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ABSTRACT 

This paper presents the intelligent virtual animals that inhabit 

Omosa, a virtual learning environment to help secondary school 

students learn how to conduct scientific inquiry and gain concepts 

from biology. Omosa supports multiple agents, including animals, 

plants, and human hunters, which live in groups of varying sizes 

and in a predator-prey relationship with other agent types 

(species). In this paper we present our generic agent architecture 

and the algorithms that drive all animals. We concentrate on two 

of our animals to present how different parameter values affect 

their movements and inter/intra-group interactions. Two 

evaluations studies are included: one to demonstrate the effect of 

different components of our architecture; another to provide 

domain expert validation of the animal behavior.  

Categories and Subject Descriptors 

I.2 ARTIFICIAL INTELLIGENCE;I.6 SIMULATION AND 

MODELING, I.6.3[Applications] I.6.7 [Simulation Support 

Systems] Environments  

General Terms 

Algorithms, Measurement, Design, Experimentation. 

Keywords 

Agents, artificial life, boids, educational virtual worlds, biology 

education, science inquiry. 

1. INTRODUCTION  
Understanding the nature of and processes involved in scientific 

inquiry is an important skill that is difficult for most school 

students to acquire. This is an important challenge as inquiry 

figures pivotally in many national science plans. Key inquiry 

skills include a wide range of activities involved in scientific 

research such as hypothesis formation, experimental design, data 

collection and analysis, evaluation and reflection on the quality of 

evidence for hypotheses. Yet despite the aspirations for 

curriculum reform expressed in science policy documents, the 

practice of science education does not generally provide 

significant opportunity for students, especially at primary/middle 

school and secondary school, to experience genuine scientific 

inquiry [1]. 

The goal of our overall program of research is to develop 

innovative learning technologies that consist of 3D virtual worlds 

with embedded agent architectures. These educational “VWorlds” 

provide “virtually” authentic contexts for students to engage in 

scientific inquiry practices as they learn about biological systems, 

such as problem-identification, making observations and drawing 

inferences, interviewing characters, and collecting and analyzing 

data. Our project involves multidisciplinary collaboration with 

researchers in computer science and graphics, learning and 

cognitive sciences, and biology, as well as classroom science 

teachers. In this paper, we focus on the agent architecture we are 

developing by describing the artificial animals that inhabit our 

VWorld. We begin with consideration of related research. 

2. RELATED RESEARCH 
There is considerable interest in the use of computational 

modeling in modern biological research [15]. In particular, agent-

based modeling (ABM) techniques (sometimes referred to as 

"individual-based models" in the literature) have been used to 

model a variety types of biological phenomena, such as flocking 

behaviors of  birds and fish [8], synchronous firefly flashing [14], 

and the dynamics of predator-prey interactions in ecosystems [6]. 

Topping et al. [13] use ABMs to model an entire ecosystems in 

the animal, landscape and man simulation system (ALMaSS) that 

allows policy decisions to be made and includes many vegetated 

and non-vegetated areas, a range of crops with multiple growth 

models and multiple animals. Interactions between species are 

minimal in their ABM. Siebert, Ciarletta and Chevrier [10] are 

also interested in modeling complex systems. However, rather 

than creating a multi-agent system (MAS), they simulate a co-

evolution where each agent type (sheep, grass and wolves) is a 

separate model/system connected via a coupling artifact.  

In the intelligent virtual agent/virtual world research space, 

foundational work was done by [3]. More recent and specific to 

intelligent animals concerns deer with an artificial nose that 

detects the emotions of other conspecifics [2] and gray wolves 

that begin as pups and overtime develop certain social behaviours 

through learning to express age appropriate emotional states 

involving context-specific emotional memories [12]. Unlike our 

virtual world, these studies only concerned one type of animal.  

In terms of the overall learning technology environment we are 

developing, research exploring the nature of learning with multi-

user virtual worlds and 3D game environments has documented 

interesting educationally relevant outcomes, such as their 

motivational power and the opportunity to help develop important 

skills (e.g., collaboration [11]). The learning design features of 
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our VWorld build upon earlier agent-augmented multi-user virtual 

environments research [5] that were found to deliver significant 

benefits in science secondary classrooms. 

