
Optimal Manipulation of Voting Rules

Svetlana Obraztsova
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

SVET0001@ntu.edu.sg

Edith Elkind
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

eelkind@ntu.edu.sg

ABSTRACT
Complexity of voting manipulation is a prominent research topic
in computational social choice. In this paper, we study the com-
plexity of optimal manipulation, i.e., finding a manipulative vote
that achieves the manipulator’s goal yet deviates as little as possi-
ble from her true ranking. We study this problem for three natural
notions of closeness, namely, swap distance, footrule distance, and
maximum displacement distance, and a variety of voting rules, such
as scoring rules, Bucklin, Copeland, and Maximin. For all three
distances, we obtain poly-time algorithms for all scoring rules and
Bucklin and hardness results for Copeland and Maximin.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Theory

Keywords
voting, manipulation, swap distance, footrule distance

1. INTRODUCTION
Mechanisms for aggregating the preferences of heterogeneous

agents play an important role in the design of multi-agent sys-
tems [9]. Such mechanisms are typically implemented by voting
rules, i.e., mappings that, given the rankings of the available al-
ternatives by all agents, output an alternative that best reflects the
collective opinion. There are many different voting rules that are
used for group decision making; see, e.g., [3] for an overview.

A weakness shared by all reasonable voting rules is their sus-
ceptibility to manipulation: for any voting rule over a set of al-
ternatives C, |C| ≥ 3, that is not a dictatorship, there are voting
situations where some voter would be better off if, instead of sub-
mitting her true ranking of the alternatives, she submitted a vote
that did not quite match her true preferences. This was observed by
Gibbard [11] and, independently, by Satterthwaite [18] more than
30 years ago, and a lot of research effort since then has been spent

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

on identifying voting rules that are at least somewhat resistant to
manipulation.

In their pioneering paper [2], Bartholdi, Tovey and Trick pro-
posed to use computational complexity as a roadblock in the way of
manipulative behavior: they observed that, in practice, the manip-
ulator needs an efficient method to find a successful manipulative
vote, and a voting rule that does not admit such a method may be
viewed as being relatively less vulnerable to manipulation. How-
ever, most classic voting rules, with the notable exception of STV,
turn out to be susceptible to manipulation in this sense [2, 1].

In this paper, we study a refinement of the question asked by
Bartholdi, Tovey and Trick. We observe that, while the manipu-
lator is willing to lie about her preferences, she may nevertheless
prefer to submit a vote that deviates as little as possible from her
true ranking. Indeed, if voting is public (or if there is a risk of in-
formation leakage), and a voter’s preferences are at least somewhat
known to her friends and colleagues, she may be worried that vot-
ing non-truthfully can harm her reputation—yet hope that she will
not be caught if her vote is sufficiently similar to her true ranking.
Alternatively, a voter who is uncomfortable about manipulating an
election for ethical reasons may find a lie more palatable if it does
not require her to re-order more than a few candidates. Finally, a
manipulator may want to express support for candidates she truly
likes, even if these candidates have no chances of winning; while
she may lie about her ranking, she would prefer to submit a vote
where her most preferred candidates are ranked close to the top.

These scenarios suggest the following research question: does a
voting rule admit an efficient algorithm for finding a manipulative
vote that achieves the manipulator’s goals, yet deviates from her
true ranking as little as possible? To make this question precise,
we need to decide how to measure the discrepancy between the
manipulator’s true preferences and her actual vote. Mathematically
speaking, votes are permutations of the candidate set, and there are
several distances on permutations that one can use. In our work,
we consider what is arguably the two most prominent distances on
votes, namely, the swap distance [12] (also known as bubble-sort
distance, Kendall distance, etc.) and the footrule distance [20] (also
known as the Spearman distance), as well as a natural variation
of the footrule distance, which we call the maximum displacement
distance.

In more detail, the swap distance counts the number of candidate
pairs that are ranked differently in two preference orderings. Thus,
when the manipulator chooses her vote based on the swap distance,
she is trying to minimize the number of swaps needed to transform
her true ranking into the manipulative vote. We remark that for
swap distance, our problem can be viewed as a special case of the
swap bribery problem [8]; however, our question is not addressed
by existing complexity results for swap bribery [8, 7, 6, 19] (see

Section 7 for a discussion). The footrule distance and the maximum
displacement distance are based on computing, for each candidate,
the absolute difference between his positions in the two votes; the
footrule distance then computes the sum of these quantities, over all
candidates, while the maximum displacement distance returns the
largest of them. We believe that each of these distances captures
a reasonable approach to defining what it means for two votes to
be close to each other; therefore, we are interested in analyzing the
complexity of our manipulation problem for all of them.

We study our problem for several classic voting rules, namely,
Bucklin, Copeland, Maximin, as well as all scoring rules. For all
these rules, the algorithm of Bartholdi et al. [2] finds a successful
manipulation if it exists. However, this algorithm does not nec-
essarily produce a vote that is optimal with respect to any of our
distance measures: in particular, it always ranks the manipulator’s
target candidate first, even if this is not necessary to achieve the
manipulator’s goal. Thus, we need to devise new algorithms—or
prove that finding an optimal manipulation is computationally hard.

For all three distances, we obtain the same classification of these
rules with respect to the complexity of finding an optimal manipula-
tion: our problem is easy for Bucklin and all polynomial-time com-
putable families of scoring rules (see Section 2 for definitions), but
hard for Copeland and Maximin. For swap distance and footrule
distance, we strengthen these hardness results to show that our
problem is, in fact, hard to approximate up to a factor of Ω(log m),
where m is the number of candidates.

Our results provide a fairly complete picture of the complexity
of finding an optimal manipulative vote for the three distances and
four types of voting rules that we consider. Interestingly, they in-
dicate that scoring rules (and the Bucklin rule, which is closely re-
lated to a subfamily of scoring rules known as k-approval) are fun-
damentally easier to manipulate than Copeland and Maximin; we
remark that this observation is also suggested by the recent work
of Obraztsova et al. [16, 15] on the complexity of manipulation
under randomized tie-breaking. Thus, we believe that, besides be-
ing interesting for its own sake, our work contributes to the broad
agenda of understanding the intrinsic complexity—and, therefore,
practical applicability—of various voting rules.

2. PRELIMINARIES
An election is given by a set of candidates C = {c1, . . . , cm}

and a vector R = (R1, . . . , Rn), where each Ri, i = 1, . . . , n, is
a linear order over C; Ri is called the preference order (or, vote)
of voter i. For readability, we will sometimes write �i in place of
Ri. If a �i b for some a, b ∈ C, we say that voter i prefers a to b.
We denote by r(cj , Ri) the rank of candidate cj in the preference
order Ri: r(cj , Ri) = |{c ∈ C | c �i cj}| + 1. We denote the
space of all linear orders over C by L(C). We denote by (R−i, L)
the preference profile obtained from R by replacing Ri with L.

