
A Hierarchical Goal-Based Formalism and Algorithm for
Single-Agent Planning

Vikas Shivashankar1 Ugur Kuter2 Dana Nau1 Ron Alford1

1University of Maryland, College Park, Maryland 20742 USA
2Smart Information Flow Technologies, Minneapolis, Minnesota 55401 USA

svikas@cs.umd.edu ukuter@sift.net nau@cs.umd.edu ronwalf@cs.umd.edu

ABSTRACT
Plan generation is important in a number of agent applications, but
such applications generally require elaborate domain models that
include not only the definitions of the actions that an agent can
perform in a given domain, but also information about the most
effective ways to generate plans for the agent in that domain. Such
models typically take a large amount of human effort to create.

To alleviate this problem, we have developed a hierarchical goal-
based planning formalism and a planning algorithm, GDP (Goal-
Decomposition Planner), that combines some aspects of both HTN
planning and domain-independent planning. For example, it allows
the planning agent to use domain-independent heuristic functions
to guide the application of both methods and actions.

This paper describes the formalism, planning algorithm, correct-
ness theorems, and the results of a large experimental study. The
experiments show that our planning algorithm works as well as the
well-known SHOP2 HTN planner, using domain models only about
half the size of SHOP2’s.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Plan execution, formation, and generation

General Terms
Algorithms

Keywords
AI planning, hierarchical planning, goal decomposition

1. INTRODUCTION
The ability to do effective planning is important for a wide vari-

ety of computerized agents. Examples include robotic agents (e.g.,
the Mars rovers [27]), game-playing agents (e.g., in card games [29,
25] and real-time strategy games [5]), web-service agents [19], and
others. To build capable planners for agent environments, generally
the planner must incorporate a domain model that includes not only
the definitions of the basic actions that the agent can perform, but
also information about the most effective ways to generate plans in
the agent’s environment. One way to incorporate domain models
into planning agents is to custom-build a planning module for the

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

application at hand. This approach was used successfully in many
of the examples just mentioned, but it usually requires a huge de-
velopment effort.

Another approach is to use a domain-configurable planner which
reads the domain model as part of its input. Most such planners use
Hierarchical Task Network (HTN) planning, in which the domain
model includes methods for accomplishing tasks by dividing them
into smaller and smaller subtasks. This approach has been used in a
wide variety of planning domains, e.g., [33, 6, 22, 21, 26]. Writing
a new domain model usually is much less work than building a new
domain-specific planner, but in most cases it still requires a great
deal of human effort.

We have developed a Hierarchical Goal Network (HGN) plan-
ning formalism and algorithm similar to the HTN formalism and al-
gorithm in the SHOP planner [24], but with some important differ-
ences that make it easier to develop domain models. In the SHOP
formalism, each task is a separate syntactic entity whose seman-
tics depends entirely on what methods match it. In contrast, HGN
tasks consist of initial conditions and goal conditions with the same
semantics as in classical planning; and HGN methods and actions
have applicability and relevance conditions similar to the ones for
actions in classical planning. Our results are as follows:

Formalism: The HGN formalism provides (provably) as much
expressive power as SHOP’s HTN formalism (or equivalently,
SHOP2’s HTN formalism restricted to totally-ordered subtasks).
Moreover, in contrast to problems with soundness (see Section 2)
in HTN translations of classical planning domains, soundness is
guaranteed for all HGN domain models of classical domains; and
it is easier to analyze whether HGN translations are complete.

Planning algorithm: Our planning algorithm, GDP (Goal De-
composition Planner), is sound and complete. It is similar in sev-
eral ways to SHOP, but the HGN task and method semantics pro-
vide much more flexibility in applying methods and actions. For
example, in writing GDP domain models we don’t have to com-
mit to a task name in the methods: we just specify what should be
achieved instead of how to achieve it, and let the planner decide
which methods and actions are relevant and applicable.

Heuristic function: The HGN task and method semantics en-
able the development of heuristic functions similar to the ones in
classical planners (e.g., FF [16] and HSP [3]). We provide one
such heuristic function, for optional use in GDP, to guide the selec-
tion of both methods and operators. For a domain model to work
well, it is important to specify the order in which a set of methods
and operators should be tried when more than one of them is appli-
cable; and the heuristic function can make this easier by enabling
the planner to deduce the best order on its own.

Experimental results: We have done an extensive experimen-



tal comparison of three versions of GDP, two versions of SHOP2,
and FF, in five different planning domains. On average, GDP’s do-
main models were only about half as large as the equivalent SHOP2
domain models, yet provided roughly the same performance (i.e.,
planning time and plan lengths). The HGN domain models were
so much simpler because the HGN task and method semantics ob-
viates the need for a plethora of extra methods and bookkeeping
operations needed in SHOP2 domain models.

2. RELATED WORK
Over the years, several well-known researchers (e.g., [10, 17])

have argued for combining HTN planning with other techniques,
and several of the older HTN planners (e.g., SIPE [33, 32] and
O-PLAN [6, 30]) combined hierarchical decomposition with goal-
directed partial-order planning.1 But in Erol et al’s influential HTN
formalism [8] and most subsequent HTN planning research (e.g.,
[14, 23, 22]; a notable exception is [20]), the definition of a solu-
tion is tied so intimately to HTN decomposition that the planning
problems are solvable in no other way.2

The lack of correspondence between tasks and goals makes it
hard to translate classical planning problems correctly into HTN
domain models (e.g., a common error is to translate a goal g1 ∧ g2
into a task sequence 〈achieve(g1), achieve(g2)〉, ignoring the pos-
sibility that the plan for achieve(g2) may delete the previously
achieved goal g1). In the 2000 International Planning Competition,
SHOP [24] was disqualified because of an incorrect HTN transla-
tion that caused SHOP to return an incorrect answer. The lack of
correspondence between tasks and goals has also interfered with
recent efforts to combine HTN planning with classical planning [1,
13], necessitating several ad hoc modifications and restrictions.