3. OUR VIRTUAL WORLD - OMOSA 
Omosa is a fictitious world that allows students to gain science 

inquiry skills and explore scientific concepts about biological 

systems. We chose not to model a specific place, flora, or fauna as 

we did not want the concepts learned to be restricted to the 

context we provided. To create Omosa, we needed to balance the 

level of detail in our environment with the complexity of our 

animals and human agents in a virtual environment with real-time 

graphics. We are using multi-platform game development 

software called Unity3D (http://unity3d.com/), which contains in-

built features to reduce complexity while maintaining appearance 

such as lightmapping and occlusion culling.  

We put several locations on Omosa (see Figure 1) where students 

can collect information and complete learning activities. These 

areas are: the village (where the indigenous Omosans live); the 

hunting ground (where our animals are located); the research lab 

(where students can collect information on ecological research 

and speak to an ecologist); and the weather lab (where students 

can collect information on climate research and speak to the 

climatologist). Artefacts can be collected in each location. 

 

Figure 1. Our virtual world, Omosa 

We modeled all our structures using Blender 

(http://www.blender.org/) to keep the polygon count as low as 

possible. We used Mixamo (http://www.mixamo.com/) to design 

and purchase low polygon human models. From TurboSquid 

(http://turbosquid.com/) we purchased three extinct animals 

(Andrewsarchus, Bluebuck, and Indricotherium) and an Iberian 

Lynx. In this paper we focus on two of our animals: the Bluebuck 

and Andrewsarchus, which we call a Yernt (one is laying on the 

ground in Figure 2) and a Tooru (three are feeding on a Yernt in 

Figure 2); the Yernt is the prey and the Tooru its predator. 

 

Figure 2. Tooru (Predator) and Yernt (prey) 

4.  ARCHITECTURE  
Our animals are agents who are embodied and situated in the 

Omosan environment. Each animal has its own state but shares its 

behaviour and population parameters with other animals of the 

same species (i.e. flockmates or conspecifics). As well as 

knowledge of its own state, each animal has access to lists of its 

predators, prey and flockmates. Each agent acts autonomously 

seeking to satisfy the goals determined by a combination of 

parameters introduced in this section.  

In this section we present our model parameters and agent states 

and describe how the agents reason to decide what action to 

perform (e.g. chase, flee, eat) and the direction to move in.  

4.1 Flocking - Tweaking the Boids algorithm 
Reynolds [8] suggested that the seemingly complex group 

behavior seen in flocking can be modeled when individuals 

(boids) are driven using a small number of simple rules. A basic 

Boid algorithm includes: separation (or collision avoidance with 

nearby flockmates), alignment (or velocity matching with nearby 

flockmates), and cohesion (or centring by staying close to nearby 

flockmates).  

The SeparationVector is a direction vector that is calculated and 

achieved at the individual boid level. If any other boid is too close 

then the SeparationVector will steer the boid away. Given a 

desired spacing, the distance to all other boids is measured. If 

distance < spacing then a vector can be calculated such that 

boid1_position – boid2_position = SeparationVector. This 

SeparationVector is a xyz direction that the current boid now 

intends to travel in order to maintain a distance from other boids. 

If multiple boids fall within the desired spacing then the resulting 

SeparationVectors can be summed together. 

The AlignmentVector is a direction vector that is calculated at the 

entire boids group level. It is the average direction that the entire 

group of boids is travelling in. 

The CohesionVector is a direction vector that is calculated at an 

individual level. It points from the current boid towards the 

average position of all other boids.  

These three vectors can be summed to produce an output vector, 

the direction the boid will finally move, that represents the 

intentions of the boid. To represent the unpredictability of 

individuals (1) includes a RandomVector, as follows: 

OutputVector = SeparationVector + AlignmentVector + 

CohesionVector  +  RandomVector   (1) 



Individual Agent Reasoning 

This random value could be replaced by a probability if a suitable 

stochastic model was identified for that animal type (i.e. species, 

gender, age, etc).  Also, greater or lesser importance can be 

applied to any of the input vectors by multiplying them by a 

weight. For example in (2) we increase the importance of 

grouping together with:  

OutputVector = SeparationVector + AlignmentVector + 

(CohesionVector * 1.5) + RandomVector  (2) 

The individual boid will now move in the OutputVector direction 

from its current location. To avoid collisions (3) builds upon this 

algorithm as follows: 

OutputVector = SeparationVector + AlignmentVector + 

CohesionVector + RandomVector + ObstacleVector (3) 

Where ObstacleVector points away from a tree or a rock that an 

individual boid is getting too close to and would prefer to not 

crash into. 

