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ABSTRACT
A Coalition Structure Generation (CSG) problem involves
partitioning a set of agents into coalitions so that the social
surplus is maximized. Recently, Ohta et al. developed an
efficient algorithm for solving CSG assuming that a char-
acteristic function is represented by a set of rules, such as
marginal contribution networks (MC-nets).
In this paper, we extend the formalization of CSG in Ohta

et al. so that it can handle negative value rules. Here, we
assume that a characteristic function is represented by either
MC-nets (without externalities) or embedded MC-nets (with
externalities). Allowing negative value rules is important
since it can reduce the efforts for describing a characteristic
function. In particular, in many realistic situations, it is
natural to assume that a coalition has negative externalities
to other coalitions.
To handle negative value rules, we examine the following

three algorithms: (i) a full transformation algorithm, (ii) a
partial transformation algorithm, and (iii) a direct encoding
algorithm. We show that the full transformation algorithm
is not scalable in MC-nets (the worst-case representation
size is Ω(n2), where n is the number of agents), and does
not seem to be tractable in embedded MC-nets (representa-
tion size would be Ω(2n)). In contrast, by using the partial
transformation or direct encoding algorithms, an exponen-
tial blow-up never occurs even for embedded MC-nets. For
embedded MC-nets, the direct encoding algorithm creates
less rules than the partial transformation algorithm.
Experimental evaluations show that the direct encoding

algorithm is scalable, i.e., an off-the-shelf optimization pack-
age (CPLEX) can solve problem instances with 100 agents
and rules within 10 seconds.
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1. INTRODUCTION
Coalition formation is an important capability in auto-

mated negotiation among self-interested agents. Coalition
Structure Generation (CSG) involves partitioning a set of
agents so that social surplus is maximized. This problem
has become a popular research topic in AI and multi-agent
systems. Solving CSG is equivalent to the complete set parti-
tioning problem [17], and various algorithms for solving CSG
have been developed [2, 9, 11, 12, 13, 15, 17]. Also, the com-
putational complexity of CSG in various domains has been
analyzed [1, 16].

Another active research area in the agent research com-
munity is compact representation schemes of a characteristic
function. If we naively represent a characteristic function as
a table, we require Θ(2n) numbers, where n is the number of
agents. When the number of agents becomes large, we need
a compact method to represent a characteristic function.
The main idea of compact representation schemes is to use
a set of rules to represent a characteristic function. These
compact representation schemes include marginal contribu-
tion networks (MC-nets) [5, 7], Synergy Coalition Groups
(SCG) [4], etc. The computational complexity for finding
various solution concepts when a characteristic function is
represented by these compact representation schemes is an-
alyzed in [6].

Recently, Ohta et al. [10] introduces an innovative direc-
tion for solving CSG by utilizing these compact representa-
tion schemes. More specifically, they show that a CSG prob-
lem can be formalized as a problem of finding the subset of
rules that maximizes the sum of rule values under certain
constraints. They also develop mixed integer programming
(MIP) formulations of the above optimization problem and
experimentally showed that this approach is far more scal-
able than traditional approaches, e.g., it can solve instances
with 120 agents/rules in less than 20 seconds.

In this paper, we extend the formalization of CSG in [10]
to handle negative value rules. We concentrate on MC-
net-based representations since this representation scheme is
more compact and natural than other representation schemes.
Also, it can be easily extended to handle externalities among
coalitions, i.e., a coalition can affect the performance of other
coalitions. This extended representation scheme is called
embedded MC-nets [8]. Although a rule may have a neg-



ative value in the original definition of [7], rule values are
restricted to be positive to make the optimization problem
simpler in [10].
Although any characteristic function can be represented

without using negative value rules (as long as no coalition
has a negative value), this restriction can make the represen-
tation size of a problem significantly larger. Also, allowing
negative value rules can reduce the efforts for describing a
characteristic function. Assume the president of a company
is trying to reorganize the grouping of workers to maximize
the productivity of the company. To utilize CSG techniques,
the president needs to represent her knowledge about the
characteristic function. When using MC-nets, we can as-
sume most of default situations can be concisely represented
by using positive value rules only. Negative value rules would
be useful for describing some exceptional situations. Fur-
thermore, to represent externalities among coalitions, the
externalities can be either positive or negative.
However, handling negative value rules is a challenging

task. If we simply add negative value rules, the MIP for-
mulation in [10] cannot properly find an optimal coalition
structure. When all rules have positive values, choosing a
rule never hurts. Thus, in the MIP formulation, we con-
struct a solver so that it tries to choose as many rules as
possible. The constraints only specify the conditions where
rules cannot be selected at the same time. Thus, if we sim-
ply include a negative value rule, the solver just ignores this
rule, since choosing it hurts. We must describe the condition
where the solver is forced to choose this negative value rule
as a result of choosing other positive rules. Such a condition
involves interaction among multiple rules, which is difficult
to handle efficiently.
In this paper, we develop following three alternative al-

gorithms to handle negative value rules: (i) a full transfor-
mation algorithm, which transforms all negative value rules
into positive value rules, (ii) a partial transformation algo-
rithm, which transforms all negative value rules into positive
value rules and some negative rules that have a special form,
and (iii) a direct encoding algorithm. which creates a set of
dummy rules so that negative value rules are handled appro-
priately.
We show that the full transformation algorithm is not scal-