A voting correspondence F is a mapping that, given a candidate
set C and a preference profileR over C outputs a non-empty subset
of candidates S ⊆ C; we write S = F(R). The candidates in S
are called the winners of election (C,R). A voting correspondence
F is said to be a voting rule if it always produces a unique winner,
i.e., |F(R)| = 1 for any profile R.

A voting correspondence can be transformed into a voting rule
with the help of a tie-breaking rule. A tie-breaking rule for an elec-
tion (C,R) is a mapping T = T (R, S) that for any S ⊆ C, S 6= ∅,
outputs a candidate c ∈ S. A tie-breaking rule T is lexicographic
with respect to a preference ordering� over C if for any preference
profile R over C and any S ⊆ C it selects the most preferred can-
didate from S with respect to�, i.e., we have T (S) = c if and only
if c � a for all a ∈ S \ {c}. In the context of single-voter manipu-

lation problems, where there is one voter that considers lying about
his vote to obtain a better outcome, of particular interest are benev-
olent and adversarial tie-breaking rules: the former breaks ties in
the manipulator’s favor while the latter breaks ties against the ma-
nipulator’s wishes (i.e., tie-breaking is lexicographic with respect
to, respectively, the manipulator’s true preference ordering and its
inverse). In the traditional computational social choice terminology
benevolent and adversarial tie-breaking correspond to, respectively,
non-unique and unique winner settings.
Voting rules We will now describe the voting correspondences
considered in this paper. All these correspondences assign scores to
candidates; the winners are the candidates with the highest scores.
In what follows, we will assume that these correspondences are
transformed into voting rules by breaking ties adversarially; how-
ever, all of our results can be adapted in a straightforward manner
to benevolent or, more generally, lexicographic tie-breaking.
Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm such that
α1 ≥ · · · ≥ αm defines a scoring rule Fα as follows. Each voter
grants αi points to the candidate she ranks in the i-th position; the
score of a candidate is the sum of the scores he receives from all
voters. The vector α is called a scoring vector; we assume without
loss of generality that the coordinates of α are nonnegative inte-
gers given in binary. We remark that scoring rules are defined for a
fixed number of candidates, and therefore do not quite fit our def-
inition of a voting rule. Thus, one needs to consider families of
scoring rules (one for every possible number of candidates). From
the algorithmic perspective, it is natural to restrict our attention to
polynomial-time computable families of scoring rules, where the
scoring vector αm for an m-candidate election can be computed
in time poly(m). Two well-known examples of such families are
Borda, given by α = (m− 1, . . . , 1, 0), and k-approval, given by
αi = 1 if i ≤ k, αi = 0 if i > k.
Bucklin Given an n-voter election, the Bucklin winning round is
the smallest value of r such that the r-approval score of at least one
candidate exceeds n/2. The Bucklin score of a candidate c ∈ C is
his r-approval score, where r is the Bucklin winning round.
Copeland A candidate a is said to win a pairwise election against
b if more than half of the voters prefer a to b; if exactly half of the
voters prefer a to b, then a is said to tie his pairwise election against
b. Under the Copelandα rule, α ∈ Q ∩ [0, 1], each candidate gets
1 point for each pairwise election he wins and α points for each
pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is given
by the number of votes c gets in his worst pairwise election, i.e.,
mind∈C\{c} |{i | c �i d}|.

Distances A distance on a space X is a mapping d : X × X →
R that has the following properties for all x, y, z ∈ X: (1) non-
negativity: d(x, y) ≥ 0; (2) identity of indiscernibles: d(x, y) = 0
if and only if x = y; (3) symmetry: d(x, y) = d(y, x); (4) triangle
inequality: d(x, y) + d(y, z) ≥ d(x, z).

In this paper, we will be interested in distances over votes, i.e.,
mapping of the form d : L(C) × L(C) → R. In fact, since we
are interested in asymptotic complexity results, we will consider
families of distances (dm)m≥1, where dm is a distance over the
space of all linear orderings of the set {c1, . . . , cm}. Specifically,
we will consider three such families (in the following definitions,
C = {c1, . . . , cm} and R and L are two preference orders inL(C),
also denoted as �R and �L):

Swap distance. The swap distance dswap(L, R) is given by

dswap(L, R) = |{(ci, cj) | ci �L cj and cj �R ci}|.

This distance counts the number of swaps of adjacent candi-
dates needed to transform L into R.

Footrule distance. The footrule distance dfr(L, R) is given by

dfr(L, R) =

mX
i=1

|r(ci, L)− r(ci, R)|.

This distance calculates by how much each candidate needs
to be shifted to transform L into R, and sums up all shifts.

Maximum displacement distance. The maximum displacement
distance dmd(L, R) is given by

dmd(L, R) = max
i=1,...,m

|r(ci, L)− r(ci, R)|.

This distance is similar to the footrule distance; the only dif-
ference is that instead of summing up all shifts it only con-
siders the maximum shift.

It is not hard to verify that the swap distance, the footrule dis-
tance, and the maximum displacement distance fulfill all distance
axioms. It is also known [5] that the swap distance and the footrule
distance are always within a factor of two from each other: we
have dswap(L, R) ≤ dfr(L, R) ≤ 2dswap(L, R) for any space of
candidates C and any L, R ∈ L(C).

3. OUR MODEL
We will now formally describe our computational problem.

DEFINITION 3.1. Let D = (dm)m≥1 be a family of integer-
valued distances, where dm is a distance over L({c1, . . . , cm}).
LetF be a voting rule. An instance of (D,F)-OPTMANIPULATION
is given by an election (C,R) with C = {c1, . . . , cm}, R =
(R1, . . . , Rn), a voter i ∈ {1, . . . , n}, a candidate p ∈ C, and
a positive integer k. It is a “yes”-instance if there exists a vote
L ∈ L(C) such that F(C, (R−i, L)) = {p} and dm(Ri, L) ≤ k,
and a “no”-instance otherwise.

REMARK 3.2. The problem (D,F)-OPTMANIPULATION is in
NP as long as all distances in D and the rule F are poly-time com-
putable: one can guess a vote L and check that F(C, (R−i, L)) =
{p} and dm(Ri, L) ≤ k. In particular, it is in NP for all distance
families and voting rules considered in this paper.