Finally, in Omosa we do not want the entire population for each 

animal to behave as a single group. For each type of agent our 

model allows us to specify the size of subgroups within a 

population. In our implementation, herding is achieved by 

modifying both the AlignmentVector + CohesionVector to only 

consider the nearest HerdSize boids. In this way we have sub 

groups of boids that will dynamically readjust itself to only use 

the nearest boids. Different size herds can be seen in Figure 3. 

 

Figure 3. Yernt and Tooru Boids 

4.2 Beyond Boids – Predator/Prey agents 
The animals in Omosa, as in real ecosystems, do more than move 

around; they exhibit behaviours such as growing, dying, hunting, 

eating, etc. Here we focus on the predator-prey relationship which 

drives many of the group and individual behaviours. To achieve 

this we have developed a predator model and a prey model. Figure 

4 depicts how these models influence the boids.   

 

 

 

  

 

 

 

Prey Model –This model produces a vector (4) calculated at an 

individual level that points towards prey animals. In order to 

indicate urgency some prey animals will be given greater 

importance, or weight, for a number of reasons: 

• The closer the prey the greater the weight. This simulates the 

predator singling out a target as it bears down on it. 

• The more fatigued the prey the greater its weight. The 

predator attacks the weak. 

• The more injured the prey the greater the weight. The predator 

attacks the weak. 

PreyDistance, PreyFatigue, and PreyHealth are all values 

between 0.0 and 1.0. 

PreyVector = PreyDirection * (1.0 – PreyDistance) * 

PreyFatigue * (1.0 – PreyHealth)   (4) 

Predator Model – In contrast to the Prey model, this model 

produces a vector (5) calculated at an individual level that points 

away from predator animals. In order to indicate urgency some 

predators are given greater importance for the following reasons: 

• The closer the predator the greater the weight. This simulates 

the prey fleeing for its life. 

• The more threatening the prey the greater the weight. This 

simulates some animals or even human hunters being more 

dangerous than others, and the prey reacting accordingly. 

PredatorDistance and PredatorThreat are values between 0 & 1. 

PredatorVector = PredatorDirection * (1.0 – PredatorDistance) 

* PredatorThreat     (5) 

Figure 5 shows how each of the components in our architecture fit 

together. We can see a pipes and filters like structure between the 

Flocking, Predator and Prey components which allow the agent to 

achieve its decision making goal about which direction to go in. 

This decision is influenced by FollowVector, a vector that 

behaves much like a leash. Depending on whether they are 

hunting or resting we can adjust FollowVector to migrate the 

entire group from one location on the map to another. We can also 

adjust the weight of this leash to ensure the group does not go 

running off into the ocean or another area we want them to avoid. 

In the future, this vector could be replaced with a subsystem that 

intelligently determines locations of herds both for initial 

spawning and migration purposes.  
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Figure 4. Simple model of factors influencing the 

individual boid. 
Figure 5. Omosa Architecture and Agent Reasoning. 
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The Individual Agent Reasoning System is used to determine the 

direction that the individual agent intends to go. However, our 

agents have additional restrictions that will define the eventual 

OutputPosition.  These other factors are seen as being beyond the 

control of the agent and not part of their reasoning. For example, 

the physics engine will slow agents down as they attempt to 

ascend hills and accelerate agents as they descend.  

Another factor applied after the agent has made their own decision 

regarding their intended direction is maximum speed, a value 

defined by the type of animal represented, which is further limited 

by the agent’s health, fatigue, stamina and age. This models the 

fact that animals, including humans, are externally limited by 

these factors, in addition to their internal influence on the 

individual decision making as described in the prey model 

presented. To provide a more natural model of klinokenesis 

(change in direction) in our animals we have developed a 

smoothing algorithm that allows the animal to adjust speed and 

angle to provide a more rounded trajectory rather than a 180 

degree turnaround which can result in strange behaviours in 

conjunction with the physics engine. For the same reason, we also 

adjust the animals speed to slow down when approaching another 

agent/object. A summary of individual and group parameters, 

states and behaviours is given in Table 1. 