3. FORMALISM

Classical planning. Following Ghallab et al. [14, Chap. 2]),
we define a classical planning domain D as a finite state-transition
system in which each state s is a finite set of ground atoms of
a first-order language L, and each action a is a ground instance
of a planning operator o. A planning operator is a triple o =
(head(o), pre(o), eff(o)), where pre(o) and eff(o) are sets of lit-
erals called o’s preconditions and effects, and head(o) includes o’s
name and argument list (a list of the variables in pre(o) and eff(o)).

An action a is executable in a state s if s |= pre(a), in which
case the resulting state is γ(a) = (s − eff−(a)) ∪ eff+(a), where
eff+(a) and eff−(a) are the atoms and negated atoms, respectively,
in eff(a). A plan π = 〈a1, . . . , an〉 is executable in s if each ai
is executable in the state produced by ai−1; and in this case we let
γ(s, π) be the state produced by executing the entire plan.

A classical planning problem is a triple P = (D, s0, g), where
D is a classical planning domain, s0 is the initial state, and g (the
goal formula) is a set of ground literals. A plan π is a solution for
P if π is executable in s0 and γ(s0, π) |= g.

HGN planning. An HGN method m has a head head(m) and
preconditions pre(m) like those of a planning operator, and a se-
quence of subgoals sub(m) = 〈g1, . . . , gk〉, where each gi is
1PRS [12] is also a hierarchical goal-based reasoning system, but
its primary focus is reactive execution in dynamic environments;
the actual planning is rather limited.
2One might expect Erol et al.’s formalism to allow classical goal
achievement, because it allows goal tasks of the form achieve(goal).
But just as with any other task, a goal task’s solution plans can only
be constructed by HTN decomposition: the only difference is a
constraint that the goal must be true after executing the plan.

a goal formula (a set of literals). We define the postcondition
of m to be post(m) = gk if sub(m) is nonempty; otherwise
post(m) = pre(m).

An action a (or method instancem) is relevant for a goal formula
g if eff(a) (or post(m), respectively) entails at least one literal in g
and does not entail the negation of any literal in g.

Some notation: if π1, . . . , πn are plans or actions, then π1 ◦ . . .◦
πn denotes the plan formed by concatenating them.

An HGN planning domain is a pair D = (D′,M), where D′ is
a classical planning domain and M is a set of methods. An HGN
planning problem P = (D, s0, g) is like a classical planning prob-
lem except thatD is an HGN planning domain. The set of solutions
for P is defined recursively:

Case 1. If s0 |= g, then the empty plan is a solution for P .

Case 2. Let a be any action that is relevant for g and executable
in s0. Let π be any solution to the HGN planning problem
(D, γ(s0, a), g). Then a ◦ π is a solution to P .

Case 3. Letm be a method instance that is applicable to s0 and rel-
evant for g and has subgoals g1, . . . , gk. Let π1 be any solu-
tion for (D, s0, g1); let πi be any solution for (D, γ(s0, (π1◦
. . . ◦ πi−1)), gi), i = 2, . . . , k; and let π be any solution for
(D, γ(s0, (π1 ◦ . . . ◦ πk)), g). Then π1 ◦ π2 ◦ . . . ◦ πk ◦ π is
a solution to P .

In the above definition, the relevance requirements in Cases 2
and 3 prevent classical-style action chaining unless each action is
relevant for either the ultimate goal g or a subgoal of one of the
methods. This requirement is analogous to (but less restrictive than)
the HTN planning requirement that actions cannot appear in a plan
unless they are mentioned explicitly in one of the methods. As in
HTN planning, it gives an HGN planning problem a smaller search
space than the corresponding classical planning problem.

The next theorem proves that HGN planning is sound: any HGN
solution is also a solution to the corresponding classical problem.

THEOREM 1 (HGN SOUNDNESS). Let D = (D′,M) be an
HGN planning domain. For every (s0, g), the set of solutions to
the HGN planning problem P = (D, s0, g) is a subset of the set of
solutions to the classical planning problem P ′ = (D′, s0, g).

PROOF. Let π = 〈a1, . . . , an〉 be any solution for P . From
the definition of a solution, it follows that in the HGN domain D,
π is executable in s0 and γ(s0, π) |= g. But D = (D′,M), so
any action that is executable in D is also executable in the classical
domain D′ and produces the same effects. Thus it follows that in
D′, π is executable in s0 and γ(s0, π) |= g.

THEOREM 2 (HGN COMPLETENESS). For every classical
planning domain D, there is a set of HGN methods M such that
the classical planning problem P = (D, s0, g) and the HGN plan-
ning problem P ′ = ((D,M), s0, g) have the same set of solutions.

PROOF. LetX be the set of all simple paths inD. For each path
x in X , suppose M contains methods that will specify goals for
each state on x as subgoals. Thus, each subgoal will be achieved
by a single action such that when the sequence of actions applied
from the start of x, and the result will be the end state. Then the
theorem follows.

The following two theorems prove that the HGN formalism pro-
vides expressive power equal to that of SHOP’s HTN formalism:

THEOREM 3 (HTN EXPRESSIVITY). For any HGN prob-
lem (D, s0, g0), there exists a totally-ordered HTN problem
(D′, s0, tg0) such that (D, s0, g0) is solvable if and only if
(D′, s0, tg0) is solvable.



