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ABSTRACT
The computational study of strategic interaction situations
has recently deserved a lot of attention in multi–agent sys-
tems. A number of results on strategic–form games and
zero–sum extensive–form games are known in the literature,
while general–sum extensive–form games are not studied in
depth. We focus on the problem to decide whether or not
a solution is a refinement of the Nash equilibrium (NE) for
extensive–form games. Refinements are needed because the
NE concept is not satisfactory for this game class. While
verifying whether a solution is an NE is in P , verifying
whether it is a NE refinement may be not (all the results
known so far show NP–hardness). In this paper, we provide
the first positive result, showing that verifying a sequential
equilibrium with any number of agents and a quasi perfect
equilibrium with two agents are in P . We show also that
when the input is expressed in (non–perturbed) sequence
form even the problem to verify a subgame perfect equilib-
rium is NP–complete and that sequence form, if applicable,
must be rethought to verify (and therefore to compute) an
extensive–form perfect equilibrium.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non-cooperative)

1. INTRODUCTION
The study of formal methods for addressing strategic in-

teraction problems among rational agents has recently re-
ceived an increasing attention in artificial intelligence and,
especially, in the multi–agent system community. The aim is
the development of algorithms to automate software agents
and robots. Formal methods can allow one to model sit-
uations and define what is the optimal behavior an agent
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can have. Game theory and microeconomics represent the
most elegant formal methods for strategic interaction sce-
narios [8]. Customarily, a scenario is modeled as a game in
which one distinguishes the mechanism, defining the rules
of the game (i.e., number of agents, actions available to the
agents, game sequential structure, outcomes, and agents’
preferences over the outcomes), from the strategies, defining
how each single agent behaves at every decision node she
acts. A solution of a game is strategy that is stable accord-
ing to some solution concept. The basic solution concept is
the Nash equilibrium (NE) constraining the strategy of each
agent to be optimal given the strategies of the others.

Game theory and microeconomics provide only models
and solution concepts, but they do not provide computa-
tional tools to deal with games. The development of these
tools is an interesting topic, with the name of equilibrium
computation, in computer science. The main open problems
are, e.g., the verification that a solution is a given solution
concept and the search for some exact or approximate solu-
tion concept. A number of computational results are known
on the NE, we cite a few. Computing an exact NE [6, 7]
and approximating it [4] are PPAD–complete. PPAD is
in NP , it does not include NP–complete problems unless
NP = co–NP , and it is not known whether PPAD is in
P , but it is commonly believed that it is not. Instead, the
problem to verify whether or not a solution is a NE is in P .

A number of works deal with the problem to compute a
NE with general–sum strategic–form games (especially with
two agents), e.g., [2, 19, 21, 22], and with the problem to
solve large zero–sum extensive–form games, e.g., [11, 12].
The problem to study general–sum extensive–form games
has received less attention and appears as one of the “next
issues of the agenda” according to [28]. With these games,
the NE is not satisfactory and refinements are needed. The
most common refinements are [25]: the subgame perfect equi-
librium (SPE) when information is perfect and the sequen-
tial equilibrium (SE), quasi perfect equilibrium (QPE), and
extensive–form perfect equilibrium (EFPE) when informa-
tion is imperfect. While the SE is the “natural” extension of
the SPE to the case with imperfect information, perfect equi-
libria (both QPE and EFPE) pose more severe constraints,
requiring the strategies to be optimal also when the agents
tremble over non–optimal strategies. QPEs and EFPEs dif-
ferentiate as follows: in a QPE each agent does not consider
her own trembles, while in EFPEs she does.

While the verification of an NE is easy, few results are
known about the verification of NE refinements for extensive–
form games. The verification problem is of extraordinary



importance, allowing an user to verify whether a software
agent is an optimizer or not. In the case this problem is
intractable, we cannot certificate that the behavior of an
agent is optimal and therefore the use of autonomous agents
appears impractical. This would push one to resort to new
approximate solution concepts. The unique results known
so far in the literature are negative. More precisely, verify-
ing whether a solution is a QPE or an EFPE is NP–hard
with three or more agents [14]. For SEs it is known only an
algorithm that can be exponential in the worst case [15].