REMARK 3.3. We formulated OPTMANIPULATION as a deci-
sion problem. However, it also admits a natural interpretation as
an optimization problem: in this case, we are given an election
(C,R), a voter i and a candidate p, and the goal is to find the small-
est value of k such that there exists a vote L ∈ L(C) at distance at
most k from Ri that satisfiesF(C, (R−i, L)) = {p} (k is assumed
to be +∞ if there is no vote L with F(C, (R−i, L)) = {p}). In
this version of the problem, one can relax the optimality condi-
tion, and ask for an approximately optimal manipulative vote: an
algorithm is said to be a ρ-approximation algorithm for (D,F)-
OPTMANIPULATION, ρ ≥ 1, if, given an instance of the problem
for which the correct answer is k ∈ R ∪ {+∞}, it outputs a value
k′ that satisfies k ≤ k′ ≤ ρk. We will consider the optimization
version of OPTMANIPULATION (and prove hardness of approxi-
mation results) for Copeland and Maximin under swap distance
(Sections 4) and footrule distance (Section 5).

REMARK 3.4. In our definition of OPTMANIPULATION, the
manipulator wants to make a specific candidate elected; the identity
of this candidate is given as a part of the instance description. An
alternative approach would be to ask if the manipulator can obtain

what he considers a better outcome by submitting a non-truthful
vote, i.e., whether there is a vote L ∈ L(C) such that dm(Ri, L) ≤
k and F(C, (R−i, L)) �i F(C,R); we will refer to this problem
as OPTMANIPULATION′. Clearly, an efficient algorithm for OPT-
MANIPULATION can be used to solve OPTMANIPULATION′, by
determining the winner w under truthful voting, and then running
the OPTMANIPULATION algorithm for all candidates that the ma-
nipulator ranks above w. Hence, OPTMANIPULATION is at least
as hard as OPTMANIPULATION′. In what follows, we will provide
polynomial-time algorithms for the “harder” problem OPTMANIP-
ULATION. On the other hand, all our NP-hardness results apply
to the “easier” problem OPTMANIPULATION′: in fact, in all our
hardness proofs the manipulator’s goal will be to make his favorite
candidate the election winner. Using OPTMANIPULATION as our
base problem allows for a direct comparison between the problem
of finding the optimal manipulation and the swap bribery problem
(see Section 7).

4. SWAP DISTANCE
We start by considering optimal manipulability with respect to

what is perhaps the best known distance on votes, namely, the swap
distance dswap.

4.1 Scoring Rules and Bucklin
The main result of this section is a simple polynomial-time al-

gorithm that solves OPTMANIPULATION for swap distance and
an arbitrary scoring rule; we then show that this algorithm can be
adapted to work for the Bucklin rule.

An observation that will be important for our analysis of scor-
ing rules in this and subsequent sections is that once we select the
position of the manipulator’s preferred candidate p, we know his
final score. Thus, once p’s position is fixed, it remains to rank
other candidates so that their scores remain strictly lower than that
of p (recall that we use adversarial tie-breaking). More formally,
let sα(c) be the total number of points a candidate c receives from
non-manipulators under a voting rule Fα; we will say that a posi-
tion j is safe for a candidate c` given that p is ranked in position f
if sα(c`) + αj < sα(p) + αf . Clearly, for a manipulation to be
successful, all candidates other than p should be ranked in positions
that are safe for them.

Fix a scoring rule Fα with α = (α1, . . . , αm). Our algorithm
relies on a subroutine A that given an election (C,R) with |C| =
m, a voter i, a candidate p, and a position f in i’s vote, finds an
optimal manipulation for i among all votes that rank p in position
f . More formally, let

Lf (α) = {L ∈ L(C) | Fα(C, (R−i, L)) = {p}, r(p, L) = f};

our subroutine outputs ⊥ if Lf (α) is empty and a vote L̂ such
that dswap(L̂, Ri) ≤ dswap(L, Ri) for all L ∈ Lf (α) otherwise.
Given A, we can easily solve (dswap,Fα)-OPTMANIPULATION:
we run A for all values of f between 1 and m and output “yes” if
at least one of these calls returns a vote L̂ with dswap(L̂, Ri) ≤ k.
Thus the running time of our algorithm is m times the running time
of A. It remains to describe A.

THEOREM 4.1. For any α = (α1, . . . , αm) ∈ Z+
m there

exists a procedure A that takes an n-voter m-candidate election
(C,R), a voter i ∈ {1, . . . , n}, a candidate p ∈ C, and a position
f ∈ {1, . . . , m} as its input, outputs ⊥ if Lf (α) = ∅ and a vote
L̂ that satisfies dswap(L̂, Ri) ≤ dswap(L, Ri) for all L ∈ Lf (α)
otherwise, and runs in time O(m2 log(nα1)).

PROOF. For convenience, let us renumber the candidates in C
so that cm = p and c1 �i . . . �i cm−1. Our algorithm proceeds in

m− 1 rounds. In the `-th round, ` = 1, . . . , m− 1, we determine
the final position of candidate c`; we then say that this candidate
is pinned to that position, and the position becomes unavailable.
Initially, all candidates are unpinned and all positions are available.

Initialization: We pin p to position f (thus f becomes unavail-
able), and then fill the remaining positions with the candidates in
C \ {p}, in the order of i’s preferences, i.e., placing c1 in the high-
est available position and cm−1 in the lowest available position. In
what follows, we will shift the candidates around in order to make
p the winner.

Round `, ` = 1, . . . , m − 1 Suppose that in the beginning of the
round candidate c` is ranked in position j. If j is safe for c`, we
pin c` to position j (which then becomes unavailable) and proceed
to the next round. Otherwise, we find the smallest value of h such
that position h is available and safe for c`; if no such value of h can
be found, we terminate and return ⊥. If a suitable value of h has
been identified (note that h > j), then c` gets pinned to position
h, and all unpinned candidates in positions j +1, . . . , h are shifted
one available position upwards.

If A does not abort (i.e., return ⊥), it terminates at the end of
the (m − 1)-st round and returns the vote obtained at that point.
Each round involves O(m) score comparisons and shifts, and each
comparison can be performed in time O(log(nα1)); this implies
the bound of O(m2 log(nα1)) on the running time. It remains to
argue that A works correctly.

The following observation will be useful for our analysis.

LEMMA 4.2. Suppose that at the beginning of round ` candi-
date c` is ranked in position j. Then positions 1, . . . , j − 1 are not
available at that point.

PROOF. An easy inductive argument shows that the set of can-
didates ranked above c` at the beginning of round ` is a subset of
{c1, . . . , c`−1}. For each t = 1, . . . , ` − 1, candidate ct is pinned
in round t and therefore by the beginning of round ` his position is
unavailable. As this holds for all positions above j, the lemma is
proved.

We split the rest of proof into two lemmas.