Proof Sketch. We proceed to translate an HGN planning problem
(D, s0, g0) into an HTN planning problem as follows: each goal
formula g inD is represented by a task symbol tg; g0 is represented
by the task symbol tg0 . For each HGN method 〈pre, 〈g1, . . . , gk〉〉,
we create a new HTN method accomplishing task tgk with pre-
conditions pre and subtasks 〈tg1 , . . . , tgk 〉. Then for each tg , we
create an HTN method having a precondition of g and no sub-
tasks. Also for every method or operator u relevant to g, we have
a method accomplishing tg having a precondition of ¬g and sub-
tasks 〈tu, tg〉, tu being the task symbol corresponding to u. We
then return the HTN problem (D′ ∪O, s0, tg0) where D′ is the set
of translated HTN methods and O is the set of planning operators.

It is now easy to show that any HGN decomposition trace can
be mapped to a corresponding trace of the HTN problem thus con-
structed and vice-versa. Thus the theorem follows.

THEOREM 4 (HGN EXPRESSIVITY). For any totally-
ordered HTN planning problem (D, s0, t0), there is an HGN
planning problem (D′, s0, gt0) such that (D, s0, t0) is solvable if
and only if (D′, s0, gt0) is solvable.

Proof Sketch. To translate an HTN planning problem3 (D, s0, t0),
we create predicates fint(.) for each task t(.) to represent task
completion. We add an extra predicate lead that is asserted by
an artificial operator with no preconditions. We have artificial
operators assert-fin-t(.) for each task symbol t that has pre-
condition 〈lead〉 and effect 〈¬lead, fint(.)〉 Each HTN method
for task t with subtasks 〈t1, t2, . . . , tn〉 is now converted to an
HGN method with the same preconditions and a sequence of sub-
goals 〈fint1 ,¬fint1 , fint2 ,¬fint2 , . . . fintn ,¬fintn , lead, fint〉. The
¬fin(.) subgoals are used to cleanup the state for future decompo-
sitions. The HGN planning problem is (D′ ∪ O, s0, fint0), where
D′ is the set of translated HGN methods and O is the set of classi-
cal planning operators and additional artificial operators described
above. It is now easy to show that every HTN decomposition trace
can be mapped to a corresponding trace of the HGN planning prob-
lem thus constructed and vice-versa. The theorem follows.

The above theorems provide procedures to translate HGN plan-
ning problems to HTN problems and vice-versa in low-order poly-
nomial time. This proves that HGN planning has the same expres-
sive power as totally-ordered HTN planning.

Let HGN-PLAN-EXISTENCE be the following problem: Given an
HGN planning problem P , is there a plan that solves P?

THEOREM 5. HGN-PLAN-EXISTENCE is decidable.

Proof Sketch. Erol et al. [9] prove that the plan existence prob-
lem for totally-ordered HTN planning is decidable. From this and
Theorem 3, the result immediately follows.

4. PLANNING ALGORITHM
Algorithm 1 is GDP, our HGN planning algorithm. It works as

follows (where G is a stack of goal formulas to be achieved):
In Line 3, ifG is empty then the goal has been achieved, so GDP

returns π. Otherwise, GDP selects the first goal g in G (Line 4).
If g is already satisfied, GDP removes g from G and calls itself
recursively on the remaining goal formulae.

In Lines 7-8, if no actions or methods are applicable to s and
relevant for g, then GDP returns failure. Otherwise, GDP nonde-
terministically chooses an action/method u from U .
3We assume a single task t0 in the initial task network; this is with-
out loss of generality as we can replace a totally-ordered initial task
network with an artificial toptask and add an extra method decom-
posing the toptask to the initial task network.

Algorithm 1: A high-level description of GDP. Initially, D is
an HGN planning domain, s is the initial state, g is the goal
formula, G = 〈g〉, and π is 〈〉, the empty plan.

Procedure GDP(D, s,G, π)1
begin2

if G is empty then return π3
g ← the first goal formula in G4
if s |= g then5

remove g from G and return GDP(D, s,G, π)6

U ← {actions and method instances that are relevant7
for g and applicable to s}

if U = ∅ then return failure8
nondeterministically choose u ∈ U9
if u is an action then10

append u to π and set s← γ(s, u)11
else insert sub(u) at the front of G12
return GDP(D, s,G, π)13

end14

If u is an action, then GDP computes the next state γ(s, u) and
appends u to π. Otherwise u is a method, so GDP inserts u’s sub-
goals at the front of G. Then GDP calls itself recursively on G.

4.1 Formal Properties
The following theorems show that GDP is sound and complete:

THEOREM 6 (GDP SOUNDNESS). Let P = (D, s0, g) be
an HGN planning problem. If a nondeterministic trace of
GDP(D, s0, 〈g〉, 〈〉) returns a plan π, then π is a solution for P .

Proof Sketch. The proof is by induction on n, the length of π. When
n = 0 (i.e. π = 〈〉), this implies that s0 entails g. Hence, by Case
1 of the definition of a solution, π is a solution for P . Suppose
that if GDP returns a plan π of length k < n, then π is a solution
for P . At an invocation suppose GDP returns π of length n. The
proof proceeds by showing the following. When GDP chooses an
action or a method for the current goal at any invocation, then by
induction, the plans returned from those calls are solutions to the
HGN planning problems in those calls. Hence, by definition of
solutions for P , π is a solution for P .