able in MC-nets, i.e., there exists an instance where the
number of newly generated rules becomes Ω(n2). Here, n
is the number of agents. Furthermore, we show that when
this transformation algorithm is applied to embedded MC-
nets, there exists an instance where the number of newly
generated rules becomes Ω(2n). Although we have not yet
proved that this exponential blowup is really inevitable, the
current results are very negative. Since the CSG algorithm
presented in [10] is exponential in the number of rules, even
the increase of Θ(n2) can be prohibitive.
In contrast, by using the partial transformation or direct

encoding algorithms, an exponential blow-up never occurs
even for embedded MC-nets. For embedded MC-nets, the
direct encoding algorithm creates less rules than the partial
transformation algorithm.
We experimentally compare the full/partial transforma-

tion algorithms and the direct encoding algorithm, and show
that the direct encoding algorithm is by far superior. Also,
this algorithm is scalable, i.e., an off-the-shelf optimization
package (CPLEX) can solve problem instances with 100
agents/rules within 10 seconds.

2. MODELS/EXISTING WORKS

2.1 Characteristic Function Game
Let A be the set of agents, where |A| = n. We assume

a characteristic function game, i.e., the value of coalition S
is given by a characteristic function v : 2A → R. Without
loss of generality, we assume ∀S ⊆ A, v(S) ≥ 0 holds. As
shown in [15], even if some coalition’s values are negative, as
long as each coalition’s value is bounded (i.e., not infinitely
negative), we can normalize the coalition values so that all
values are non-negative. This rescaled game is strategically
equivalent to the original game. To save space, where there
is no risk of confusion, we omit commas when listing sets,
for example, writing {ab} as a shorthand for {a, b}.

Coalition Structure Generation (CSG) involves partition-
ing a set of agents into coalitions so that social surplus is
maximized. A coalition structure CS = {S1, S2, . . .} is a
partition of A and is divided into disjoint and exhaustive
coalitions, i.e., CS = {S1, S2, . . .} satisfies the following con-
ditions:

∀i, j(i ̸= j), Si ∩ Sj = ∅,
∪

Si∈CS

Si = A.

We denote by Π(A) the space of all coalition structures
over A. The value of coalition structure CS, denoted as
V (CS), is given by V (CS) =

∑
Si∈CS v(Si).

An optimal coalition structure CS∗ is a coalition structure
that satisfies the following condition: ∀CS ∈ Π(A), V (CS∗) ≥
V (CS).

Definition 1 (MC-nets). An MC-net consists of set
of rules R. Each rule r ∈ R is of the form: (Lr) → vr, where
Lr is a condition of this rule, which is the conjunctions of
literals over A, i.e., a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am. We
call {a1, . . . , ak} positive literals and {ak+1, . . . , am} nega-
tive literals. We say rule r is applicable to coalition S if Lr

is true when the values of all Boolean variables that corre-
spond to the agents in S are set to true, and the values of all
Boolean variables that correspond to agents in A \ S are set
to false, i.e.,

∧
a∈S a ∧

∧
b∈A\S ¬b |= Lr holds. Without loss

of generality, we assume each rule has at least one positive
literal1.

In MC-nets, the condition of a rule must be the conjunc-
tions of the literals. We say such a rule is basic. Also, we
call a rule that has more complicated condition as non-basic
rule. A non-basic rule must be transformed into multiple
basic rules, whose conditions are disjointed with each other.
For example, a non-basic rule that has form (a∨b∨c) → v, is
transformed into three basic rules, i.e., (a) → v, (¬a∧b) → v,
and (¬a ∧ ¬b ∧ c) → v.

Ohta et al. [10] identified a relation between two rules
that can be classified into four non-overlapping and exhaus-
tive cases. Based on this classification, they identified the
condition of a set of rules as consistent, i.e., there exists at
least one coalition structure CS such that each rule is appli-
cable to a coalition in CS. Furthermore, they develop mixed
integer programming (MIP) formulations for finding a con-
sistent rule set that maximizes the sum of the rule values.

1For example, if a rule has a form ¬a1 → 1 and there
exist agents a1, a2, . . . , an, we can create equivalent rules
as follows: ¬a1 ∧ a2 → 1, ¬a1 ∧ ¬a2 ∧ a3 → 1, . . . ,
¬a1 ∧ ¬a2 . . . ∧ ¬an−1 ∧ an → 1.



2.2 Partition Function Game
When there exist externalities among coalitions, the value

of a coalition depends on the coalition structure in which the
coalition belongs. An embedded coalition is a pair (S,CS),
where S ∈ CS ∈ Π(A). Let us denote the set of all embed-
ded coalitions as M , i.e., M := {(S,CS) : CS ∈ Π(A), S ∈
CS}. A partition function is a mapping w : M → R.
Michalak et al. [8] proposed a concise representation of a

partition function called embedded MC-nets.

Definition 2 (Embedded MC-nets). An embedded
MC-nets consists of set of embedded rules ER. Each embed-
ded rule er ∈ ER is of the form: (L1)|(L2), . . . , (Ll) → ver,
where each L1, L2, . . . , Ll is the conjunctions of literals over
A. L1, which we call the internal condition, is the condi-
tion that must be satisfied in the coalition that receives the
value. L2, . . . , Ll, which we call external conditions, must
be satisfied in other coalitions. We say that an embedded
rule er is applicable to coalition S in CS if L1 is applica-
ble to S and each of L2, . . . , Ll is applicable to some coali-
tion S′ ∈ CS \ {S}. For coalition S, w(S,CS) is given as∑

er∈ER(S,CS)
ver, where ER(S,CS) is the set of embedded

rules applicable to S in CS.