LEMMA 4.3. If the subroutine A(C,R, i, p, f) outputs a vote
L̂ then L̂ ∈ Lf (α), and if it outputs ⊥ then Lf (α) = ∅.

PROOF. By construction, if A outputs a vote L̂, then r(p, L̂) =
f . Moreover, every other candidate cj can only be pinned to a
position that is safe for him. Since A returns L̂ only when all can-
didates in C are pinned, we have Fα(C, (R−i, L̂)) = {p}, and
hence L̂ ∈ Lf (α).

Now, suppose that A(C,R, i, p, f) =⊥. This means that for
some candidate c`, ` ≤ m− 1, our algorithm was unable to find an
available safe position. Let L̂ be the vote constructed by the algo-
rithm by the beginning of round `, and let h be the lowest available
position at the beginning of round `.

Suppose for the sake of contradiction that Lf (α) 6= ∅, and let L
be some vote in Lf (α). Since the algorithm has output⊥, position
h is not safe for c`. Thus, in L candidate c` is ranked in position
h + 1 or lower. Consequently, some candidate ct that is ranked
in position h + 1 or lower in L̂ must be ranked in position h or
higher in L. Since positions h + 1, . . . , m are not available at the
beginning of round `, they are occupied by candidates who were
pinned to these positions in earlier rounds (and, possibly, by p),
i.e., t < `. This means that position h was available when ct was
processed, but the algorithm chose not to place ct in position h. By

Lemma 4.2, it was not the case that ct was pinned to the position it
was in at the beginning of round t. Hence, the reason why ct was
ranked in position h + 1 or lower was that h (and, a forteriori, any
position above h) was not safe for ct. On the other hand, we have
argued that ct is ranked in position h or higher in L, a contradiction
with L ∈ Lf (α). Thus it has to be the case that Lf (α) = ∅.

LEMMA 4.4. If A(C,R, i, p, f) = L̂, then dswap(L̂, Ri) ≤
dswap(L, Ri) for all L ∈ Lf (α).

PROOF. We will prove a somewhat stronger statement: there
is a unique optimal vote in Lf (α), and this vote coincides with
L̂. Suppose for the sake of contradiction that there exists a vote
L ∈ Lf (α) such that dswap(L, Ri) ≤ dswap(L′, Ri) for all L′ ∈
Lf (α) and L 6= L̂. Let c` be the first candidate ranked differently
by L and L̂, i.e., ` = min{j | r(cj , L) 6= r(cj , L̂)}.

Suppose first that r(c`, L̂) > r(c`, L). It cannot be the case
that c` remains in place during round `: by Lemma 4.2 all posi-
tions above c` in L̂ are filled with candidates in {c1, . . . , c`−1},
and r(cj , L̂) = r(cj , L) for j < `. Hence, c` has to move during
round `. Now, r(c`, L̂) is the highest available position that is safe
for c`. Since r(c`, L) is necessarily safe, it follows that r(c`, L)
must be unavailable at the beginning of round `. However, this
means that there is a candidate cj , j < `, pinned to this position
in L̂, and all such candidates are ranked in the same positions in L
and L̂, a contradiction.

Thus, it has to be the case that r(c`, L̂) < r(c`, L). Let cj be the
candidate ranked in position r(c`, L̂) in L; we have j > ` by our
choice of `. Let L′ be the vote obtained from L by swapping c` and
cj . We claim that L′ ∈ Lf (α) and dswap(L′, Ri) < dswap(L, Ri),
thus contradicting our choice of L.

To see that L′ ∈ Lf (α), observe that after the swap the scores of
all candidates other than c` do not go up and r(c`, L

′) = r(cj , L) =

r(c`, L̂), so position r(c`, L
′) is safe for c`. It remains to prove

that dswap(L′, Ri) < dswap(L, Ri). To this end, we need and ad-
ditional definition: we say that a pair of candidates (c, c′) is an in-
version in a vote R if r(c, Ri) < r(c′, Ri), but r(c, R) > r(c′, R).
Clearly, the swap distance from R to Ri is simply the number of
inversions in R. Thus, our goal is to show that L′ has fewer inver-
sions than L.

Observe first that (cj , c`) is an inversion in L, but not in L′.
Among all other pairs of candidates, it suffices to consider pairs of
the form (cj , c) and (c, c`), where c is ranked between cj and c` in
L; any other pair of candidates is an inversion in L if and only if it
is an inversion in L′.

Since j > `, we have three possibilities:

c` �i c �i cj . In this case, both (cj , c) and (c, c`) are inversions
in L, but neither of them is an inversion in L′.

c` �i cj �i c. In this case, (c, c`) is an inversion in L, but (cj , c)
is not. On the other hand, (c, cj) is an inversion in L′, but
(c`, c) is not.

c �i c` �i cj . In this case, (cj , c) is an inversion in L, but (c, c`)
is not. On the other hand, (c`, c) is an inversion in L′, but
(c, cj) is not.

Thus, for any candidate c ranked between cj and c` in L the pairs
involving c contribute at least as much to the inversion count of L
as to that of L′. By taking into account the pair (cj , c`) itself, we
conclude that dswap(L′, Ri) < dswap(L, Ri), a contradiction.

It follows that L̂ is the optimal vote in Lf (α) and the proof of
the lemma is complete.

The theorem now follows easily from Lemmas 4.3 and 4.4.

We have already explained how to convert the subroutineA into an
algorithm for OPTMANIPULATION. Thus, we obtain the following
corollary.

COROLLARY 4.5. For every polynomial-time computable fam-
ily F̂ = (Fm

α)m=1,... of scoring rules, the problem (dswap, F̂)-
OPTMANIPULATION is in P.

For the Bucklin rule, the algorithm is essentially the same; the
only difference is in the definition of a safe position.

THEOREM 4.6. (dswap, Bucklin)-OPTMANIPULATION is in P.

PROOF SKETCH. Consider an election (C,R) and a manipula-
tor i. Just as in the proof of Theorem 4.1, it suffices to design a
procedure that, for a given value of f ∈ {1, . . . , m}, searches for
the best manipulative vote that ranks p in position f and returns ⊥
if no such vote can make p the unique winner.

Fix a particular value of f , and letLf = {L ∈ L(C) | r(p, L) =
f}. Let Lf be an arbitrary vote in Lf . Let r∗ be the smallest value
of r such that p’s r-approval score in (C, (R−i, Lf)) is greater
than n/2; note that r∗ does not depend on the choice of Lf . For
every candidate c ∈ C, and every r = 1, . . . , m, let sr(c) denote
c’s r-approval score in (C,R−i), and let s be p’s r∗-approval score
in (C, (R−i, Lf)); note that s > n/2.