THEOREM 7 (GDP COMPLETENESS). Let P = (D, s0, g)
be an HGN planning problem. If π is a solution for P , then a
nondeterministic trace of GDP(D, s0, 〈g〉, 〈〉) will return π.

Proof Sketch. The proof is by induction on n, the length of π. When
n = 0, this implies that the empty plan is a solution for P and that
s0 |= g. Hence GDP would return 〈〉 as a solution. Suppose that if
P has a solution of length k < n, then GDP will return it. At any
invocation, the proof proceeds to show by induction the following.
If GDP chooses an action a, then one of the nondeterministic traces
of the subsequent call to GDP must return π = a ◦ π′ where π′ is
a solution for the problem P ′ = (D, γ(s0, a), g). If GDP chooses
a method m relevant to g with subgoals g1, g2, . . . gl, then there
must exist a sequence of plans π1, π2, . . . , πl+1 that constitute π
and GDP will return each πi as a solution each goal gi from the
state γ(s0, (π1 ◦ π2 ◦ · · · ◦ πi−1)). Then the theorem follows.

4.2 Domain-Independent Heuristics
GDP can easily be modified to incorporate heuristic functions

similar to those used in classical planning. The modified algorithm,
which we will call GDP-h (where h is the heuristic function) in



the experiments, is like Algorithm 1, except that Lines 9–13 are
replaced with the following:

sort U with h(u), ∀u ∈ U
foreach u ∈ U do

if u is an action then
append u to π; remove g fromG; s← γ(s, u)

else push sub(u) into G
π ← GDP(D, s,G, π)
if π 6= failure then return π

return failure

Intuitively, this replaces the nondeterministic choice in GDP
with a deterministic choice dictated by h. GDP-h uses h to order
U , then attempts to decompose the current goal g in that order.

As an example, here is how we compute a variation of the Re-
laxed Graphplan heuristic used by the FF planner [16]. At the start
of the planning process, we generate a relaxed planning graph PG
from the start state s0 to its fixpoint. Let lPG(p) be the first proposi-
tional level in which p appears in PG. Then hs,G(u), the heuristic
value of applying action/method u in a state s to achieve the goals
in the list G, is as follows:

hs,G(u) =1 + max
p∈G

lPG(p)− max
p∈γ(s,u)

lPG(p), if u is an action,

max
p∈G∪sub(u)

lPG(p)−max
p∈s

lPG(p), if u is a method.

Intuitively, what h estimates is the distance between the first level
in which the literals in G are asserted and the first level in which
the current state is asserted. When u is a method, since any plan
generated via u has to achieve sub(u) enroute, it considers the set
G ∪ sub(u) instead as the goal.

Note that this gives weaker heuristic values than the original FF
heuristic since we do not generate a relaxed plan and use its length
as the heuristic value. However, we use this variant of the heuristic
since it is much more efficiently computable without compromising
too much on search control. The strength of the heuristic is not
as critical here as in classical planning, since the HGN methods
themselves constrain what part of the space gets searched.

5. EXPERIMENTAL EVALUATION
We implemented GDP in Common Lisp, and compared it with

SHOP2 and the classical planner FF in five different planning do-
mains:4 These included the well-known Logistics [31], Blocks-
World [2], Depots [11], and Towers of Hanoi [1] domains, and a
new 3-City Routing domain that we wrote in order to provide a do-
main in which the planners’ domain models would not be of much
help. The following questions motivated our experiments:

• How does GDP’s performance (plan quality and running time)
compare with SHOP2’s? In order to investigate this question,
we were careful to use domain models for SHOP2 and GDP
that encoded basically the same control information.5

• What is the relative difficulty of writing domain models for GDP

4We used SHOP2 instead of SHOP for two reasons: (1) its al-
gorithm is identical to SHOP’s when restricted to totally-ordered
subtasks, and (2) since its implementation includes many enhance-
ments and optimizations not present in SHOP, it provides a more
rigorous test of GDP.
5An important aspect of SHOP2’s domain models is the use of
Horn-clause inference to infer some of the preconditions. So that
we could write GDP domain models equivalent to SHOP2’s, we
included an identical Horn-clause inference engine in GDP.

Method for using truck ?t to move crate ?o
from location ?l1 to location ?l2 in city ?c:

Head: (move-within-city ?o ?t ?l1 ?l2 ?c)
Pre: ((obj-at ?o ?l1) (in-city ?l1 ?c)

(in-city ?l2 ?c) (truck ?t ?c) (truck-at ?t ?l3))
Sub: ((truck-at ?t ?l1) (in-truck ?o ?t)

(truck-at ?t ?l2) (obj-at ?o ?l2)))

Method for using airplane ?plane to move crate ?o
from airport ?a1 to airport ?a2:

Head: (move-between-airports ?o ?plane ?a1 ?a2)
Pre: ((obj-at ?o ?a1) (airport ?a1)

(airport ?a2) (airplane ?plane))
Sub: ((airplane-at ?plane ?a1) (in-airplane ?o ?plane)

(airplane-at ?plane ?a2) (obj-at ?o ?a2)))

Method for moving ?o from location ?l1 in city ?c1
to location ?l2 in city ?c2, via airports ?a1 and ?a2:

Head: (move-between-cities ?o ?l1 ?c1 ?l2 ?c2 ?a1 ?a2)
Pre: ((obj-at ?o ?l1) (in-city ?l1 ?c1) (in-city ?l2 ?c2)

(different ?c1 ?c2) (airport ?a1) (airport ?a2)
(in-city ?a1 ?c1) (in-city ?a2 ?c2))

Sub: ((obj-at ?o ?a1) (obj-at ?o ?a2) (obj-at ?o ?l2)))

Figure 4: HGN methods for transporting a package to its goal
location in the Logistics domain.

and SHOP2? We had no good way to measure this directly;6

but as a proxy for it, we (i) measured the relative sizes of the
SHOP2 and GDP domain models, and (ii) examined the domain
models to find out the reasons for the difference in size.