Note that for an embedded rule, there exists an implicit
constraint such that external conditions must be satisfied
in coalitions CS \ {S}. By adding each positive literal in
internal condition L1 to the negative literals of each exter-
nal conditions L2, . . . , Ll, as well as by adding each positive
literal in external conditions L2, . . . , Ll to the negative lit-
erals of internal condition L1, we can explicitly represent
this implicit constraint. We say an embedded rule is in an
explicit form if the above condition is satisfied. For exam-
ple, if an original rule is (a)|(b), (c) → v, its explicit form is
(a ∧ ¬b ∧ ¬c)|(b ∧ ¬a), (c ∧ ¬a) → v. For simplicity, in the
rest of this paper, we assume each embedded rule is in an
explicit form.

Example 1. Let us assume the following rules. Here, er1
is an embedded rule.

r1 : (a) → 1, r2 : (b) → 1,
r3 : (c) → 1, r4 : (d ∧ ¬a ∧ ¬b) → 3,
r5 : (a ∧ b) → 1, er1 : (d ∧ ¬a ∧ ¬b)|(a ∧ b ∧ ¬d) → −2.

If CS = {{ab}, {c}, {d}}, all rules are applicable. Thus, the
V (CS) = 1 + 1 + 1 + 3 + 1− 2 = 5.

The representation of embedded MC-nets is fully expres-
sive and at least as concise as the conventional partition
function game representation. As far as the authors are
aware, the problem of finding an optimal coalition structure
when a game is represented by embedded MC-nets has not
yet been investigated. Extending the MIP formulation in
[10] to handle embedded MC-nets is rather straightforward,
as long as the rule has a non-negative value. More specifi-
cally, for an embedded rule that has a form er : (L1)|(L2), . . . ,
→ ver, we create basic rules r1 : (L1) → 0, r2 : (L2) → 0,
. . ., rl : (Ll) → 0. Assume xer, xr1 , . . . , xrl are 0/1 deci-
sion variables in the MIP formulation, i.e., when the value
is 1, the rule is selected. An objective function is given
by

∑
er ver · xer. Also, we add a constraint that xer can be

1 only when all of xr1 , . . . , xrl are 1. Note that such a
constraint is not linear. However, there exists a well-known
encoding trick to represent such a non-linear constraint in
MIP formulations [3].

3. CSG WITH NEGATIVE VALUE RULES
Although any characteristic function can be represented

without using negative value rules, this restriction can make
the representation size of a problem exponentially large. For
example, let us assume for set of agents A = {a1, a2, . . . , an},
v(S) = |S| if S ̸= A and v(A) = 0. If we naively represent
this characteristic function without negative value rules, we
need 2n − 1 rules, where each rule is applicable exactly to
one coalition2. If we can use a negative value rule, it suffices
to have n+ 1 rules, i.e., for each ai ∈ A, (ai) → 1, and one
negative value rule (a1 ∧ a2 ∧ . . . ∧ an) → −n.

However, handling negative value rules is a challenging
task. In general, a negative reward in a reward maximization
problem, or a negative cost in a cost minimization problem,
is considered as a nuisance. When all rules have positive
values, choosing a rule never hurts. Thus, in the MIP for-
mulation, we construct a solver so that it tries to choose
as many rules as possible. The constraints only specify the
conditions where rules cannot be selected at the same time.
Thus, if we simply include a negative value rule, the solver
just ignores this rule, since choosing it hurts. We must de-
scribe the condition where the solver is forced to choose this
negative value rule as a result of choosing other positive
rules. Such a condition involves interaction among multiple
rules, which is difficult to handle efficiently.

4. FULL TRANSFORMATION
Since handling negative value rules is difficult for the MIP

formulation in [10], we consider transforming a rule set,
which contains both positive/negative value rules into a rule
set that contains positive value rules only.

4.1 MC-nets
We first show a full transformation algorithm for MC-nets.

We assume that R is divided into two groups, i.e., a set of
positive value rules R+ and a set of negative value rules R−.

Definition 3 (Full transformation algorithm).
The full transformation algorithm is defined as follows.

1. Set R′
− = R−, R

′
+ = R+.

2. If R′
− = ∅, return R′

+.

3. Remove one rule rx : (Lx) → −vx from R′
−.

4. Remove one rule ri : (Li) → vi from R′
+, such that

Lx ∧ Li ̸|= ⊥. If no such rule exists, return failure.

5. If ¬Lx ∧Li ̸|= ⊥, create a set of basic rules that is the
transformation of non-basic rule (¬Lx∧Li) → vi. Add
them to R′

+.

6. Create new basic rule (Lx∧Li) → vi−vx. If vi−vx > 0,
add this rule to R′

+. If vi − vx < 0, add it to R′
−.

7. If Lx ∧¬Li ̸|= ⊥, create a set of basic rules that is the
transformation of non-basic rule (Lx ∧ ¬Li) → −vx.
Add them to R′

−. Goto 2.