To make p the winner, we need to ensure that r∗ is the Bucklin
winning round and that the r∗-approval score of any candidate c ∈
C \{p} does not exceed s. Thus, if there is a candidate c ∈ C \{p}
such that sr(c) > n/2 for some r < r∗ or sr∗(c) ≥ s, then there
is no vote in Lf that makes p the unique election winner, so we
return ⊥ and stop.

Now, suppose that this is not the case. Set C1 = {c ∈ C \ {p} |
sr∗(c) = s − 1}, C2 = {c ∈ C \ (C1 ∪ {p}) | sr(c) =
bn

2
c for some r < r∗}. Intuitively, candidates from C1 can pre-

vent p from winning by receiving the same r∗-approval score as
p, which happens if they are ranked in the top r∗ positions. Simi-
larly, candidates from C2 can prevent p from winning by receiving
a strict majority vote in an earlier round; this happens if they are
ranked in the top r∗ − 1 positions. Thus, p is the unique Buck-
lin winner in the election where the manipulator submits a vote
L ∈ Lf if and only if (a) r(c, L) > r∗ for all c ∈ C1 and (b)
r(c, L) ≥ r∗ for all c ∈ C2. We will say that a position j is safe
for a candidate c ∈ C \ {p} if (1) c 6∈ C1 ∪ C2 or (2) c ∈ C1 and
j > r∗ or (3) c ∈ C2 and j ≥ r∗. The argument above shows that
p is the unique Bucklin winner in (C, (R−i, L)) if and only if in L
each candidate c 6= p is ranked in a position that is safe for him.

Given this definition of a safe position, we can apply the algo-
rithm for scoring rules described in the proof of Theorem 4.1; note
that this algorithm operates in terms of safe positions rather than
actual scores. The proofs of correctness and optimality are identi-
cal to those for scoring rules (these proofs, too, are phrased in terms
of safe positions).

4.2 Maximin and Copeland
For both Maximin and Copeland, finding an optimal manipula-

tion with respect to the swap distance turns out to be computation-
ally hard. In fact, we will prove that the optimization versions of
these problems (see Remark 3.3) cannot be approximated up to a
factor of δ log |C| for some δ > 0 unless P=NP; this implies, in
particular, that the decision versions of these problems are NP-hard
(and hence, by Remark 3.2, NP-complete).

We provide reductions from the optimization version of the SET
COVER problem [10]. Recall that an instance of SET COVER is

given by a ground set G = {g1, . . . , gt} and a collection S =
{S1, . . . , Sr} of subsets of G. In the optimization version of the
problem, the goal is to find the smallest value of h such that G
can be covered by h sets from S; we denote this value of h by
h(G,S). More formally, we are interested in the smallest value of
h such that G = ∪S′∈S′S′ for some collection of subsets S ′ ⊆ S
with |S ′| = h. A ρ-approximation algorithm for SET COVER is
a procedure that, given an instance (G,S) of set cover, outputs a
value h′ that satisfies h(G,S) ≤ h′ ≤ ρ · h(G,S). There exists
a δ > 0 such that SET COVER does not admit a polynomial-time
δ log t-approximation algorithm unless P=NP [17]. The inapprox-
imability result still holds if we assume that (1) G = ∪S∈SS; (2)
t ≤ r; and (3) r ≤ tK for some positive constant K. Indeed, if (1)
fails, the instance does not admit a solution, (2) can be achieved by
duplicating sets in S, and (3) follows by a careful inspection of the
proof in [17]. Thus, in what follows, we only consider instances of
SET COVER that satisfy conditions (1)–(3).

THEOREM 4.7. There exists a δ > 0 s. t. (dswap, Maximin)-
OPTMANIPULATION does not admit a polynomial-time δ log |C|-
approximation algorithm unless P=NP.

PROOF. Suppose that we are given an instance (G,S) of SET
COVER with G = {g1, . . . , gt}, S = {S1, . . . , Sr} that satisfies
conditions (1)–(3).

In our election, the candidate set is C = {p}∪G∪X∪S, where
X = {x1, . . . , x2r} and S = {s1, . . . , sr}.

The proof of McGarvey theorem [14] implies that we can con-
struct a preference profile R′ with n′ voters, where n′ is polyno-
mially bounded in t and r, so that n′ is even and:

• For any c ∈ C \ {p} exactly n′/2− 2 voters prefer p to c.
• For any Sj ∈ S and any g` ∈ Sj exactly n′/2 − 2 voters

prefer g` to sj .
• For any other pair of candidates (c, c′) ∈ G ∪ S × G ∪ S,

exactly n′/2 voters prefer c to c′.
• For j = 1, . . . , 2r − 1 exactly n′/2 − 4 voters prefer xj to

xj+1, and n′/2− 4 voters prefer x2r to x1.
• For any gj ∈ G and any x ∈ X exactly n′/2 voters prefer

gj to x.
• For any sj ∈ S and any x ∈ X exactly n′/2 − 4 voters

prefer sj to x.

Denote the Maximin score of candidate c in election (C,R′) by
s(c). We have s(p) = n′/2− 2, s(gj) = n′/2− 2 for any gj ∈ G
(this follows from condition (1)), s(sj) = n′/2−4 for any sj ∈ S,
and s(xj) = n′/2− 4 for any xj ∈ X .

We let n = n′+1, i = n and set our preference profile to beR =
(R′, Rn), where voter n (the manipulator) ranks the candidates as

p � g1 � . . . � gt � x1 � . . . � x2r � s1 � . . . � sr.

This completes the description of our (dswap, Maximin)-OPTMA-
NIPULATION instance (as we consider the optimization version of
the problem, we need not specify k).

Observe that p’s final Maximin score is n′/2−1 if and only if the
manipulator ranks p first. Further, the final Maximin score of any
candidate in X ∪ S is at most n′/2− 3. Finally, the final Maximin
score of a candidate gj ∈ G is n′/2−1 if in the manipulator’s vote
gj appears above all candidates s` such that gj ∈ S` and n′/2− 2
otherwise. Thus, to make p the unique winner, the manipulator
should rank him first, and rank each candidate gj ∈ G below a
candidate representing a set that covers gj .

Suppose that h(G,S) = h, i.e., there exists a collection of sub-
sets S ′ = {Si1 , . . . , Sih}with i1 < . . . < ih such that∪S′∈S′S′ =

G. Consider a vote L that ranks p first, followed by candidates
si1 , . . . , sih (in this order), followed by candidates in X∪G (in the
order of their appearance in Rn), followed by the remaining candi-
dates in S (in the order of their appearance in Rn). By the argument
above, p is the unique Maximin winner of (C, (R′, L)). Further-
more, we have dswap(L, Rn) ≤ h(t + 2r + (r−h)): to transform
Rn into L, we swap each of the candidates sij , j = 1, . . . , h, with
(a) t candidates in G, (b) 2r candidates in X and (c) at most r − h
candidates in S. By condition (2), we obtain dswap(L, Rn) ≤ 4hr.