• How useful is GDP-h’s heuristic function when the domain
model is strong? For this, we compared GDP-h with GDP on
the Logistics, Blocks World, and Depots domains.

• When the domain model is weak, how much help does GDP-h’s
heuristic function provide? For this, we compared GDP-h’s
performance with GDP’s on the 3-City Routing domain.

• Since GDP-h’s heuristic function is loosely based on FF’s, how
does GDP-h’s performance compare to FF’s? For this purpose,
we included FF in our experiments.

• Is GDP as sensitive as SHOP2 is to the order in which the meth-
ods appear in the domain model? To investigate this question,
we took our domain models for SHOP2 and GDP, and rear-
ranged the methods into a random order. In experimental re-
sults that follow, we use the names SHOP2-r and GDP-r to
refer to SHOP2 and GDP with those domain models.

The GDP source code, and the HGN and HTN domain models used
in our experiments, are available at http://www.cs.umd.edu/projects/
planning/data/shivashankar12hierarchical/.

5.1 Planning Performance
To compile and execute GDP, GDP-h, and SHOP2, we used Al-

legro Common Lisp 8.0. For FF, we used the open-source C im-
plementation from the FF web site. All experiments were run on
2GHz dual-core machines with 4GB RAM. We set a time limit of

6That would have required a controlled experiment on a large num-
ber of human subjects, each of whom has equal amounts of training
and experience with both GDP and SHOP2. We have no feasible
way to perform such an experiment.



0.1 

10 

1000 

10  20  30  40  50  60 

Ti
m
e 
in
 s
ec
on

ds
 

Number of packages 
GDP and GDP‐r  GDP‐h  SHOP2  FF 

100 

200 

300 

400 

500 

600 

10  20  30  40  50  60 

Pl
an
 le
ng
th
 

Number of packages 
GDP and GDP‐r  GDP‐h  SHOP2  FF 

Figure 1: Average running times (in logscale) and plan lengths in the Logistics domain, as a function of the number of packages. Each
data point is an average of the 10 problems from the SHOP2 distribution. There are no data points for SHOP2-r because it could
not solve any of the problems. GDP and GDP-r performed identically because the methods had mutually exclusive preconditions.

0.001 

1 

1000 

0  20  40  60  80  100 

Ti
m
e 
in
 s
ec
on

ds
 

Number of blocks 

GDP and GDP‐r  GDP‐h  SHOP2  FF 

0 

200 

400 

0  20  40  60  80  100 

Pl
an
 L
en

gt
h 

Number of blocks 

GDP and GDP‐r  GDP‐h  SHOP2  FF 

Figure 2: Average running times (in logscale) and plan lengths in the Blocks World domain, as a function of the number of blocks.
Each data point is an average of 25 randomly generated problems. There are no data points for SHOP2-r because it could not solve
any of the problems. GDP and GDP-r performed identically because the preconditions of the methods were mutually exclusive. FF
was unable to solve problems involving more than 20 blocks.

two hours per problem, and data points not solved within the re-
quired time limit were discarded.

The Logistics Domain. For SHOP2, we used the Logistics do-
main model in the SHOP2 distribution. For GDP and GDP-h, we
wrote the methods in Fig. 4 (these methods are easy to prove com-
plete [28]). For the experiments, we used the Logistics Domain
problems in the SHOP2 distribution. These included ten n-package
problems for each of n = 15, 20, 25, . . . , 60.

Figure 1 shows a comparison of running times and plan lengths
of the planners in this domain. The running times of GDP, GDP-h
and SHOP2 were very similar, showing that even on easy domains
with strong domain models, the heuristic does not add much over-
head to GDP-h’s running time. FF’s running times, however, grew
much faster: with 60 packages, FF was nearly two orders of mag-
nitude slower than SHOP2.

The plans produced by GDP and GDP-hwere of nearly the same
length, and the plans produced by SHOP2 were slightly longer. FF
produced the shortest plans; this indicates that its heuristic function
was slightly stronger than the relaxed version we used in GDP-h.

SHOP2-r did not terminate on any of the instances, while GDP-
r performed identically to GDP. In fact, we observed that the same
was true across all of the domains in our experimental study. We
defer the explanation of this to Section 5.3.

The Blocks World. For SHOP2, we used the domain model
included in SHOP2’s distribution. For GDP and GDP-h we used
a much more compact domain model consisting of three methods
(shown here as pseudocode):

• To achieve on(x, y)

precond: y is in its final position7

subgoals: achieve clear(x), clear(y) and on(x, y)

• To achieve clear(x)
precond: on(y, x)
subgoals: achieve clear(y) and then clear(x)

• To achieve on-table(x)
precond: None
subgoals: achieve clear(x) and then on-table(x)

As shown in Figure 2, GDP and SHOP2 took nearly identical
times to solve the problems, with GDP-h taking slightly longer due
to its heuristic computation overhead. FF, which is known to have
problems with the Blocks World [2], was unable to solve problems
with more than 20 blocks.

As shown in the figure, GDP, GDP-h and SHOP2 produced so-
lution plans of similar length, with GDP-h producing the shortest
plans. FF produced significantly longer plans than the other three
planners, even for the problems it managed to solve.