Let us explain the basic ideas of this algorithm. Since we
assume that ∀S, v(S) ≥ 0 holds, if negative value rule rx :
(Lx) → −vx is applicable to coalition S, there exists at least
one positive value rule ri : (Li) → vi, which is also applicable
to S. In other words, ri can partially eliminate the effect of
rx. We transform rx and ri into the following three rules:

2If we use a clever encoding trick, we require O(n2) rules.



r′1: (¬Lx ∧ Li) → vi, which is added in Step 5,

r′2: (Lx ∧ Li) → vi − vx, which is added in Step 6, and

r′3: (Lx ∧ ¬Li) → −vx, which is added in Step 7.

It is obvious that the original two rules, rx and ri, and these
three rules are equivalent. Since r′1 and r′3 are non-basic,
they must be transformed into multiple basic rules.
We can guarantee that the full transformation algorithm

terminates, i.e., the following theorem holds.

Theorem 1. The full transformation algorithm terminates.

Proof. By one iteration of this algorithm, the negative
value rule rx is eliminated if Lx ∧ ¬Li |= ⊥ and vi ≥ vx. If
Lx∧¬Li ̸|= ⊥, a set of negative value rules are added in Step
7, but the conditions of these rules, i.e., Lx ∧¬Li, are more
specific than Lx. Also, if vi < vx, a new negative value rule is
added in Step 6, but the condition of this rule, i.e., Lx ∧ Li

is more specific than Lx and also disjoint with Lx ∧ ¬Li.
Furthermore, the value of this rule, i.e., vi − vx is closer
to 0 than the original value −vx. Thus, by one iteration of
this algorithm, the conditions of negative value rules become
more specific and/or the negative value becomes closer to 0.
Therefore, this algorithm cannot iterate infinitely and will
terminate eventually.

Example 2. Let us describe the full transformation algo-
rithm, assuming rx : (Lx) → −1, where Lx = a ∧ d ∧ e, and
r1 : (L1) → 1, where L1 = a ∧ ¬b ∧ ¬c, are selected. Since
L1 ∧ ¬Lx = (a ∧ ¬b ∧ ¬c) ∧ (¬a ∨ ¬d ∨ ¬e) ̸|= ⊥ holds, we
create non-basic rule (L1 ∧ ¬Lx) → 1 in Step 5. Then, we
obtain two basic rules from this rule: (a∧¬b∧¬c∧¬d) → 1
and (a ∧ ¬b ∧ ¬c ∧ d ∧ ¬e) → 1. We do not create any
new rule in Step 6 since vr1 + vrx = 1 − 1 = 0. Finally,
since ¬L1 ∧ Lx = (¬a ∨ b ∨ c) ∧ (a ∧ d ∧ e) ̸|= ⊥ holds, we
create non-basic rule (¬L1 ∧ Lx) → −1. Then, we obtain
two basic rules from this rule: (a ∧ b ∧ d ∧ e) → −1 and
(a ∧ ¬b ∧ c ∧ d ∧ e) → −1.

By using this algorithm, we can eliminate all negative
value rules. However, this approach is not scalable. There
exists an instance where the number of newly generated rules
becomes Ω(n2) by using the full transformation algorithm.

Example 3. Let us consider the following rules.

r0: (p0 ∧ ¬n1 ∧ ¬n2 ∧ . . . ∧ ¬nk) → 1

r1: (p1 ∧ n1) → 1

r2: (p2 ∧ n2) → 1

. . .

rk: (pk ∧ nk) → 1

rx: (p0 ∧ p1 ∧ p2 ∧ . . . ∧ pk) → −1

This rule set contains k + 1 positive value rules and one
negative value rule, where the total number of agents is 2k+
1. Figure 1 shows the number of newly generated rules from
this rule sets by varying k. We can see that the number of
newly generated rules becomes Ω(k2), which is also Ω(n2).

Then, can we reduce the number of required rules by using
more clever encoding trick? Actually, the answer is no, i.e.,
the following theorem holds.

Theorem 2. To represent the characteristic function in
Example 3 by using positive value rules only, we need Ω(n2)
rules.

Proof. For all 1 ≤ i < j ≤ k, we denote {p0, p1, . . . , pk,
ni, nj} as Si,j . For Si,j , only rules rx, ri, rj are applicable,
thus v(Si,j) is equal to 1. Assume that a set of positive value
rules R′

+ represents v. There must be at least one rule in
R′

+ that is applicable to Si,j . Let us represent such a rule
as ri,j .

Now, we show that ri,j is not applicable to any Si′,j′ ,
where 1 ≤ i′ < j′ ≤ k and i ̸= i′ ∨ j ̸= j′. We derive a
contradiction by assuming that ri,j is applicable to Si′,j′ .

When i = i′ or i = j′, let us consider coalition S =
{p0, p1, . . . , pk, ni}. For S, only rules rx, ri are applica-
ble, thus v(S) is equal to 0. However, we show that ri,j is
applicable to S, thus v(S) cannot be 0. ri,j is not applica-
ble to S, if (i) its positive literals include agent nl, where
l ̸= i, or (ii) its negative literals include at least one of
{p0, p1, . . . , pk, ni}. For (i), if l = j, ri,j is not applicable
to Si′,j′ . Also, if l ̸= j, ri,j is not applicable to Si,j . For
(ii), ri,j is not applicable to both of Si,j and Si′,j′ . This
contradicts the assumption that ri,j is applicable to both of
Si,j and Si′,j′ . We can use a similar argument for the cases
where j = i′ or j = j′.