On the other hand, consider an arbitrary vote L′ such that p is
the unique Maximin winner of (C, (R′, L′)). Construct a bipartite
graph with the vertex set G∪S in which there is an edge between gj

and s` if and only if s` is ranked above gj in L′. We claim that this
graph contains a matching of size h. To see this, consider a greedy
algorithm that constructs a matching by inspecting the vertices in
G one by one and matching each vertex to one of its previously
unmatched neighbors in S; if some vertex in G cannot be matched,
the algorithm proceeds to the next vertex. If this algorithm termi-
nates without finding h edges, it means that the matched vertices in
S correspond to a cover of size at most h− 1, a contradiction with
h(G,S) = h.

Consider a pair of candidates (gj , s`) that corresponds to an edge
of this matching, and an arbitrary candidate x ∈ X . It cannot be
the case that L′ ranks gj above x and x above s`: otherwise, by
transitivity, L′ would rank gj above s`. Therefore, at least one of
the pairs (gj , x) and (x, s`) is ordered differently in Rn and L′,
and therefore each edge of the matching contributes at least 2r to
the swap distance between L′ and Rn. Summing over all edges of
the matching, we obtain that dswap(Rn, L′) ≥ 2hr.

Now, suppose that there is a polynomial-time ρ-approximation
algorithm M for (dswap, Maximin)-OPTMANIPULATION: given
an instance of (dswap, Maximin)-OPTMANIPULATION that admits
a successful manipulative vote L with dswap(L, Ri) = k, this al-
gorithm outputs a value k′ that satisfies k ≤ k′ ≤ ρk. Consider
the following algorithm M′ for SET COVER: given an instance
(G,S) of SET COVER with |G| = t, |S| = r, M′ transforms it
into an instance of (dswap, Maximin)-OPTMANIPULATION as de-
scribed above, applies M, and divides the returned value by 2r.
Clearly, M′ runs in polynomial time. We claim that it provides a
2ρ-approximation algorithm for SET COVER.

Indeed, let h = h(G,S). Then for the corresponding instance of
(dswap, Maximin)-OPTMANIPULATION there exists a successful
manipulative vote L with dswap(L, Ri) ≤ 4hr and hence M out-
puts a value k′ that satisfies k′ ≤ 4ρhr. On the other hand, for any
successful manipulative vote L′ we have dswap(L′, Ri) ≥ 2hr,
and hence the value k′ output by M satisfies k′ ≥ 2hr. Thus, M
produces a value h′ that satisfies h ≤ h′ ≤ 2ρh.

Since |C| = O(t + r) and, by condition (3), r ≤ tK (where K
is a constant whose value can be extracted from the proof in [17]),
we have log |C| ≤ γ log t for a suitable constant γ > 0. There-
fore, if there exists a polynomial-time (δ′ log |C|)-approximation
algorithm for (dswap, Maximin)-OPTMANIPULATION for δ′ > 0,
then there exists a polynomial-time (2δ′γ log t)-approximation al-
gorithm for SET COVER. By [17], for small enough δ this implies
P=NP.

The argument for Copeland is similar.

THEOREM 4.8. There exists a δ > 0 such that for any α ∈ Q∩
[0, 1], (dswap, Copelandα)-OPTMANIPULATION does not admit a
polynomial-time δ log |C|-approximation algorithm unless P=NP.

PROOF SKETCH. Suppose that we are given an instance (G,S)
of SET COVER with G = {g1, . . . , gt}, S = {S1, . . . , Sr} that

satisfies conditions (1)–(3); we will additionally assume that t and
r are odd.

In our election, the candidate set is C = {p} ∪ G ∪ X ∪ S,
where X = {x1, . . . , x6r} and S = {s1, . . . , sr}. There exists a
tournament over the candidate set C such that that:

• p beats all candidates in G ∪ S as well as 6r − (t + 1)/2
candidates in X , and loses to all other candidates in X .

• Every candidate gi ∈ G is tied with all candidates s` such
that gi ∈ S` and beats all other candidates in X ∪ S.

• Every candidate in G beats exactly (t−1)/2 other candidates
in G.

• Every candidate in X ∪ S beats exactly (7r − 1)/2 other
candidates in X ∪ S.

Thus, by McGarvey theorem [14], we can construct a preference
profile R′ with n′ voters that generates this tournament; moreover,
we can assume that n′ is even and polynomially bounded in t and r,
We let n = n′ + 1, i = n and set our preference profile to be R =
(R′, Rn), where voter n (the manipulator) ranks the candidates as

p � g1 � . . . � gt � x1 � . . . � x6r � s1 � . . . � sr.

This completes the description of our (dswap, Copelandα)-OPT-
MANIPULATION instance; note that n is even and therefore the
value of α is unimportant for our analysis.

Observe that in R the Copeland score of p is (t − 1)/2 + 7r,
the Copeland score of each gj ∈ G is (t − 1)/2 + 7r, and the
Copeland score of each candidate in X ∪S is at most (7r−1)/2+
1 < 4r. Thus, under truthful voting p is not the unique winner;
indeed, for p to be the unique winner, in the manipulator’s vote
every candidate gj ∈ G must be ranked below some candidate s`

such that gj ∈ S`. Note also that the manipulator’s vote can only
affect the outcomes of pairwise elections for candidate pairs of the
form (gj , s`), gj ∈ S`. Thus, no matter how the manipulator votes,
the Copeland score of every candidate x ∈ X is at most 4r <
(t− 1)/2 + 7r, and the Copeland score of every candidate s` ∈ S
is at most 4r + t < (t− 1)/2 + 7r (recall that we assume t < r),
and hence candidates in X ∪S are not among the election winners.
We conclude that L is a successful manipulative vote if and only if
it ranks each candidate gj ∈ G below a candidate representing a set
that covers gj , This condition is almost identical to the one in the
proof of Theorem 4.7, and, from this point on, the proof repeats the
proof of Theorem 4.7 almost verbatim; the reader can verify that
the analysis is not negatively impacted by the fact that the set X
contains 6r candidates (rather than 2r candidates, as in the proof
of Theorem 4.7).

5. FOOTRULE DISTANCE
For the footrule distance our analysis turns out to be much eas-

ier than for the swap distance: for scoring rules and Bucklin, we
design a simple matching-based algorithm, and for Copeland and
Maximin we can use the fact that the swap distance and the footrule
distance are always within a factor of 2 from each other, as this al-
lows us to inherit the hardness results of the previous section.