In the present paper, we provide new contributions on the
NE refinement verification. More precisely, we provide two
prominent positive results: both problems of verifying a SE
with an arbitrary number of agents and a QPE with two
agents are in P . This supports the employment of these
solution concepts in practice. In addition, we provide two
negative results. The first result shows that, when the in-
put is expressed in (non–perturbed) sequence form [27], even
verifying an SPE is NP–complete. The second result shows
that the sequence form, if applicable, must be rethought to
verify (and compute [9]) an EFPE with two agents (if not
applicable, verifying an EFPE requires non–linear optimiza-
tion and therefore the problem is not probably in P).

2. EXTENSIVE–FORM GAMES AND EQUI-
LIBRIUM COMPUTATION

2.1 Game definition and strategies
A perfect–information extensive–form game [8] is a tuple

(N,A,V,T, ι, ρ,χ,u), where: N is the set of agents (i ∈ N
denotes a generic agent), A is the set of actions (Ai ⊆ A de-
notes the set of actions of agent i and a ∈ A denotes a generic
action), V is the set of decision nodes (Vi ⊆ V denotes the
set of decision nodes of i), T is the set of terminal nodes
(w ∈ V ∪ T denotes a generic node and w0 is root node),
ι ∶ V → N returns the agent that acts at a given decision
node, ρ ∶ V → ℘(A) returns the actions available to agent
ι(w) at w, χ ∶ V ×A → V ∪ T assigns the next (decision or
terminal) node to each pair w,a where a is available at w,
and u = (u1, . . . , un) is the set of agents’ utility functions
ui ∶ T → R. Games with imperfect information extend those
with perfect information, allowing one to capture situations
in which some agent cannot observe some action undertaken
by the other agents. We denote by Vi,h the h–th informa-
tion set of agent i. An information set is a set of decision
nodes such that when an agent plays at one of its nodes she
cannot distinguish the node in which she is playing. For
the sake of simplicity, we assume that every information set
has a different index h, thus we can univocally identify an
information set by h. An imperfect–information game is a
tuple (N,A,V,T, ι, ρ,χ,u,H) where (N,A,V,T, ι, ρ,χ,u) is
a perfect–information game and H = (H1, . . . ,Hn) induces a
partition Vi = ⋃h∈Hi

Vi,h such that for all w,w′ ∈ Vi,h we have
ρ(w) = ρ(w′). We focus on games with perfect recall where
each agent recalls all her previous actions and her previous
observations. Perfect recall poses severe constraints over the
structure of the information sets, we omit their description
here, not being necessary for our work, and point an inter-
ested reader to [8].

There are three representations for extensive–form games:
normal form [26], agent form [17, 23], and sequence form [27].
In this paper, we resort to the agent and sequence forms.
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Figure 1: Example of two–agent perfect–information
extensive–form game.

In the agent form, it is assumed that at each information
set a different agent plays (e.g., in Fig. 1 there are three
different agents, one per information set). In this way, a
strategy (said behavioral) is represented as a probability dis-
tribution over the actions available at each single informa-
tion set independently of the probability with which such an
information set is reached. A behavioral strategy profile is
σ = (σ1, . . . , σ∣N ∣) where σi is the strategy of agent i. We
denote by σi,a the probability associated with action a ∈ Ai.

In the sequence form, a strategy is represented as a prob-
ability distribution over sequences. A sequence q ∈ Qi is
a set of consecutive actions a ∈ Ai, where Qi ⊆ Q is the
set of sequences of agent i and Q is the set of all the se-
quences. A sequence can be terminal, if, combined with
some sequence of the opponents, it leads to a terminal node,
or non–terminal, if it cannot lead to any terminal node
for every opponents’ sequence. In addition, the initial se-
quence of every agent, denoted by q0, is said empty sequence
and, given sequence q ∈ Qi leading to some information
set h ∈ Hi, we say that q′ extends q (denoted by q′ = q∣a) if
the last action a′ of q′ (denoted by a(q)) belongs to ρ(w)
with w ∈ Vi,h. We denote a sequence–form strategy profile
as a vector by x = [x1, . . . ,x∣N ∣] where xi is the strategy of
agent i and we denote by xi,q the probability associated with
sequence q ∈ Qi. Well defined strategies are such that, for
every information set h ∈ Hi, the probability xi,q assigned
to the sequence q leading to h is equal to the sum of the
probabilities xi,q′s where q′ extends q at h. Sequence form
constraints can be conveniently described as Fixi = fi, where
Fi is an opportune matrix and fi is an opportune vector. The
agent i’s utility is represented as a sparse multi–dimensional
array, denoted by Ui, specifying the value associated to ev-
ery combination of terminal sequences of all the agents. The
size of the sequence form representation is linear in the size
of the game tree.