Then, let us consider the case that i, j, i′, j′ are different
with each other. Let us consider coalition S = {p0, p1, . . . , pk}.
For S, only rules rx, r0 are applicable, thus v(S) is equal to
0. However, we show that ri,j is applicable to S, thus v(S)
cannot be 0. ri,j is not applicable to S, if (i) its positive
literals include agent nl, where 1 ≤ l ≤ k, or (ii) its nega-
tive literals include at least one of {p0, p1, . . . , pk}. For (i),
if l = i or l = j, ri,j is not applicable to Si′,j′ . If l ̸= i
and l ̸= j, ri,j is not applicable to Si,j . For (ii), ri,j is not
applicable to both of Si,j and Si′,j′ . This contradicts the
assumption that ri,j is applicable to both of Si,j and Si′,j′ .

Thus, for each i, j, where 1 ≤ i < j ≤ k, there must be
distinct element ri,j in R′

+, and the number of elements in
R′

+ must be at least k(k − 1)/2, which is Ω(n2).

It remains an open question whether there exists a char-
acteristic function and MC-nets representation with nega-
tive value rules, such that representing this characteristic
function by a MC-net without negative value rules requires
exponentially more space compared to the original MC-net
representation. Our current conjecture is that such a char-
acteristic function is likely to exist in embedded MC-nets,
but not in MC-nets, assuming the number of negative value
rules is bounded. We will discuss this issue in the next sub-
section.

4.2 Embedded MC-nets
The full transformation algorithm presented in Section 4.1

can be easily extended to embedded MC-nets. We replace
a condition such as Li to the condition for embedded rule
Cer, which is a pair of internal condition L1 and external
conditions L2, . . . , Ll.

One tricky point is how to create the negation of Cer. Re-
call that embedded rule er is applicable to coalition S in CS
if L1 is applicable to S and each of L2, . . . , Ll is applicable
to some coalition S′ ∈ CS \ {S}. Thus, er is not applicable
to coalition S in CS if (i) L1 is not applicable to S, (ii) L1

is applicable to S, but L2 is not applicable to any coalition
in CS \ {S}, (iii) L1 is applicable to S and L2 is applicable



to some coalition S′ ∈ CS \ {S}, but L3 is not applicable
to any coalition in CS \ {S}, and so on. Handling case (i)
is easy. Let us examine how to handle case (ii). Assume
L2 = p1 ∧ p2. We must guarantee that for any coalition
S′ ∈ CS \ {S}, ¬L2 = ¬p1 ∨ ¬p2 holds. If S′ does not con-
tain p1, ¬L2 holds. If S′ contains p1, then S′ must satisfy
¬p2. Since there exists exactly one coalition that contains
p1, it is sufficient to guarantee that there exists some coali-
tion S′ ∈ CS \ {S}, such that p1 ∧ ¬p2 holds.
To summarize, in order to represent ¬Cer, where Cer is

a pair of the internal condition L0 and external conditions
L1, . . . , Ll, we need following conditions (here, we assume
each Li = li1 ∧ li2 ∧ li3 ∧ . . .): (i) (¬L0), (ii) (L0)|(l11 ∧
¬l12), (L0)|(l11 ∧ l12 ∧ ¬l13), . . . , (iii) (L0)|(L1)(l21 ∧ ¬l22),
(L0)|(L1)(l21 ∧ l22 ∧ ¬l23), and so on.

Example 4. Let us consider the following rules:

rx: (a ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk+1) |
(¬a ∧ p1 ∧ ¬p2 ∧ ¬p3 . . . ∧ ¬pk+1),
(¬a ∧ p2 ∧ ¬p1 ∧ ¬p3 . . . ∧ ¬pk+1), . . . ,
(¬a ∧ pk+1 ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk) → −1,

r1: (a ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk+1) |
(¬a∧p1∧¬p2∧¬p3 . . .∧¬pk+1∧¬h1∧¬h2 . . .∧¬hk),
(¬a ∧ p2 ∧ ¬p1 ∧ ¬p3 . . . ∧ ¬pk+1),
. . . ,
(¬a ∧ pk+1 ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk) → 1,

...

rk+1: (a ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk+1) |
(¬a ∧ p1 ∧ ¬p2 ∧ ¬p3 . . . ∧ ¬pk+1),
(¬a ∧ p2 ∧ ¬p1 ∧ ¬p3 . . . ∧ ¬pk+1),
. . . ,
(¬a∧pk+1∧¬p1∧¬p2 . . .∧¬pk∧¬h1∧¬h2 . . .∧¬hk) → 1

This rule set contains k + 1 positive value rules and one
negative value rule. The total number of agents is 2k + 2.
This rule set is constructed based on the well-known pigeon
hole principle. There are k + 1 pigeons p1, . . . , pk+1 and k
holes h1, . . . , hk. rx requires that all pigeons are in different
coalitions. Also, each ri is true if no hole is assigned to
pigeon pi. Thus, ¬ri means pigeon pi has (at least) one
hole. Then, as long as rx is true, at least one rule r1, . . . , rk
must be true. Otherwise, each pigeon has a different hole
to stay, which is clearly impossible since there exist only k
holes while there exist k + 1 pigeons.

Figure 2 shows the number of newly generated rules (which
includes embedded rules) by using our transformation algo-
rithm. We can see that the number of newly generated rules
becomes Ω(2k), thus it is Ω(2n). Although we have not
yet proved that this exponential blowup is really inevitable,
our current conjecture suggest that it is actually inevitable.
Even if this is not the case, the current results are already
very negative. Since the CSG algorithm presented in [10]
is exponential in the number of rules, even the increase of
Θ(n2) can be problematic.