Table 1.   Agent parameters, states and behaviours 

Intra-agent (conspecific) 

parameters 

Inter-agent (different species) 

parameters 
Cohesion – individual Separation – individual 

Alignment – group Obstacle - individual 

Follow – group Prey – individual 

Obstacle - individual Predator - individual 

Individual States 

 

Group/Species States 

Health, Stamina, Life Stage 

(i.e. birth, mature, dying which  

affects size & colour), Urgency, 

Threat level, Location 

Population/Herd size, Life 

Expectancy, Stage duration, 

Spacing, Perceptual Distance, 

Speed, Health Regeneration 

Individual Behaviours Group Behaviours 

Roaming, Hunting, Standing, 

Feeding, Fleeing, Dying, Birth 
Hunting/Stalking 

As a group the animals work together to hunt down prey and 

avoid obstacles and predators, while as individual agents they 

maintain their own goals and states. While some of the group 

behaviours are very efficient, as the individual characteristics 

became more complex and specific, it has been necessary to find 

ways to maintain performance. For example, not all behaviours 

need to be refreshed every cycle to create believability. 

Performance is discussed again in the conclusion section. 

5. EVALUATION STUDIES  
At stated in our introduction, the goal of our project is to provide 

experience in conducting scientific inquiry and improve 

knowledge of biological concepts in secondary schools. In this 

section we present condensed results from two evaluation studies. 

The first study seeks to verify our models, algorithms and 

architecture as presented in the previous section. The second 

study seeks to validate our approach through an interview with an 

expert ethologist who has not been involved in the project.   

5.1 Study 1 – Model Verification 
In the first study we have collected data which evaluates the 

components in our Individual Agent Reasoning System. The 

design is presented next, followed by results and discussion. 

5.1.1 Design 
To evaluate the effect of the flocking, predator and prey 

components on the behavior of our animal, we have collected data 

about our predator and prey populations over a 20 minute period 

using different combinations of components in our architecture. 

Each run/simulation used identical population parameter settings. 

The parameters used were the default settings for each population 

identified by the biologist on our team as most appropriate for our 

predator and prey population. For each run, we collected the total 

population, number of births and deaths for both prey and 

predators as well as the number of predator kills and prey deaths 

from old age. The six runs reported in this paper include: 

1. Default/Complete: Flocking/herding, Predator/Prey awareness. 

2. No flocking/herding (1 minus Boids model) 

3. No predator awareness (1 minus Predator model) 

4. No prey awareness (1 minus Prey model) 

5. No prey or predator awareness (1 minus Prey and Predator) 

6. No subherds (1 minus herds, i.e. influenced by entire flock not 

just neighbours/herd members).  

5.1.2 Results and Discussion 
The results of data analysis are shown in Figures 6-11. The 

comments below are based on review of those figures as well as 

observations of agent behavior on the screen during each run. We 

are particularly interested in the kill rates, as the domain expert 

(see next subsection) equated success with natural/low kill rates.  

The data in Figure 6 is based on the complete model presented in 

the previous section and includes flocking, predator / prey 

awareness and herding. We observe normal agent behavior and a 

fairly balanced system. The birth rate maintains the prey 

population. The predator made 13 kills over 20 minutes. 

In Figure 7 the flocking component was turned off, although 

obstacle avoidance is included to avoid collisions with each other. 

Without any flocking enabled the agents still functioned 

surprisingly well. Prey were able to escape predators on most 

occasions. The level of realism seemed to be reduced, the prey 

behaved somewhat like water trickling between the predators, but 

definitely not as a group. Prey population fluctuated but was near 

maximum after 20 minutes. Predator made 12 kills in 20 minutes. 

In Figure 8, when there is no predator awareness (i.e. prey does 

not respond to predator), we see that the prey were wiped out in 

less than 2 minutes. Prey did not attempt to evade the predator. 

We observed that the predator had some difficulty getting to all of 

the prey because there were too many prey carcasses in the way. 

Prey were unable to reproduce and maintain population. Predators 

made 80 kills over 2 minutes. Note that this simulation is not 

realistic: there would be an upper limit on how many prey a 

predator seek to kill; the predator population will die out when the 

food source is gone.  

In Figure 9 there is no prey awareness (i.e. predators do not 

respond to prey); the predator completely fails to function. The 

prey was aware of the predators when they moved to the hunting 

area, but just moved to a safe distance. Prey population fluctuates 

due to life span, birth rate is able to maintain maximum 

population. Predator made 0 kills in 20 minutes. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Default Settings (Flocking, Predator / Prey 

Awareness, Herding) Normal behaviour.  

Figure 7. No Flocking (Boids still avoid collisions with 

each other).  