A sequence–form strategy xi is equivalent to a number
(precisely, a compact set) of behavioral strategies σi and the
relationship is non–linear. More precisely, given an informa-
tion set h ∈ Hi and called q ∈ Qi the sequence leading to h,
the behavioral strategy σi,a related to the actions a ∈ ρ(w)
with w ∈ Vi,h and q′ = q∣a is σi,a(q′) =

xi,q′

xi,q
if xi,q > 0 and

0 otherwise. The two representations have different degrees
of expressiveness, e.g., sequence–form strategies, differently
from behavioral ones, do not specify the actions that would
be played at information sets reached with zero probability.

Several solution concepts (see below) are based on the
idea of perturbed strategies. Call li,a(ǫ) > 0 the perturba-
tion (in terms of probability) over action a ∈ Ai such that
lim
ǫ→0

li,a(ǫ) = 0 and ǫ is a positive value. We denote by li(ǫ)
the vectors of the perturbations over all the agent i’s ac-
tions. A perturbed behavioral strategy profile σ(ǫ) of σ is



a fully mixed strategy where σi,a ≥ li,a(ǫ) for all a ∈ Ai and
lim
ǫ→0

σ(ǫ) = σ. Analogously, the idea of perturbation can be

applied to the sequence form. In this case, we denote by
xi(ǫ) the perturbed sequence form strategy and by xi,q(ǫ)
the perturbed strategy over q ∈ Qi. The result in [1] shows
that we can deal with perturbations li,a(ǫ) defined as poly-
nomials in ǫ keeping ǫ a symbolic parameter by resorting to
the concept of lexico positiveness (see Appendix A). In our
work, we denote by xi(ǫk) the coefficients of ǫk in xi(ǫ) and
xi,q(ǫk) the coefficients of ǫk in xi,q(ǫ).
2.2 Solution concepts

It is well known that the concept of NE is not satisfac-
tory for extensive–form games, allowing agents to play non–
credible threats. The concept of SPE refines the concept
of NE, constraining a strategy profile to be a NE in every
subgame [8], where a subgame is a portion of the game tree
defined as follows: it has a root and for every node w ∈ Vi,h

belonging to the subgame the whole information set Vi,h

belongs to the subgame. (A SPE can be easily found by ap-
plying backward induction [8].) The concept of SPE is satis-
factory with perfect–information games, while it is not when
information is imperfect. The“natural”extension of the SPE
to situations with imperfect information is the SE [16]. We
denote by µi = (µi,w) for every w ∈ Vi the beliefs of agent i

where µi,w is the probability with which agent i believes to
be at node w ∈ Vi,h when she plays at information set h.
We denote by µ = (µ1, . . . , µ∣N ∣) the profile of beliefs. An
assessment is a pair (µ,σ). An SE is an assessment (µ,σ)
such that: every σi is sequentially optimal (in the sense of
backward induction) with respect to µi, and every µi is con-
sistent (in the sense of Kreps and Wilson) with respect to
σ−i. Consistency of µ with respect to σ requires that there
exists a perturbed strategy profile σ(ǫ) of σ such that, if
µ(ǫ) the sequence of beliefs derived from σ(ǫ) by using the
Bayes rule, lim

ǫ→0

µ(ǫ) = µ. With perfect information every

SPE is also an SE and vice versa. Instead, when information
is imperfect, the SEs constitute a subset of the SPEs.

Example 2.1. Consider the game in Fig. 1. The pure
strategy SEs (and SPEs) are: (σ1,L1

= 1, σ1,L2
= 1, σ2,l1 = 1),(σ1,L1

= 1, σ1,R2
= 1, σ2,l1 = 1), (σ1,R1

= 1, σ1,L2
= 1, σ2,l1 =

1), (σ1,R1
= 1, σ1,R2

= 1, σ2,l1 = 1).
The idea of perfection, introduced by Selten in [23], is

strictly correlated to the idea of perturbed strategy. Ba-
sically, a strategy profile is perfect when it is optimal even
with perturbations over the strategies. The rationale behind
perturbations is that agents do not perfectly play their opti-
mal strategy, but they tremble with a very small probability
over non–optimal strategies. The application of perturba-
tion to the three (normal, agent, sequence) forms of a game
may lead to different concepts of equilibria.