5. PARTIAL TRANSFORMATION
In this section, we develop an alternative transformation

algorithm, which does not eliminate all negative value rules.
More specifically, we are going to transform rules that con-
tain negative value rules into positive value rules and some
negative value rules that have a special form defined as fol-
lows.

Definition 4 (Singleton Rule). We say rule r : (L)
→ vr is singleton if L consists of exactly one positive literal
a.

It is clear that such a singleton rule r is applicable to any
CS, since agent a must belong to one coalition. Also, for any
other rule r′, choosing r never prohibits choosing r′. Thus,
if CS∗ is optimal without r, then it is optimal with r. Thus,
when solving the optimization problem, we can just ignore
r. After finding optimal CS∗, we adjust V (CS∗) by adding
vr.

Thus, if a negative value rule is singleton, it is actually
harmless. Our new partial transformation algorithm trans-
forms all negative value rules into positive value rules and
negative value singleton rules.

Definition 5 (Partial transformation algorithm).
The partial transformation algorithm is defined as follows.

1. Set R′
− = R−, R

′
+ = R+, Rsingleton = ∅.

2. If R′
− = ∅, return R′

+ and Rsingleton.

3. Remove one rule rx : (Lx) → −vx from R′
−.

4. Choose one positive literal a ∈ Lx. Add one rule rsingleton :
(a) → −vx to Rsingleton.

5. Create a set of basic rules that are the transformation
of non-basic rule (¬Lx ∧ a) → vx. Add them to R′

+.
Goto 2.

Let us describe the procedure of this algorithm. In Step 4,
we add one negative value singleton rule rsingleton : (a) →
−vx. Conceptually, we also add one positive value singleton
rule r+ : (a) → vx. It is clear that adding these two rules
does not change the values of a characteristic function since
they negate with each other. Note that the procedure in
Step 5 is equivalent to the full transformation algorithm in
Steps 5 to 7, assuming that we choose r+ as a positive value
rule. No rule is added since vx − vx = 0 holds in Step 6,
and Lx ∧¬a |= ⊥ holds in Step 7. We iterate this procedure
until all negative non-singleton value rules are eliminated.
Then, we have a new rule set, which contains only positive
value rules R′

+ and negative value singleton rules Rsingleton.
As described above, we can solve CSG by using only R′

+

and obtain CS∗. The true value of V (CS∗) is obtained by
adding the values of the singleton rules in Rsingleton.

Theorem 3. The partial transformation algorithm ter-
minates.

Proof. By one iteration of this algorithm, one negative
value rule is eliminated and no negative literal is added.
Therefore, this algorithm terminates after |R−| iterations.

Theorem 4. In MC-nets, each negative value rule is trans-
formed into one singleton negative value rule and m−1 pos-
itive value rules, where m is the maximal number of agents
included in the rule.

Proof. Let us assume rx is the form (Lx) → −vx, where
Lx = (a1 ∧ a2 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am). We first
create non-basic rule ¬Lx ∧ a1 → vx in Step 5. Then, it
is transformed into m − 1 basic rules i.e., (a1 ∧ ¬a2) → vx,
(a1 ∧ a2 ∧ ¬a3) → vx, . . . , (a1 ∧ a2 ∧ · · · ∧ ¬ak) → vx,
(a1 ∧a2 ∧ · · · ∧ak ∧ak+1) → vx, . . . , (a1 ∧ · · · ∧ak ∧¬ak+1 ∧
· · · ∧ ¬am−1 ∧ am) → vx. Thus, each negative value rule is
transformed into one singleton negative value rule and m−1
positive value rules.



Theorem 5. In embedded MC-nets, each negative value
rule is transformed into one singleton negative value rule and
O(m · l) positive value rules, where l is the maximal number
of basic rules included in the embedded rule, and m is the
maximal number of agents included in each basic rule.

Proof. Let us assume erx has a form (Cerx) → −vx,
where Cerx = (L0)|(L1) . . . (Ll−1). Also, each Li has a form
(pi1 ∧ pi2 ∧ · · · ∧ pis ∧ ¬ni1 ∧ ¬ni2 ∧ · · · ∧ ¬nit), where s +
t ≤ m. We first create non-basic rule ¬Cerx ∧ p0i → vx
in Step 5. In order to represent ¬Cerx , we need following
conditions: (i) (¬L0)|∅, (ii) (L0)|(p11 ∧ ¬p12), (L0)|(p11 ∧
p12∧¬p13), . . . , (L0)|(p11∧p12∧. . . p1s∧n11), . . . , (L0)|(p11∧
p12 ∧ . . . p1s ∧ ¬n11 ∧ . . . n1t), (iii) (L0)|(L1)(p21 ∧ ¬p22),
(L0)|(L1)(p21∧p22∧¬p23), . . . , (L0)|(L1)(p21∧p22∧. . . p2s∧
n21), . . . , (L0)|(L1)(p21 ∧ p22 ∧ . . . p2s ∧¬n21 ∧ . . . n2t), (iv)
(L0)|(L1)(L2)(p31 ∧ ¬p32), . . . , and so on. Thus, we create
at most m basic rules from each part of ¬Cerx . Since there
exist l parts, each negative value rule is transformed into
one singleton negative value rule and O(m · l) positive value
embedded rules.