Figure 8. No Predator Awareness (Prey does not 

respond to predator)  

Figure 9. No Prey Awareness (Predator does not 

respond to prey)  

Figure 10. No Predator Vector and No Prey Vector 

(Both predator and prey don't respond to other). 

Figure 11. No Sub Herds (Flocking is enabled, boids are 

influenced by all of their own type, not just those 

nearby)  



In Figure 10 the predator and prey models are both switched off. 

(Both predator and prey don't respond to other). Predators 

perform badly as in the previous condition. However at 

approximately one minute the predator herd happens to walk right 

into the prey herd, which in turn doesn't respond and takes a lot of 

losses. After that the predator never came close to the prey again, 

instead spending most of the time splashing around on the beach. 

Predator made 31 kills over 20 minutes.  

Finally in Figure 11 we evaluate turning off the herding feature so 

that no subherds exist within a population. Flocking is still active 

but boids are influenced by all of their own type, not just those 

nearby). Both predator and prey function well. Predators seemed 

to benefit from this setting, showing more cohesion, while the 

prey may have been hampered from too much influence from 

others of their species (instead of just relevant ones nearby). Prey 

population fluctuated but was maintained. Predators made 16 kill. 

We conclude that the predator and prey models are essential to 

model natural success/kill rates. Though success rates are mostly 

unaffected by flocking/herding they are necessary to provide a 

realistic 3D simulation of animals which live and act in groups. 

5.2 Expert Validation 
In addition to having access to a number of advisers, one of the 

investigators in this research project is a biologist. However, to 

provide independent evaluation of our animal behaviours we 

approached an expert in the field of animal communication and 

conservation, whose particular area of expertise and interest was 

ungulates, with a focus on elk and bison. We conducted a one (1) 

hour interview involving demonstration of our system and a series 

of structured questions. The steps we followed and questions 

posed, together with responses are described below. 

5.2.1 Step 1: First Impressions 
In order to put our animals in their current environmental context 

and to gain first general impressions, we began with a tour of the 

village including a conversation with an Omosan hunter and then 

we used the game/site map (Figure 1) to locate animals that we 

then introduced up close, as in Figure 2. We then took a bird’s eye 

view of a part of Omosa containing herds of both animal types. 

Our first question was simply “What are your first impressions?” 

We were unaware of the expectations of our expert, and she was 

unaware of what she would see. Thus, as a first response she 

commented that [real] animals are predictable but ours are 

unpredictable. She mentioned the many eyes hypothesis where the 

animals would stay in groups, always with some animals watching 

while others fed/grazed. The expert’s response regarding 

unpredictability occurred after a relatively lengthy initial period 

where the two populations had been grazing independently and 

then appeared to become aware of one another. This time delay 

can be seen in Figure 12. Figure 12 shows a plot of the agent 

movements over time. The red (left side) path shows predators. 

The green (right side) show prey. We can see over time that the 

separate populations begin to interact and that the two populations 

are moving regularly with predators following prey and prey 

tending to flee from predators as shown more clearly in the 

pathways at the bottom of the figure.  

As the behaviours became more interesting, including predators 

circling a wounded or dead prey, which our expert said is like 

wolf pack behavior, the expert became more engaged and excited, 

sometimes intrigued by the behaviours observed. When students 

use the world, the animals will have potentially been through 

numerous life cycles and it is unlikely they will be at the initial 

and less interesting reset/spawning stage. 

 

 

5.2.2 Step 2: Parameter Testing 
To allow model adjustment and assist learning, we allow the 

group level parameters (see Table 1) to be adjusted via sliders. We 

asked the expert to select up to 3 parameters that they would like 

to change, though only one a time. We asked her to make a 

prediction for each parameter before any changes were made. Our 

expert was only interested in changing two parameters: speed and 

perceptual distance and stated that prey can move faster and have 

further perceptual distance than predators. The other parameters, 

such as stamina, were perceived to be secondary. The expert 

stated that there should be at least two or three times as many prey 

than predators and was happy with our relative herd sizes of 3 for 

predators and 15 for prey. In terms of population sizes of 80 for 

prey and 15 for predator, the biologist was also satisfied.  

Speed was changed first by increasing the speed of the prey and 

reducing the speed of the predator. The prediction was there 

would be less kills/success and the animal behaviours would be 

more lifelike. In accordance with the prediction, there were 

considerably less kills. Surprisingly we also observed that the 

predators seemed to be moving as one towards the prey rather 

than in herd sizes of 3 towards selected prey and this inefficient 

behavior would have affected success rates. The expert added that 

a kill success rate of 10% was normal for natural populations but 

that speed should be slightly unnatural resulting in greater 

numbers of kills so that the simulation is not too boring.  