The Depots Domain. For SHOP2, we used the Depots domain
model from the SHOP2 distribution. For GDP and GDP-h, we
simply stitched together relevant parts of the Logistics and Blocks-
World domain models, and adapted them to obtain an HGN Depots
domain model that encoded the same control information.

As shown in Figure 3, GDP and SHOP2 took similar times to
solve the problems. However, GDP-h’s running times grew much
faster than GDP or SHOP2, indicating that the overhead of the
heuristic can increase with the complexity of the domain. FF was
unable to solve any problems of size greater than 24 crates.
7Inferred using Horn clauses (see footnote 5).



0.1 
1 
10 

100 
1000 

10000 

0  20  40  60  80 

Ti
m
e 
in
 s
ec
on

ds
 

Number of crates 
GDP and GDP‐r  GDP‐h  SHOP2  FF 

0 

100 

200 

300 

400 

0  20  40  60  80 

Pl
an
 L
en

gt
h 

Number of crates 

GDP and GDP‐r  GDP‐h  SHOP2  FF 

Figure 3: Average running times (in logscale) and plan lengths in the Depots domain, as a function of the number of crates. Each
data point is an average of 25 randomly generated problems. There are no data points for SHOP2-r because it could not solve any
of the problems. GDP and GDP-r performed identically because the preconditions of the methods were mutually exclusive. FF was
unable to solve problems involving more than 24 crates.

0.001 

0.2 

40 

8000 

2  7  12 

Ti
m
e 
in
 s
ec
on

ds
 

Number of Rings 

GDP and GDP‐r  GDP‐h  SHOP2  FF 

0 
10 
20 
30 
40 
50 

2  7  12 

Pl
an
 L
en

gt
h 
(in

 
th
ou

sa
nd

s)
 

Number of Rings 

GDP and GDP‐r  GDP‐h  SHOP2  FF 

Figure 5: Average running times (in logscale) and plan lengths in the Towers of Hanoi domain, as a function of the number of rings.
Each data point is an average of 10 runs. There are no data points for SHOP2-r because it could not solve any of the problems. GDP
and GDP-r performed identically because the preconditions of the methods were mutually exclusive.

With respect to plan lengths, GDP and GDP-h produced almost
identical plans, with SHOP2 producing slightly longer plans than
GDP. For the problem sizes it could handle, FF produced signifi-
cantly longer plans than the other three planners.

Towers of Hanoi. We wrote domain models for SHOP2 and
GDP that encoded an algorithm to produce optimal solution plans
(i.e., length 2n − 1 for an n-ring problem).

Figure 5 shows the planners’ runtimes and plan lengths. As ex-
pected, GDP, GDP-h and SHOP2 returned optimal plans whereas
FF returned significantly sub-optimal plans.

However, while GDP, GDP-h, SHOP2 and FF had similar run-
times up to problems of size 12, SHOP2 could not solve the larger
problems due to a stack overflow, and GDP could not solve the 14-
ring problem within the time limit. We believe this is basically an
implementation issue: both GDP and SHOP2 had recursion stacks
of exponential size, whereas FF (since it never backtracks) did not.

3-City Routing. In the four planning domains discussed above,
the GDP and SHOP2 domain models pruned the search space
enough that GDP-h’s heuristic function could not reduce it much
further (if at all). In order to examine the performance of the plan-
ners in a domain with a weak domain model, we constructed the
3-City Routing domain. In this domain, there are three cities c1,
c2 and c3, each containing n locations internally connected by a
network of randomly chosen roads. In addition, there is one road
between a randomly chosen location in c1 and a randomly chosen
location in c2, and similarly another road between locations in c2
and c3. The problem is to get from a location in c1 or c3 to a goal
location in c2.

We randomly generated 25 planning problems for each value of
n, with n varying from 10 to 100. For the road networks, we used
near-complete graphs in which 20% of the edges were removed at
random. Note that while solutions to such problems are typically
very short, the search space has extremely high branching factor,
i.e. of the order of n. For GDP and GDP-h, we used a single HGN
method, shown here as pseudocode:

• To achieve at(b)
precond: at(a), adjacent(c, b)
subgoals: achieve at(c) and then at(b)

By applying this method recursively, the planner can do a backward
search recursively from the goal location to the start location.

To accomplish the same backward search in SHOP2, we needed
to give it three methods, one for each of the following cases: (1)
goal location same as the initial location, (2) goal location one step
away from the initial location, and (3) arbitrary distance between
the goal and initial locations.

As Figure 6 shows, GDP and SHOP2 did not solve the randomly
generated problems except the ones of size 10, returning very poor
solutions and taking large amounts of time in the process. GDP-h,
on the other hand solved all the planning problems quickly, return-
ing near-optimal solutions. The reason for the success of GDP-h
is that the domain knowledge specified above induce an unguided
backward search in the state space and the planner uses the domain-
independent heuristic to select its path to the goal.

FF was able to solve all problems up to n = 60 locations, after
which it could not even complete parsing the problem file. We
believe this has to do with FF grounding all the actions right in the
beginning, which it could not do for the larger problems.



0.01 

2 

400 

0  20  40  60  80  100 

Ti
m
e 
in
 s
ec
on

ds
 

Number of loca9ons per city 
GDP and GDP‐r  GDP‐h  SHOP2  FF 

2 

4 

6 

8 

0  20  40  60  80  100 

Pl
an
 L
en

gt
h 

Number of loca9ons per city 
GDP and GDP‐r  GDP‐h  SHOP2  FF 

Figure 6: Average running times (in logscale) and plan lengths in the 3-City Routing domain, as a function of the number of locations
per city. Each data point is an average of 25 randomly generated problems. There are no data points for SHOP2-r because it couldn’t
solve any problems. FF couldn’t solve problems involving more than 60 locations while GDP and SHOP2 could not solve problems
with more than 10 locations. GDP and GDP-r performed identically because there was only one method in the domain model.