Example 5. Let us consider a negative value embedded
rule that has the following form: rx : (L1)|(L2), (L3), . . . , (Ln)
→ −1, where each Li = ai ∧

∧
j ̸=i ¬aj.

In other words, this rule means each agent creates its own
coalition. This rule contains n basic rules, and each basic
rule contains n agents. Thus, this rule gives the worst-case
where the number of rules added in the partial transfor-
mation algorithm is maximized, i.e., it becomes Θ(n2). To
make matters worse, most of these rules are embedded rules.
Each embedded rule contains at most n basic rules. Thus, in
this worst case, the total increase of the basic rules becomes
Θ(n3). In general, the partial transformation algorithm cre-
ates O(m · l2) basic rules.

6. DIRECT ENCODING
In this section, we develop another approach for handling

negative value rules. Instead of transforming a negative
value rule into positive value rules, we add several dummy
rules, whose rule values are zero. Each dummy rule describes
some situations where the negative value rule is inapplica-
ble. Furthermore, we add a constraint for the optimization
algorithm so that the negative value rule must be selected if
all of the dummy rules are not selected.

Definition 6 (Dummy rules (for basic rule)).
Assume there exists a negative value rule rx : (Lx) →

−vx (vx > 0), where Lx = a1 ∧ a2 ∧ · · · ∧ ak ∧ ¬ak+1 ∧
¬ak+2 ∧ · · · ∧ ¬am. Dummy rules generated by this negative
value rule are of the following two types:

(i) (a1 ∧ ¬ai) → 0, where 2 ≤ i ≤ k,

(ii) (a1 ∧ aj) → 0, where k + 1 ≤ j ≤ m.

We denote D(Lx) as a set of dummy rules created from Lx.

It is obvious that the following theorem holds.

Theorem 6. For each negative value rule, m− 1 dummy
rules are created, where m is the maximal number of agents
included in the rule.

Also, the following theorem holds.

Theorem 7. A negative value rule is applicable to a coali-
tion in coalition structure CS if and only if all of its dummy
rules are not applicable to any coalition in CS.

Proof. The condition of a dummy rule can be either
a1 ∧ ¬ai or a1 ∧ aj . In either case, it is clear that when
this dummy rule is applicable to one coalition in CS, the
negative value rule is not applicable to any coalition in CS.
Also, if all dummy rules are inapplicable to any coalition in
CS, it means that a1, a2, . . . , ak are in identical coalition S,
while ak+1, ak+2, . . . , am are not in S. Thus, the negative
value rule is applicable to S.

Assume xrx , xd1 , . . . are 0/1 decision variables for nega-
tive value rule rx and its dummy rules D(Lx) in the MIP for-
mulation. We add a constraint that at least one of xrx , xd1 , . . .
must be 1, i.e., xrx + xd1 + · · · ≥ 1 holds.

Let us show an example of dummy rules. We create the
following dummy rules D(Lx) for negative value rule rx pre-
sented in Example 3: (p0 ∧ ¬p1) → 0, (p0 ∧ ¬p2) → 0, . . . ,
(p0∧¬pk) → 0. These dummy rules D(Lx) are quite similar
to the rules added in the partial transformation algorithm,
which we denote R(Lx) = {(p0∧¬p1) → 1, (p0∧p1∧¬p2) →
1, . . . , (p0 ∧ p1 ∧ · · · ∧ pk−1 ∧ ¬pk) → 1}. Actually, both al-
gorithms add the same number of rules. However, dummy
rules are much simpler. This is because the rules in R(Lx)
must be disjoint with each other, while the dummy rules can
overlap (since their rule values are zero).

Definition 7 (Dummy rules (for embedded rule)).
Assume there exists a negative value embedded rule
rx : (L1)|(L2), . . . , (Ll) → −vx (vx > 0). Then, dummy
rules for rx is

∪
Li

D(Li).

It is obvious that the following theorem holds.

Theorem 8. For each negative value embedded rule, one
singleton negative value rule and (m−1) · l dummy rules are
created.

Also, the following theorem holds.

Theorem 9. A negative value embedded rule is applicable
to a coalition with coalition structure CS if and only if all
of its dummy rules are not applicable to any coalition in CS

We omit the proof since it is basically identical to Theorem 7.
For example, we create the following dummy rules for

negative value embedded rule rx presented in Example 5:
(a1 ∧ a2) → 0, . . . , (a1 ∧ an) → 0, (a2 ∧ a3) → 0, . . . ,
(a2 ∧ an) → 0, . . . , (an−1 ∧ an) → 0.

The number of these dummy rules is about the same as
the number of rules added in the partial transformation al-
gorithm. However, each dummy rule is a simple basic rule.
Thus, in the worst case, the total increase of basic rules in
the direct encoding approach is Θ(n2), while it is Θ(n3) in
the partial transformation algorithm.

7. EVALUATIONS
We experimentally evaluated the performance of proposed

methods. All of the tests were run on a Xeon E5540 pro-
cessor with 12-GB RAM. The test machine runs Windows
Vista Business x64 Edition SP2. We used CPLEX 12.1, a
general-purpose mixed integer programming package.