The second parameter to be changed was perceptual distance. In 

line with natural differences, the predator value was decreased to 

20 and prey value was increased to 35. Again the prediction was 

that the behavior would be more natural and would result in less 

kills/predator success. Indeed less kills were observed. What was 

not predicted and was quite surprising was the opposite behavior 

to our change relating to speed. Even though we left the speed 

settings to those specified by our expert, this time rather than 

predators appearing to act as a whole population moving slowly 

Figure 12. 3D Model of animal paths showing agent 

position over time(red/left=predator, green/right=prey 



towards the prey, the majority of Tooru continued to ignore the 

Yernt. Only individuals at the edge of the predator group closest 

to the prey group appeared to notice the prey and run off in that 

direction, leaving their herd (the other two) behind. It appears that 

the individual had come within the perceptual distance allowing 

them to recognize the prey, and was quite hungry by that time 

pulling them more strongly towards the prey than their mates. The 

mates who had not been able themselves to see the prey, were still 

close enough to other conspecific herds and thus they joined the 

new herd to satisfy that need.  The increased perceptual vision of 

the prey in detecting the predator resulted in the flock of prey 

moving away from the predator herds/population, making it 

increasingly difficult for the predator to spot them. 

5.2.3 Step 3: Rating of Environment 
We chose to use the questions from [2] to “establish the 

contribution of behaviours to the perceived realism of the animals 

within the environments and the contribution to the overall 

experience” (p.155). However, we sought to validate our complete 

architecture, system and the emergent behaviors with a domain 

expert rather than test alternative models/combinations of system 

components to subjects (e.g. no-flocking, no flight, no 

fear/emotion, etc) with immersive technology students. Thus we 

did not use Likert scale responses but allowed the expert to use 

their own term. Table 2 shows the questions and brief answers.  

Table 2. Parameters defining our three current conspecifics 

Question Response 

1. How realistic was the graphical representation of the 

animals in the environment? 
Good 

2. How much did the environment engage you generally? Very 

3. How much did the animals add to the realism of the 

environment? 
Very 

4. Did the animals seem alive in the environment? Yes 

5. Did the animals appear to be behaving in an intelligent 

manner? 
Depends 

6. How realistic was the behaviour of the animals? Good 

7. How quickly did you adjust to the virtual environment 

experience? 
Immediate 

8. To what extent did the animals seem to be reacting to 

their environment? 
Good 

9. To what extent did the animals appear to be reacting with 

one another? 
Good 

10. To what degree did the animals appear to make an 

emotional reaction? 

Motivation 

observed 

Regarding whether the animals were perceived as alive, (Q4) the 

expert added that “movement is critical, it brings the animal to life 

and the animals bring the virtual world to life”. Regarding 

whether the animals appeared to be behaving in an intelligent 

manner (Q5) the answer was qualified by saying that it depends 

on what parameters are used. The expert was “bothered by lack of 

group cohesion within the pack” which was not always evident. 

However, the circling of a pack around prey and chasing after the 

same prey could be observed at times. We asked the question 

“How compelling was your sense of moving around inside the 

virtual environment?” but it was not answered due to lack of 

relevance as the expert did not control the initial tour of the world 

and watching the behaviours did not involve interaction with the 

animals.  

Regarding questions 8 and 9, the expert commented that the 

flocking indicated awareness of conspecifics; prey were aware of 

predators and reacted by fleeing when they were chased. Chasing 

was evidence of predators being aware of prey and reacting to 

them. The fact that at times both animal agent types grazed and 

showed no interest in the other animal type indicated that there 

were also other factors affecting their interest in and desire to hunt 

or flee. However, for some settings a lack of cohesion on the part 

of predator was observed. At these times it seemed that predators 

were not reacting to one another even though prey did react to one 

another. 

Though our model does not explicitly include emotion (fleeing 

could be triggered by fear), we included the question from [20] 

regarding emotion to test and provide opportunity for discussion 

whether the ethologist had endowed our animals with emotional 

behavior or believed that emotional factors should be modeled. 

The expert stated outright that they were uncomfortable with the 

word “emotion” when considering the behavior of animals. They 

preferred the term and concept of motivation. The expert observed 

that the prey were motivated to avoid the predators, which could 

be seen as due to fear, but they did not feel it necessary or 

appropriate to attribute emotion as the cause. 