A strategy profile σ is a QPE if there exists a perturbed
strategy profile σ(ǫ) of σ such that σi,a(ǫ) ≥ li,a(ǫ) and ev-
ery σi is a best response to σ−i(ǫ) for every ǫ ≤ ǫ for some
ǫ > 0 [24]. In a QPE every agent takes into account the
opponents’ trembles, but not own. For every combination
of li(ǫ) there is a potentially different QPE. The authors
show in [20] that quasi perfection can be captured by us-
ing a specific class of perturbations with the sequence form
constraining that for every pair of sequences q, q′ ∈ Qi with
q = q′∣a(q) the minimum degree of k such that li,q(ǫk) is

strictly positive is strictly smaller than the minimum de-
gree of k such that li,q′(ǫk) is strictly positive, formally,
min

li,q(ǫ
k)>0

{k} > min
li,q′ (ǫ

k)>0
{k}.

Other solution concepts are the normal–form perfect equi-
librium (NFPE; when perturbations are over normal–form
strategies, but it is not a satisfactory solution concept) and
the extensive–form perfect equilibrium (EFPE; it is defined
as the QPE except that an agent takes into account her own
trembles in addition to those of the opponents).

Example 2.2. Consider the game represented in Fig. 1.
The pure strategy QPEs are: (σ1,L1

= 1, σ1,L2
= 1, σ2,l1 =

1), (σ1,R1
= 1, σ1,L2

= 1, σ2,l1 = 1). Notice that (σ1,R1
=

1, σ1,R2
= 1, σ2,l2 = 1) (σ1,R1

= 1, σ1,R2
= 1, σ2,l1 = 1),

that is an SE, is not a QPE. This is because, accounting
for any perturbed σ2,l1(ǫ), the utility expected by agent 1
from making action R2 (i.e., σ2,l1(ǫ) < 1) is strictly smaller
than the utility she expects from making action L2 (i.e., 1).
The unique EFPE, when agents account for own trembles,
is (σ1,L1

= 1, σ1,L2
= 1, σ2,l1 = 1).

2.3 Known computational results
The sequence form is the most efficient representation

to compute an NE (normal form is exponentially larger,
while agent form poses highly non–linear constraints over
the agents’ best response optimization problems). The main
results on the computation of an NE are with two agents.
The problem to search for an NE is formulated as a linear–
complementarity problem (LCP) and solved by employing
the Lemke’s algorithm [18], a generalization of the Lemke–
Howson algorithm [19]. The problem to verify whether a
strategy profile, both in sequence form and agent form (in
this case deriving the corresponding sequence form strate-
gies), is an NE can be easily solved in polynomial time by
checking whether or not the constraints are satisfied.

The computation and verification problems for an SE are
open [14] and it is not known whether it is possible to address
them in sequence form or, as it is commonly believed, it is
necessary the agent form. The unique result on the verifica-
tion of an SE is provided in [15]. They propose finite–step
algorithm to verify whether an assessment is an SE, but,
as they state it, the number of steps accomplished by the
algorithm can be exponential in the worst case. A slightly
different problem is studied in [14], where the authors show
in that with three or more agents, verifying whether there
is an SE with a given strategy is NP–hard.

In [20] the authors use the Lemke’s algorithm applied
to the sequence form with perturbations l1(ǫ), l2(ǫ) with

li,q(ǫ) = ǫ∣q∣ where ∣q∣ is the length of sequence q to compute
a QPE when agents are two (details are in Appendix B).
This places that such a problem in the PPAD class. In-
stead, the verification problem is currently open with two
agents. Differently from the verification of an NE, verify-
ing whether a strategy profile is a QPE is a search problem
in which perturbations l1(ǫ), l2(ǫ) need to be found to sat-
isfy the QPE constraints. With three or more agents the
verification problem is shown to be NP–hard [14].

