the contrary, C(v∗, G) is non-empty on trees by Theorem 1.
This shows that unlike the p-core, which is guaranteed to exist in
PFGs over trees, the o-core is a stricter concept and cannot exist for
all such games. Intuitively, this is because optimistic expectations
lead to a larger set of potential deviations and eventually to the
absence of stable configurations.

4. BAYESIAN PARTITION FUNCTION GAMES
In this section, we initiate the study of a model that is even more
general than the usual partition function games. As mentioned, the
PFG literature has mostly focused on scenarios where deviators
are assumed to be either pessimistic or optimistic with respect to
others’ behaviour. Even in approaches that attempt to move away
from these extremes, definitions of dominance rely on some degree
of optimism or pessimism—as, e.g., in the recursive core model
of [16]. In many realistic scenarios, however, information regard-
ing the behaviour of the residual agents, when a set S decides to
work on its own, might be available to the deviators in the form
of a probability distribution. Such a distribution could be derived
from market data available, observation of historical evidence and
trends, domain knowledge and so on. Arguably, it is far more use-
ful to multiagent systems research and practice to assume that agent
uncertainty is described by a probability distribution, rather than
restrict attention to just one or two possible scenarios. Apart from
better reflecting real life situations, such an extension could poten-
tially allow for Bayesian inference and learning in PFGs; some-
thing that has not been discussed in the PFG literature.

We thus proceed to define Bayesian partition function games as
normal PFGs equipped with probability distributions specifying the
likelihood of a partition emerging when a specific coalition forms.

DEFINITION 3. A Bayesian partition function game (BPFG) is
a tuple B = 〈P, P rS(·)〉, where P is a PFG and for every S,
PrS(·) is a probability mass function, specifying the probability
PrS(Π) that Π ∈ P (G) emerges given that S ∈ Π forms.

For each S, it should hold that
∑

Π3S PrS(Π) = 1. Also for the
grand coalition, it holds thatPrN ({N}) = 1. For a set S, the prob-
abilities PrS(·) reflect the beliefs of S on the reaction of the resid-
ual agents, when S is considering to deviate. Then, the expected
value that a coalition S would receive in a potential deviation in a
BPFG is: ṽ(S) = EΠ[V (S,Π)] =

∑
Π3S PrS(Π)V (S,Π).

It is now reasonably straightforward to define the Bayesian PFG-
core as the set of partition-allocation pairs with efficient alloca-
tions that are weakly preferable in expectation to any potential de-
viation by some coalition S.

DEFINITION 4 (BPFG-CORE). The BPFG-core is the set of
(Π,x) pairs where

∑
i∈C xi = V (C,Π), ∀C ∈ Π and for any

feasible coalition, S ∈ F(G), it holds that x(S) ≥ ṽ(S).

We note here that, interestingly, even if (Π,x) belongs to the
BPFG-core, Π may not necessarily be a welfare maximizing parti-
tion. This is because coalitions only judge whether the payoff they
receive is good in expectation—i.e., at least ṽ(S). If an optimal
partition exists that is better than Π but occurs only with a small
probability, then this does not necessarily prevent the stability of
Π. Though this is a departure from the usual models where the
core is defined, it is very natural in a Bayesian setting.

Finding necessary and sufficient conditions for characterizing
the elements of the BPFG-core is naturally of interest. Here, we
provide one sufficient condition for a (Π,x) element to be in the
BPFG-core. First, consider the maximum attainable value v∗(S)
of a feasible coalition S (i.e., its best possible value under any po-
tential partition containing S). Then, the following fact holds:

FACT 3. v∗(S) ≥ ṽ(S) ∀ S ∈ F(G).

By Fact 3, we have:

THEOREM 16. Let (Π,x) be a Bayesian partition function game
outcome with

∑
i∈C xi = V (C,Π), ∀C ∈ Π. (Π,x) is in the

BPFG-core if the following condition holds:

x(S) ≥ v∗(S), ∀S ∈ F(G)

Note that this a sufficient condition for an element to be in the
BPFG-core, without the need to take into account probability dis-
tribution estimates, even though the setting is probabilistic. Hence,
if there is information available about the maximum values v∗(S),
then one may not need to go through computing all expectations.