5.2 Domain Authoring
When writing the domain models for our experiments, it seemed

to us that writing the GDP domain models was easier than writing
the SHOP2 domain models—so we made measurements to try to
verify whether this subjective impression was correct.

Figure 7 compares the sizes of the HGN and HTN domain de-
scriptions of the planning domains. In almost all of them, the do-
main models for GDP were much smaller than those for SHOP2.
There are three main reasons why:

• To specify how to achieve a logical formula p in the HTN for-
malism, one must create a new task name t and one or more
methods such that (i) the plans generated by these methods will
make p true and (ii) the methods have syntactic tags saying that
they are relevant for accomplishing t. If there is another method
m′ that makes p true but does not have such a syntactic tag, the
planner will never consider usingm′ when it is trying to achieve
p. In contrast, relevance of a method in HGN planning is simi-
lar to relevance of an action in classical planning: if the effects
of m′ include p, then m′ is relevant for p.

• Furthermore, suppose p is a conjunct p = p1∧. . .∧pk and there
are methods m1, . . . ,mk that can achieve p1, . . . , pk piece-
meal. In HGN planning, each of these methods is relevant for
p if it achieves some part of p and does not negate any other
part of p. In contrast, those methods are not relevant for p
in HTN planning unless the domain description includes (i) a
method that decomposes t into tasks corresponding to subsets
of p1, . . . , pk, (ii) methods for those tasks, and (iii) an explicit
check for deleted-condition interactions.8 This can cause the
number of HTN methods to be much larger (in some cases ex-
ponentially larger) than the number of HGN methods.

• In recursive HTN methods, a “base-case method” is needed for
the case where nothing needs to be done. In recursive HGN
methods, no such method is needed, because the semantics of
goal achievement already provide that if a goal is already true,
nothing needs to be done.

The Towers of Hanoi domain was the only one where the HGN
domain model was larger than the corresponding HTN domain

8In the HTN formalism in [7], one way to accomplish (iii) is to
specify t as the syntactic form achieve(p), which adds a constraint
that p must be true after achieving t. But that approach is ineffi-
cient in practice because it can cause lots of backtracking. In the
blocks-world implementation in the SHOP2 distribution, (iii) is ac-
complished without backtracking by using Horn-clause inference
to do some elaborate reasoning about stacks of blocks.

239  171 
360  311 

39 

1120 

342  268 

1279 

162  87 

2138 

0 

1000 

2000 

Logis0cs  Blocks 
World 

Depots  Towers 
of Hanoi  

3‐City 
Rou0ng 

TOTAL 

N
um

be
r 
of
 L
is
p 
sy
m
bo

ls
 

GDP 
SHOP2 

Figure 7: Sizes (number of Lisp symbols) of the GDP and
SHOP2 domain models.

model. In this domain, the HGN domain model needed two ex-
tra actions, enable and disable, to alternately insert and delete a
special atom in the state. They were needed in order to control the
applicability of the move operator to ensure optimality.

5.3 Discussion
We have seen from our experimental study that HGN domain

models are considerably more succinct than the corresponding
HTN models. We also saw that this compactness came at no extra
cost; GDP’s performance compared favorably to that of SHOP2’s
across all domains. Runtimes of the heuristic-enhanced planner
GDP-h were, for the most part, comparable to those of GDP’s and
SHOP2’s, indicating that our heuristic does not add a significant
overhead to the planning time. Lengths of plans returned by GDP-
h were nearly always better than GDP’s and SHOP2’s. This dif-
ference was especially amplified in cases where the planners had
weak domain models; in such cases, the heuristic provided criti-
cal search control to GDP-h, thus helping it terminate quickly with
good solutions.

In our experiments, SHOP2-r did not solve any of the problems.
The reason for this was SHOP2’s heavy reliance on the method or-
der in its domain model, especially the placement of “base-cases”
for recursion. For GDP-r, shuffling HGN methods had no effect at
all on performance. This was because the methods in our HGN do-
main models had mutually exclusive preconditions, hence at most
one of them was applicable. In domains where more than one
method is applicable at once, GDP-r should (like SHOP2-r) per-
form badly when presented with methods in the wrong order.



6. CONCLUSIONS
Our original motivation for HGN planning was to provide a task

semantics that corresponded readily to the goal semantics of classi-
cal planning and gave stronger soundness guarantees when applied
to classical planning domains. But our work also produced two
other benefits that we had not originally expected: writing HGN
methods was usually much simpler than writing HTN methods,
and the HGN formalism can easily incorporate HGN extensions
of classical-style heuristic functions to guide the search.

Our proof that HGN planning is as expressive as totally-ordered
HTN planning means that it is capable of encoding complicated
control knowledge, one of the main strengths of HTN planning.
This suggests that HGN planning has the potential to be very useful
both for research purposes and in practical applications.

With that in mind, we have several ideas for future work:

• GDP currently supports only totally ordered subtasks. We in-
tend to generalize HGNs to allow partially-ordered subtasks.

• We intend to generalize HGNs to allow partial sets of methods
analogous to the ones in [1]. This will provide an interesting
hybrid of task decomposition and classical planning. Further-
more, it will make writing HGN domain models even easier
while preserving the efficiency advantages of HGN planning.