5.1 Scoring Rules and Bucklin
The overall structure of our argument is similar to the one in

Section 4: for any scoring rule Fα with α = (α1, . . . , αm) we will
design a procedure A′ that, given an election (C,R) with |C| =
m, a voter i, the preferred candidate p, a target position f for the
preferred candidate, and a bound k on the distance, constructs a
vote L such that (a) F(C, (R−i, L)) = {p}; (b) r(p, L) = f ; (c)
dfr(L, Ri) ≤ k, or returns ⊥ if no such vote exists. We then run

this procedure for f = 1, . . . , m and return “yes” if at least one of
these calls does not return ⊥.

We assume without loss of generality that the manipulator ranks
the candidates as c1 �i . . . �i cm (note that this is different from
the assumption we made in Section 4), and denote by sα(c) the
score of a candidate c ∈ C in election (C,R−i) under the voting
rule Fα. Let r be the rank of p in i’s truthful vote, i.e., p = cr .
A′ proceeds by constructing a bipartite graph G with parts X =

C \{p} and Y = {1, . . . , m}\{f}; there is an edge from cj to ` if
and only if position ` is safe for cj , i.e., sα(cj)+α` < sα(p)+αf ,
Each edge has a weight: the weight of the edge (cj , `) is simply
|j−`|. Clearly, there is a one-to-one correspondence between votes
L that rank p in position f and satisfy Fα(C, (Ri, L)) = {p}
and perfect matchings in this graph. Furthermore, the cost of a
matching M is x if and only if the corresponding vote LM sat-
isfies dfr(LM , Ri) = x + |r − f |. Thus, it suffices to find a
minimum cost perfect matching in G; our algorithm returns the
vote L that corresponds to this matching if its cost does not exceed
k−|r−f | and⊥ otherwise. The graph G can be constructed in time
O(m2 log(nα1)), and a minimum-cost matching can be found in
time O(m3) [4].

We summarize these observations as follows.

THEOREM 5.1. For every polynomial-time computable family
F̂ = (Fm

α)m=1,... of scoring rules, the problem (dfr, F̂)-OPTMA-
NIPULATION is in P.

For the Bucklin rule, it suffices to combine the matching-based
algorithm given above with the definition of a safe position given
in the proof of Theorem 4.6. We obtain the following corollary.

COROLLARY 5.2. (dfr, Bucklin)-OPTMANIPULATION is in P.

5.2 Maximin and Copeland
In Section 2 we have mentioned that for any candidate set C

and any pair of votes L, R ∈ L(C) we have dswap(L, R) ≤
dfr(L, R) ≤ 2dswap(L, R) [5].

Now, suppose that there exists a ρ-approximation algorithm Afr

for (dfr,F)-OPTMANIPULATION for some voting rule F . Con-
sider an instance (C,R, i, p) of (the optimization version of) this
problem, and let

L′ = {L ∈ L(C) | F(C, (R−i, L)) = {p}}.

If L′ 6= ∅, let k = min{dfr(L, Ri) | L ∈ L′}. On this instance
Afr outputs a value k′ that satisfies k ≤ k′ ≤ ρk; this value corre-
sponds to a vote L ∈ L′ such that dfr(L, Ri) = k′.

Now, for any vote L′ ∈ L′ we have

dswap(L′, Ri) ≥
1

2
dfr(L

′, Ri) ≥
k

2
.

On the other hand, for L we obtain

dswap(L, Ri) ≤ dfr(L, Ri) = k′ ≤ ρk.

Now, consider an algorithm Aswap for (dswap,F)-OPTMANIPU-
LATION that, given an instance of the problem, runs Afr on it
and returns the value reported by Afr. The computation above
proves thatAswap is a 2ρ-approximation algorithm for (dswap,F)-
OPTMANIPULATION (note that Aswap returns +∞ if and only if
L′ = ∅). Combining this observation with Theorems 4.7 and 4.8,
we obtain the following corollaries.

COROLLARY 5.3. There exists a δ > 0 s. t. (dfr, Maximin)-
OPTMANIPULATION does not admit a poly-time δ log |C|-appro-
ximation algorithm unless P=NP.

COROLLARY 5.4. There exists a δ > 0 such that for any α ∈
Q∩ [0, 1], (dfr, Copelandα)-OPTMANIPULATION does not admit
a poly-time δ log |C|-approximation algorithm unless P=NP.

6. MAX DISPLACEMENT DISTANCE
Maximum displacement distance is fairly generous to the ma-

nipulator. Indeed, the optimal manipulation problems for swap dis-
tance and footrule distance become trivial if the maximum distance
k is bounded by a constant: in this case, there are only polyno-
mially many possible manipulative votes, and the manipulator can
try all of them. In contrast, for the maximum displacement dis-
tance, there are exponentially many votes even at distance 2 from
the true vote (to see this, cut the manipulator’s vote into segments
of length 3; within each segment, the candidates can be shuffled in-
dependently). Nevertheless, from the algorithmic perspective max-
imum displacement distance exhibits essentially the same behav-
ior as swap distance and footrule distance: we can design efficient
algorithms for all scoring rules and the Bucklin rule, and derive
NP-hardness results for Copeland and Maximin.

6.1 Scoring Rules and Bucklin
For scoring rules, we can use a simplified variant of the min-cost

matching argument given in Section 5.1. Again, suppose that we
are given a scoring rule Fα with α = (α1, . . . , αm), an election
(C,R) with |C| = m, a manipulator i, a preferred candidate p
and a distance bound k. We assume that the manipulator ranks the
candidates as c1 �i . . . �i cm. For each f = 1, . . . , m we try
to find a successful manipulative vote L with dmd(L, Ri) ≤ k that
ranks p in position f ; in fact, it suffices to consider only values of
f that satisfy |f − r(p, Ri)| ≤ k. For each such f , we construct
a bipartite graph G with parts C \ {p} and {1, . . . , m} \ {f}. In
this graph, there is an edge from cj to ` if and only if ` is safe for
cj (we use the same definition of a safe position as in Section 5.1)
and |` − j| ≤ k. In contrast to the construction in Section 5.1,
the graph is unweighted. It is immediate that there is a one-to-
one correspondence between perfect matchings in G and successful
manipulative votes at distance at most k from Ri. Thus, we obtain
the following result.

THEOREM 6.1. For every polynomial-time computable family
F̂ = (Fm

α)m=1,..., of scoring rules, the problem (dmd, F̂)-OPT-
MANIPULATION is in P.