Other known results on the equilibrium verification prob-
lem are: the verification of a NFPE with two agents is in P ,
while the verification of a NFPE and of an EFPE with three
or more agents is NP–hard [14]. No result is known for
EFPE with two agents and it is not known even whether or
not the sequence form can be employed.



3. VERIFICATION WITH AGENT FORM
We report a positive (tractable) result on the verification

of an SE by providing an algorithm that works with the
agent form. This is possible since we do not need to use
perturbations. When instead perturbations must be con-
sidered, as for the verification of a QPE, working with the
agent form appears hard since the verification problem is
equivalent to the problem to search for an appropriate per-
turbation over the behavioral strategies and this problem is
highly non–linear because the perturbations at different in-
formation sets would be multiplied. We state the following
theorem, whose proof provides a polynomial time algorithm
based on linear programming.

Theorem 3.1. Given a game with an arbitrary number
of agents, it is in P the problem to decide whether or not an
assessment (µ,σ) is an SE.

Proof. This decision problem requires one to verify two cor-
related properties: sequential rationality and consistency.
Sequential rationality of σ can be easily verified by back-
ward induction on the basis of µ. This task requires a num-
ber of maximizations that is linear in the size of the game,
and each single maximization is over a number of actions
that is linear in the size of the game. Verifying consistency
of µ is an harder task. By definition, it requires one to find
a fully mixed perturbed strategy profile σ(ǫ) such that the
beliefs µ(ǫ) derived from σ(ǫ) by Bayes rule converges to µ

as ǫ → 0.
The problem to find a σ(ǫ) can be solved by resorting

to the concept of b–labeling provided by Kreps and Wilson
in [16]. A b–labeling for an assessment (µ,σ) is a function
λ ∶ A → N that assigns a label (expressed as a non–negative
integer number) to all the actions a ∈ A such that:

λa = 0 ⇐⇒ σi,a > 0 ∀a ∈ Ai, i ∈ N
∑

a→w

λa = argmin
w′

∑
a→w′

λa ⇐⇒ µi,w > 0 ∀w,w
′ ∈ Vi,h, i ∈N,h ∈Hi

We use the symbol ‘a → w’ to denote all the actions a ∈
A leading to node w from the root node w0. Given a b–
labeling, we can define a fully mixed strategy profile σ(ǫ)
as:

σi,a(ǫ) = {c(ǫ, h, a) ⋅ σi,a if σi,a > 0

c(ǫ, h, a) ⋅ ǫλa otherwise

where a is an action played by some agent at information
set h, and c(ǫ, h, a) is the appropriate normalizing constant.
Kreps and Wilson proved that µ is consistent to σ if and
only if the above σ(ǫ) is well defined (i.e., a b–labeling ex-
ists). We show below that the problem to search for a b–
labeling can be accomplished in polynomial time.

The bottom line of proof is the following. First, we for-
mulate the problem to find a b–labeling as a linear integer
mathematical program [29], second, we show that the coef-
ficient matrix associated with the mathematical program in
standard form is totally unimodular [3] and the right hand
is integer. Therefore, the integer mathematical program can
be solved in polynomial time, all the basic solutions of the
relaxed continuous mathematical program being integer.

The integer mathematical programming formulation is (γ
and ν denote auxiliary variables, while s and t denote slack
variables):

min ∑
a∈A

λa (1)

λa = 0 ∀a ∈ A,σi,a > 0, i ∈ N (2)

λa − sa = 1 ∀a ∈ A,σi,a = 0, i ∈ N (3)

γw0
= 0 (4)

γw′ + λa − γw = 0 ∀w,w
′ ∈ V, a ∈ A,w = χ(w′, a) (5)

γw − νh = 0 ∀h ∈Hi, w ∈ Vi,h, i ∈ N,µi,w > 0 (6)

γw − νh − tn = 1 ∀h ∈ Vi,h, i ∈ N,µi,w = 0 (7)

λa ∈ N ∀a ∈ A (8)

sa ≥ 0 ∀a ∈ A (9)

tw ≥ 0 ∀w ∈ V (10)

Constraints (2) force labels λa of actions a played with pos-
itive probability to be equal to zero; constraints (3) force
labels λa of actions a played with zero probability to be at
least one; constraint (4) assigns a value of zero to auxiliary
variable γw0

associated with root node w0; constraints (5)
assign the auxiliary variable γw associated with node w a
value equal to the sum of the value of the parent node w′ and
the label of the action connecting w′ to w; constraints (6)
force the values of all the γws associated with the nodes ws
with µi,w > 0 belonging to the same information set to be
same (i.e., νh); constraints (7) force the other nodes w (those
with µi,w = 0) to have a value γw strictly larger than the min-
imum value of the information set (i.e., νh); constraints (8)–
(10) fix the domains of the variables (notice that, with these
domains, all the variables have non–negative values).