• Replanning in dynamic environments is becoming an increas-
ingly important research topic. We believe HGN planning is a
promising approach for this topic.

• HTN planning has been extended to accommodate actions with
nondeterministic outcomes [18], temporal planning [4, 15],
and to consult external information sources [19]. It should be
straightforward to make similar extensions to HGN planning.

Acknowledgments. This work was supported, in part, by DARPA
and the U.S. Army Research Laboratory under contract W911NF-
11-C-0037, and by a UMIACS New Research Frontiers Award.
The views expressed are those of the authors and do not reflect
the official policy or position of the funders.

7. REFERENCES
[1] R. Alford, U. Kuter, and D. S. Nau. Translating HTNs to

PDDL: A small amount of domain knowledge can go a long
way. In IJCAI, July 2009.

[2] F. Bacchus. The AIPS ’00 planning competition. AI Mag.,
22(1):47–56, 2001.

[3] B. Bonet and H. Geffner. Planning as heuristic search: New
results. In ECP, Durham, UK, 1999.

[4] L. Castillo, J. Fdez-Olivares, O. Garcıa-Pérez, and F. Palao.
Efficiently handling temporal knowledge in an HTN planner.
In ICAPS, 2006.

[5] M. Chung, M. Buro, and J. Schaeffer. Monte carlo planning
in RTS games. In IEEE Symp. Comp. Intel. Games, 2005.

[6] K. Currie and A. Tate. O-Plan: The open planning
architecture. Artif. Intell., 52(1):49–86, 1991.

[7] K. Erol, J. Hendler, and D. S. Nau. HTN planning:
Complexity and expressivity. In AAAI, 1994.

[8] K. Erol, J. Hendler, and D. S. Nau. UMCP: A sound and
complete procedure for hierarchical task-network planning.
In AIPS, pages 249–254, June 1994. ICAPS 2009 influential
paper honorable mention.

[9] K. Erol, J. Hendler, and D. S. Nau. Complexity results for
hierarchical task-network planning. AMAI, 18:69–93, 1996.

[10] T. A. Estlin, S. Chien, and X. Wang. An argument for a

hybrid HTN/operator-based approach to planning. In ECP,
pages 184–196, 1997.

[11] M. Fox and D. Long. International planning competition,
2002. http://planning.cis.strath.ac.uk/competition.

[12] M. P. Georgeff and A. L. Lansky. Reactive reasoning and
planning. In AAAI, pages 677–682, 1987.

[13] A. Gerevini, U. Kuter, D. S. Nau, A. Saetti, and N. Waisbrot.
Combining domain-independent planning and HTN
planning. In ECAI, pages 573–577, July 2008.

[14] M. Ghallab, D. S. Nau, and P. Traverso. Automated
Planning: Theory and Practice. May 2004.

[15] R. Goldman. Durative planning in HTNs. In ICAPS, 2006.
[16] J. Hoffmann and B. Nebel. The FF planning system. JAIR,

14:253–302, 2001.
[17] S. Kambhampati, A. Mali, and B. Srivastava. Hybrid

planning for partially hierarchical domains. In AAAI, pages
882–888, 1998.

[18] U. Kuter, D. S. Nau, M. Pistore, and P. Traverso. Task
decomposition on abstract states, for planning under
nondeterminism. Artif. Intell., 173:669–695, 2009.

[19] U. Kuter, E. Sirin, D. S. Nau, B. Parsia, and J. Hendler.
Information gathering during planning for web service
composition. JWS, 3(2-3):183–205, 2005.

[20] B. Marthi, S. Russell, and J. Wolfe. Angelic semantics for
high-level actions. In ICAPS, 2007.

[21] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila,
J. W. Murdock, D. Wu, and F. Yaman. Applications of SHOP
and SHOP2. IEEE Intell. Syst., 20(2):34–41, Mar.-Apr. 2005.

[22] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock,
D. Wu, and F. Yaman. SHOP2: An HTN planning system.
JAIR, 20:379–404, Dec. 2003.

[23] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP:
Simple hierarchical ordered planner. In T. Dean, editor,
IJCAI, pages 968–973, Aug. 1999.

[24] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. The
SHOP planning system. AI Mag., 2001.

[25] F. Sailer, M. Buro, and M. Lanctot. Adversarial planning
through strategy simulation. In IEEE Symp. Comp. Intel.
Games, 2007.

[26] B. Schattenberg. Hybrid Planning & Scheduling. PhD thesis,
Universität Ulm, Mar. 2009.

[27] R. Sherwood, A. Mishkin, T. Estlin, S. Chien, P. Backes,
B. Cooper, S. Maxwell, and G. Rabideau. Autonomously
generating operations sequences for a mars rover using
artifical intelligence-based planning. In IROS, Oct. 2001.

[28] V. Shivashankar, U. Kuter, and D. Nau. Hierarchical goal
network planning: Initial results. Technical Report
CS-TR-4983, Univ. of Maryland, May 2011.

[29] S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge: A
big win for AI planning. AI Magazine, 19(2):93–105, 1998.

[30] A. Tate, B. Drabble, and R. Kirby. O-Plan2: An Architecture
for Command, Planning and Control. 1994.

[31] M. M. Veloso. Learning by analogical reasoning in general
problem solving. PhD thesis CMU-CS-92-174, Carnegie
Mellon University, 1992.

[32] D. E. Wilkins. Domain-independent planning:
Representation and plan generation. Artif. Intell.,
22(3):269–301, Apr. 1984.

[33] D. E. Wilkins. Practical Planning: Extending the Classical
AI Planning Paradigm. San Mateo, CA, 1988.