This however is not a necessary condition: it may occur that
an element (Π,x) is in the core and there is an S with v∗(S) >∑

i∈S xi. This is demonstrated in the following example.

EXAMPLE 2. ConsiderN = {1, 2, 3, 4}, and suppose V (N) =
120 and x = {30, 30, 30, 30}. We will argue about the tuple
(N,x). Consider the coalition S = {1, 2} of agents considering to
deviate, with beliefs specifying that for the two possible partitions
to emerge if S breaks away, say Π1,Π2, PrS(Π1) = PrS(Π2) =
0.5. Let V (S,Π1) = 100, V (S,Π2) = 10. Let also the value of
any other feasible coalition in this game be zero in any partition.
Then, since ṽ(S = {1, 2}) = 55 while x(S) = 60, and given that
all non-mentioned coalitions have zero value, it holds that for any
feasible C in this setting, x(C) ≥ ṽ(C), therefore (N,x) is in the
BPFG-core. However, for the given S, v∗(S) = 100 > x(S).



In analogy to the definition of the core in superadditive CFGs,
we can also define here the core with respect to the grand coalition
(BPFG-core-grand), as the set of efficient allocations dividing up
the value of N that make the deviation of a set of agents unprof-
itable in expectation.

DEFINITION 5 (BPFG-CORE-GRAND). The BPFG-core-grand
is the set x of allocations such that x(N) = V (N), and ∀S ∈
F(G), x(S) ≥ ṽ(S).

Since ṽ(N) = V (N), it is easy to verify from Def. 2 and Def. 5
that the BPFG-core-grand and the core of the CFG with character-
istic function ṽ(·) coincide.

FACT 4. Let B be a BPFG. Consider the CFG defined by the
function ṽ(·). Then, BPFG-core-grand(B) = C(ṽ, G).

Using Fact 4 and Theorem 1 we can now establish:

THEOREM 17. If B is a BPFG defined on a tree G, then its
BPFG-core-grand is non-empty.

The discussion right after Theorem 12, including Theorem 13, ap-
plies for ṽ(·) as well. Hence, even though one could use Algorithm
1 to find an element of BPFG-core-grand, this cannot be done in
polynomial time. It would be interesting to identify special cases
of BPFGs that admit polynomial time algorithms.

We believe that BPFGs are a natural setting that deserves fur-
ther exploration. Clearly, it would be interesting to obtain a corre-
spondence between the CFG core with coalition structures and the
general BPFG-core. However Theorem 17 does not hold for the
general BPFG-core because the analog of Fact 4 is not always true.
Namely, an element (Π,x) ∈ C(ṽ, G) satisfies x(C) = ṽ(C) for
every C ∈ Π. But this may not be a valid allocation for the BPFG
since it may not hold that x(C) = V (C,Π) (i.e., the feasibility of
an allocation x would have to be assessed w.r.t. Π). Hence the task
of mapping the CFG core to the BPFG-core is considerably more
challenging when coalition structures are involved.

5. CONCLUSIONS AND FUTURE WORK
In this paper we studied core-stability in several models of coop-
erative games defined on graphs that constrain the formation of
coalitions. First, we obtained complexity results in the usual CFG
setting, several of which are positive for certain graph structures of
interest, such as trees and cycles which form the backbone of net-
works found in the real world. We then initiated the study of core-
stability in PFGs defined over graphs, examining it both from a pes-
simistic and an optimistic viewpoint. Furthermore, we proposed a
Bayesian model for PFGs, which we believe is more realistic than
the usual models in economics, and suits better the coalition for-
mation paradigms of interest to multiagent systems. We took some
steps towards the study of the core in this model as well.

Regarding future work, we are particularly interested in explor-
ing the PFG and Bayesian PFG domains further, as outlined above.
We also envisage linking theoretical results in these domains to
real-world applications. For instance, tractable algorithms to iden-
tify ε-stable coalitions could be used to inform planning decisions
and optimize task execution in structured multiagent settings.
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