The above constraints can be expressed as My = b with
y ≥ 0 and λ constrained to have non–negative integer values,
where:

M =

⎡⎢⎢⎢⎢⎢⎢⎣

C 0 0 0 0
C′ 0 0 −I 0
D E 0 0 0
0 G K 0 0
0 G′ K′ 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦
,y =

⎡⎢⎢⎢⎢⎢⎢⎣

λ

γ

ν

s

t

⎤⎥⎥⎥⎥⎥⎥⎦
,b =

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦
such that Cλ = 0 codes constraints (2), C′λ − Is = 1 codes
constraints (3), Dλ +Eγ = 0 codes constraints (4) and (5),
Gγ +Kν = 0 codes constraints (6), and G′γ +K′ν − It =
0 codes constraints (7). The above submatrices have the
following properties: C, C′, G, and G′ have one 1 per row
and zero or one 1 per column; D is composed of a row of
zero and identity matrix I ; E has one ‘1’ in the first row and
one ‘1’ and one ‘−1’ in all the other rows; K presents one
‘−1’ per row.

Given that a matrix M is totally unimodular if and only
if the transpose MT is totally unimodular [3], we can restate
the theorem of Ghoulia–Houri [10] as: M is totally unimod-
ular if and only if for every subset M ′ of columns of M it is
possible to find a partition of columns {M ′

1,M
′
2} such that

(call m′kj a generic element of matrices M ′
1 and M ′

2):

∀k
⎛
⎜⎜
⎝

∑
j,m′

kj
∈M′

1

m
′
kj − ∑

j,m′
kj
∈M′

2

m
′
kj

⎞
⎟⎟
⎠
∈ {−1, 0, 1} (11)

To prove that this condition holds for M , call Λi the k–th
block of rows of M (from the top to the bottom) and call ∆j

the j–th block of columns of M (from the left to the right).
At first, we notice that we can remove the last two blocks

of columns ∆4 and ∆5. Indeed, if constraints (11) are sat-
isfied limiting to the first three blocks of columns (i.e., con-
sidering only the elements m′ij belonging to M ′

k ∩{∆1∪∆2∪
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Figure 2: Example of assessment (µ,σ) where σ

is sequentially rational, but µ is not consistent (σ
is represented by using bold lines to denote ac-
tions played with positive probability and µ is rep-
resented reporting the beliefs close to the nodes of
each information set). No b–labeling exists because
the constraints due to information set h = 2.1 (i.e.,
λR1
≥ λM1

+1) and due to information set h = 2.2 (i.e.,
λM1

≥ λR1
+ 1) cannot be satisfied simultaneously.

∆3}), then we can always put columns of M ′ belonging to
∆4 or ∆5 into M ′

1 or M ′
2 to make constraints (11) satisfied

along all the columns. We build M ′
1 and M ′

2 as follows. Put
all the columns of M ′ belonging to ∆2 or ∆3 into M ′

1. It can
be easily seen that constraints (11) for the rows belonging
to Λ4 and Λ5 are satisfied (the sum of elements belongs to{−1,0,1}) independently of whether the columns of M ′ be-
longing to ∆1 are put into M ′

1 or M ′
2. Consider the columns

of M ′
1 belonging to ∆2: the sum of the elements of rows be-

longing to Λ3 can be {−1,0,1}. It can be easily seen that, D
having no more than one ‘1’ per column, we can always put
the columns of ∆1 into M ′

1 or M ′
2 to make constraints (11)

satisfied along the rows belonging to Λ3. Finally, we observe
that constraints (11) are always satisfied along the rows be-
longing to Λ1 and Λ2. Thus, M is totally unimodular and,
b being integer, a b–labeling, if it exists, can be found by
linear (continuous) mathematical programming. ◻

We provide two examples to which we apply the algorithm
discussed in the proof of Theorem 3.1.