We show the performance of our proposed algorithms with
randomly generated instances for the following two cases:
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Figure 3: Computation Time:
Case (i)
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Figure 5: Computation Time:
Case (ii)
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Figure 6: # of Generated Rules:
Case (ii)

(i) rules can be either positive/negative and non-embedded,
and (ii) rules can be either positive/negative and either non-
embedded/embedded. For each case, problem instances are
generated in the following method.
For case (i), we use a decay distribution [14] described

as follows. Create a coalition with one random agent. Then
repeatedly add a new random agent with probability α until
an agent is not added or the coalition includes all agents. We
use α = 0.55. Choose value v(S) between 0 and the number
of agents in S uniformly at random. Then we create rule
(
∧

a∈S a) → v(S). Furthermore, we modify each rule by
randomly moving an agent from the positive to negative
literals with probability p. We use p = 0.2. Also, we convert
the value to be negative with probability q. This method is
basically identical to that used in [10].
For case (ii), we first create rule (L1) → ver in the same

way as described in (i). Then, we repeatedly add a new con-
dition of a rule with probability β until a rule is not added.
We use β = 0.15. The value of the generated embedded rule
is chosen between 0 and the number of agents in the rule,
uniformly at random. Then we convert it to be negative
with probability q = 0.2.
For all generated problem instances, we make sure that

no coalition has a negative value. More specifically, we add
positive value rules, if some coalition has a negative value.
We limit the time for problem transformation to five min-

utes, i.e., if an algorithm fails to transform a problem in-
stance within five minutes, we terminate the transformation
and do not examine the computation time for such an in-
stance. Such an early termination occurs frequently in the
full transformation approach, but it never happens in the
partial transformation and direct encoding algorithms.

We set #rules = #agents and vary #rules from 5 to 100.
We generate 50 problem instances for all cases and #rules.
We investigate the computation time for these three algo-
rithms and the number of newly generated rules. The results
are illustrated in Figures 3, 4, 5, and 6. Each data point in
these Figures is the median of 50 data points.

The results of case (i) are illustrated in Figures 3 and 4.
We can see that the CSG problem becomes more difficult
when #rules (which is equal to #agents) increases in Fig-
ure 3. This is natural since #rules increases, the number of
decision variables in the corresponding MIP formulation.

It is clear that the full transformation algorithm is in-
efficient compared with the other two algorithms. It can-
not transform problem instances in five minutes even when
#rules = 15. Also, we were able to solve only 45% of the
problem instances; the remaining 55% problem instances
cause error due to insufficient memory. On the other hand,
the partial transformation and direct encoding algorithms
are more efficient than the full transformation algorithm.
The required time for these algorithms is less than 10 sec-
onds. We can see that the number of the newly generated
rules of these two algorithms is almost the same in Figure 4.

The differences of these algorithms become more obvious
in Figures 5 and 6. The full transformation algorithm cannot
transform the problem instances in five minutes when #rules
= 15. Also, we were able to solve only 45% of the problem
instances; the remaining 55% problem instances cause error
due to insufficient memory. The partial transformation algo-
rithm can solve problem instances within 1.0 seconds when
#rules = 20, but it fails to solve problem instances when
#rules becomes more than 30 due to insufficient memory.
On the other hand, the direct encoding algorithm can solve



problem instances for all #rules and the required time is
less than 10 seconds. Figure 6 shows the number of newly
generated basic rules, i.e., a newly generated embedded rule
is further decomposed into multiple basic rules. The partial
transformation algorithm adds O(m·l) embedded rules, each
of which contains at most l basic rules. Thus, the number
of basic rules is O(m · l2). On the other hand, the direct
encoding algorithm adds at most O(m · l) basic rules. Con-
sequently, the problem instances generated by the partial
transformation algorithm becomes more difficult than those
of the direct encoding algorithm.
To summarize, the direct encoding algorithm is the most

scalable among these three algorithms; the required times
for the solving problem instances in all cases are all less
than 10 seconds. On the other hand, the IP+/− algorithm,
which does not make use of compact representations, re-
quired around 160 minutes to solve instance with 20 agents [12].

8. CONCLUSIONS
In this paper, we extended the formalization of CSG in [10]

so that it can handle negative value rules. Allowing negative
value rules is important since (a) it can reduce the efforts for
describing a characteristic function, (b) the representation
size of a problem can be much more concise, and (c) in many
realistic situations, it is natural to assume that a coalition
has negative externalities to other coalitions.
Since the current CSG algorithm cannot handle negative

value rules, we examine the following three methods: (i) a
full transformation algorithm, which transforms all negative
value rules into positive value rules, (ii) a partial transfor-
mation algorithm, which transforms all negative value rules
into positive value rules and some negative rules that have
a special form, and (iii) a direct encoding algorithm, which
creates a set of dummy rules so that negative value rules are
handled appropriately.
We show that the full transformation algorithm is not scal-

able in MC-nets since the worst-case representation size will
be Ω(n2) for MC-nets, and it can be Ω(2n) for embedded
MC-nets. On the other hand, by using the partial transfor-
mation or direct encoding algorithms, an exponential blow-
up never occurs even for embedded MC-nets. We experi-
mentally compared these algorithms and showed that the
direct encoding algorithm is by far superior.
It still remains an open question whether a character-

istic function exists that inevitably requires exponentially
more space without using negative value rules. In our fu-
ture works, we hope to confirm our current conjectures, i.e.,
such a characteristic function exists in embedded MC-nets
(one promising candidate is the characteristic function pre-
sented in Example 4), but not in MC-nets.
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