For the Bucklin rule, we use the same approach as in Section 5,
i.e., combine the matching-based algorithm with the definition of
a safe position given in the proof of Theorem 4.6. This results in
following corollary.

COROLLARY 6.2. (dmd,Bucklin)-OPTMANIPULATION is in P.

6.2 Maximin and Copeland
For Maximin and Copeland, finding an optimal manipulation

with respect to the maximum displacement distance is computa-
tionally hard; however, in contrast with our results in Sections 4
and 5, we are only able to show the NP-hardness of the decision
version of this problem (rather than inapproximability of its opti-
mization version). We omit the proofs of the following two theo-
rems due to space constraints; both proofs are based on (somewhat
involved) reductions from SET COVER.

THEOREM 6.3. (dmd, Maximin)-OPTMANIPULATION is NP-
complete.

THEOREM 6.4. For any α ∈ Q ∩ [0, 1], (dmd, Copelandα)-
OPTMANIPULATION is NP-complete.

7. OPTIMAL MANIPULABILITY AND
SWAP BRIBERY

The problem of finding an optimal manipulation with respect
to the swap distance can be viewed as a special case of the swap
bribery problem [8]. In the swap bribery model, there is an ex-
ternal party that wants to make a particular candidate the election
winner. This party can pay the voters to change their preference
orders, with a price assigned to swapping each pair of candidates
in each vote. The goal is to decide whether the manipulator can
achieve his goal given a budget constraint. Clearly, our problem is
a special case of swap bribery, where for one voter each swap has
unit cost, and for the remaining voters the prices are set to +∞.
Swap bribery is known to be hard, even to approximate, for almost
all prominent voting rules, including such relatively simple rules as
2-approval. Thus, the easiness results of Section 4 identify a new
family of easy instances of the swap bribery problem, thus comple-
menting the results of [7, 6, 19]. It would be interesting to see if
a somewhat more general variant of the swap bribery problem for
scoring rules, where only one voter can be bribed but swap bribery
prices can be arbitrary, remains tractable; it is not clear if the algo-
rithm given in Section 4 can be adapted to handle this setting.

On the other hand, one may wonder if the hardness results of
Section 4 are implied by the existing hardness results for swap
bribery. However, this does not seem to be the case: the hardness
(and inapproximability) of swap bribery for Copeland and Max-
imin follows from the hardness results for the possible winner prob-
lem [21], and the latter problem is easy if all but one voter’s prefer-
ences are fixed (it can be verified that the algorithm of Bartholdi et
al. [2] works even if the positions of some candidates in the vote are
already fixed). Thus, the hardness results for Copeland and Max-
imin given in Section 4 strengthen the existing hardness results for
swap bribery with respect to these rules.

8. CONCLUSIONS AND FUTURE WORK
We have considered the problem of finding a successful manip-

ulative vote that differs from the manipulators’ preferences as little
as possible, for three distance measures on votes and four types of
voting rules. Our results are summarized in Table 1 (where “NPC”
stands for “NP-complete” and “(log m)-inapp.” stands for “inap-
proximable up to a factor of Ω(log m)”).

A natural direction for future work is extending our results to
other distances on votes; for instance, it should not be too hard to
generalize our results for weighted variants of swap and footrule
distances; such distances play an important role in several applica-
tions of rank aggregation, and have received considerable attention
in the literature (see [13] and references therein). At a more tech-
nical level, we remark that for maximum displacement distance we
only have NP-hardness results for Copeland and Maximin; it would
be interesting to see if this variant of our problem admits efficient
approximation algorithms.

Sc. rules Bucklin Copeland Maximin
dswap P P (log m)-inapp. (log m)-inapp.

dfr P P (log m)-inapp. (log m)-inapp.
dmd P P NPC NPC

Table 1: Summary of results

Acknowledgments This research was supported by National Re-
search Foundation (Singapore) under grant 2009-08 (Edith Elkind)
and by Russian Foundation for Basic Research grant 11-01-12135

ofi-m (Svetlana Obraztsova). We would like to thank the AAMAS
reviewers for their very useful feedback.

9. REFERENCES
[1] J. Bartholdi and J. Orlin. Single transferable vote resists

strategic voting. Social Choice and Welfare, 8(4):341–354,
1991.

[2] J. Bartholdi, C. Tovey, and M. Trick. The computational
difficulty of manipulating an election. Social Choice and
Welfare, 6(3):227–241, 1989.

[3] S. Brams and P. Fishburn. Voting procedures. In K. Arrow,
A. Sen, and K. Suzumura, editors, Handbook of Social
Choice and Welfare, Volume 1, pages 173–236. Elsevier,
2002.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT Press, 2001.

[5] P. Diakonis and R. Graham. Spearman footrule as a measure
of disarray. Journal of the Royal Statistical Society B
(Methodological), 39(2):262–268, 1977.

[6] B. Dorn and I. Schlotter. Multivariate complexity analysis of
swap bribery. In IPEC’10, pages 107–122, 2010.

[7] E. Elkind and P. Faliszewski. Approximation algorithms for
campaign management. In WINE’10, pages 473–482, 2010.

[8] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In
SAGT’09, pages 299–310, 2009.

[9] E. Ephrati and J. Rosenschein. A heuristic technique for
multi-agent planning. Annals of Mathematics and Artificial
Intelligence, 20(1–4):13–67, 1997.

[10] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[11] A. Gibbard. Manipulation of voting schemes. Econometrica,
41(4):587–601, 1973.

[12] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1-2):81–93, 1938.

[13] R. Kumar and S. Vassilvitskii. Generalized distances
between rankings. In WWW’10, pages 571–580, 2010.

[14] D. McGarvey. A theorem on the construction of voting
paradoxes. Econometrica, 21(4):608–610, 1953.

[15] S. Obraztsova and E. Elkind. On the complexity of voting
manipulation under randomized tie-breaking. In IJCAI’11,
pages 319–324, 2011.

[16] S. Obraztsova, E. Elkind, and N. Hazon. Ties matter:
Complexity of voting manipulation revisited. In AAMAS’11,
pages 71–79, 2011.

[17] R. Raz and S. Safra. A sub-constant error-probability
low-degree test, and a sub-constant error-probability PCP
characterization of NP. In STOC’97, pages 475–484, 1997.

[18] M. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187–217, 1975.

[19] I. Schlotter, P. Faliszewski, and E. Elkind. Campaign
management under approval-driven voting rules. In AAAI’11,
pages 726–731, 2011.

[20] C. Spearman. The proof and measurement of association
between two things. The American Journal of Psychology,
15(1):72–101, 1904.

[21] L. Xia and V. Conitzer. Determining possible and necessary
winners given partial orders. Journal of Artificial Intelligence
Research, 41:25–67, 2011.