5.2.4 Step 4: Usefulness for Education 
The goal of our intelligent animals is to allow students to observe 

animals in a natural setting to see how they may behave, allow 

them to set various hypotheses about the animals and phenomena 

occurring in Omosa and to teach them about complex systems. It 

was not our goal to provide ecologically sound and complete 

animal models which would allow us or others to make decisions 

and predications about these populations in the real world. Thus, 

we asked “Do you believe the world would be useful for 

educational purposes?’ They responded “Definitely, it would get 

the students engaged”.  

When asked if the world would be useful at the tertiary level, 

perhaps in some of their own teaching context, they were more 

hesitant and remarked with respect to the animals that it could be 

useful if more parameters could be made available (though none 

were specifically suggested) and students would need to be able to 

change them. The expert suggested that Omosa 2.0 would be 

needed for tertiary biology students. When asked what would be 

in 2.0, they suggested multiple prey types and predator switching 

between prey depending on factors such as availability.  

5.2.5 Step 5: Additional Features and Directions 
Throughout the interview a number of behaviours were suggested 

for possible inclusion, as follows: 

• Reproduction rates influenced by success rates,  

• Targeted kills, e.g instead of attacking many/closest prey, 

predators would intelligently pick one or two, e.g. smallest. 

(we already factor in health). 

• Complementary/coordinated group behaviours, e.g. some 

prey-flockmates would come back and defend, some pack 

members may not join in.  

• After killing predators go back to foraging (which we do). 

• Might need to change life span. 

These features and others are considered as further extensions to 

our agents in the next section. 



6. CONCLUSIONS & FUTURE WORK 
Animals have provided agent researchers with so called 

biologically-inspired solutions to issues such as coalition 

formation (e.g. [4]) and other social dilemmas involving 

communication, coordination and cooperation to solve problems 

such as load balancing, message congestion and bandwidth 

allocation. Similarly, we anticipate that software/network agent 

research related to the handling of social interactions, decision 

making, self-interested agents and cooperation (e.g. [9]) could 

potentially offer some insights and extensions to our animal 

agents. As demonstrated, behaviours which simulate group 

communication and coordination exist in our model, however, to 

produce more lifelike animals we may want to extend our models 

with natural communication methods involving gestures and 

sound, similar to the use of the scents and an artificial nose [2]. 

MAS-based group decision-making may be a feature that our 

animal or human agents will need as in the study by [16]. 

Inclusion of updating schemes which allow the evolution of our 

models is also potentially attractive.  

Currently, we simulate different life stages through size of the 

animal and intend to use changes in colour as a feature to indicate 

age. Also, while we have different values for traits for different 

species we do not currently have separate traits for different 

species or differentiate between behavior in males and females as 

in ALMaSS [13]. We would like to include stochastic elements 

into our models to potentially provide more authentic behaviours 

in determining initial locations to spawn animals and affecting 

whether a kill is successful or not. At this stage, we do not believe 

that explicit modeling of emotions is appropriate or necessary for 

our animals. We will conduct further studies using our models 

and more of our animals, as suggested by the expert, involving 

multiple predators and alternative prey.  

Scalability is an issue facing both graphics researchers and agent 

researchers involved in building complex cognitive architectures 

and multi-agent platforms [7]. On the graphics side we have paid 

close attention to polygon counts. For example, using MeshLab 

(http://meshlab.sourceforge.net/) we were able to reduce the 

number of polygons in purchased animal models from around 

6000 to no more than 1800 each. To support both the processing 

requirements of our agent reasoning approach with the processing 

requirements of the graphics, we have increased the number of 

frames between each animal in the herd updating its behavior. 

While this slightly decreases the realism of the animals’ behavior, 

it significantly improves the overall game performance. As the 

complexity of the models and agents in Omosa increase, we will 

have to consider more strategies for maintaining the balance 

between processing speed and environment complexity. 

Initial trials with teachers and a Science special interest group 

were enthusiastically received and led to modifications to Omosa 

involving the dialogue engine, interaction controls and smoothing 

of animal movement transitions. In November 2011 we began 

testing our workbooks and lessons in the classroom over 4 

lessons. We are currently processing student data including 

measurements of learning gains and changes in levels of interest 

in science inquiry. Results will appear in a future publication.  
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