Example 3.2. Consider the game depicted in Fig. 2 and
the assessment (µ,σ) where σ = (σ1,L1

= 1, σ1,L2
= 1, σ1,R3

=
1, σ2,l1 = 1, σ2,r2 = 1, σ2,l3 = 1) and beliefs µ are reported in
the figure aside the corresponding nodes. No b–labeling ex-
ists because the constraints due to information set h = 2.1
(i.e., λR1

≥ λM1
+1) and due to information set h = 2.2 (i.e.,

λM1
≥ λR1

+1) cannot be satisfied simultaneously. Therefore,
the assessment is not an SE.

Example 3.3. Consider the game depicted in Fig. 3 and
the assessment (µ,σ) where σ = (σ1,M1

= 1, σ1,L2
= 1, σ1,R3

=
1, σ2,l1 = 1, σ2,l2 = 1, σ2,r3 = 1) and beliefs µ are reported in
the figure aside the corresponding nodes. A b–labeling is:
λa = 1 for all a ∈ Ai with σi,a = 0. Therefore, the assessment
is an SE.

4. VERIFICATION WITH SEQUENCE FORM
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Figure 3: Example of assessment (µ,σ) where σ is
sequentially rational and µ is consistent (σ is repre-
sented by using bold lines to denote actions played
with positive probability and µ is represented re-
porting the beliefs close to the nodes of each infor-
mation set). The b–labeling is: λa = 1 for all a ∈ Ai

with σi,a = 0.
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Figure 4: Game used in the proof of Theorem 4.1.

We provide some verification results when we use the se-
quence form. Initially, we report a negative result even for
the SPE when the input strategies of the verification prob-
lem are expressed in (non–perturbed) sequence form.

Theorem 4.1. Given a game with two agents, it is NP–
complete the problem to decide whether or not non–fully per-
turbed strategies x1,x2 constitute an SPE.

Proof. We reduce this to the problem to decide whether
there is a NE with some property. This problem was shown
NP–complete in [5]. The reduction is based on the game
tree depicted in Fig. 4. The subgame starting with informa-
tion set h = 1.2 and including information set h = 2.2 is a
generic general–sum strategic–form game Γ with two agents.
Consider the following non–perturbed strategies (in the case
strategies are perturbed, but not fully mixed, the proof is
analogous): x1 prescribes that action L is played with a
probability of one, and x2 prescribes that action l is played
with a probability of one. For all the other actions, x1,x2

prescribe a probability of zero. Strategies x1,x2 constitute
an SPE if and only if the subgame starting at h = 1.2 admits
an NE that provides agent 2 an expected utility smaller than
1. Since x1,x2 prescribe a probability of zero in Γ, they do
not pose any constrain over the problem to search for an NE



for Γ providing agent 2 with no more than 1. Hence, our
problem reduces to the problem to decide whether there is
a NE with some property. ◻

The above theorem can be easily extended showing that
the verification of an SE (with an arbitrary number of agents)
is NP–complete when the input is in sequence form. Fur-
thermore, it is trivial to show that, when the input to the
verification problem is a fully perturbed sequence form strat-
egy profile, we have positive results. Indeed, given a fully
mixed perturbed sequence form strategy, we can always de-
rive an equivalent perturbed behavioral strategy and from
this a non–perturbed behavioral strategy. Thus, we can ap-
ply the positive results with agent form.

Now, we consider the problem to verify a QPE. While this
problem appears hard by working with the agent form, we
have a tractable result with the sequence form.

Theorem 4.2. Given a game with two agents, it is in P
the problem to decide whether or not a strategy profile σ is
a QPE.

Proof. In order to verify whether a strategy profile σ =(σ1, σ2) is a QPE, we need to verify:

● the existence of a perturbed σ1(ǫ) such that σ1(ǫ)→ σ1

as ǫ→ 0 and σ2 is a best response to σ1(ǫ),
● the existence of a perturbed σ2(ǫ) such that σ2(ǫ)→ σ2

as ǫ→ 0 and σ1 is a best response to σ2(ǫ).
This is equivalent to verify the existence of a lexicographic
belief structure according to [1, 13]. Since characterization
of a QPE can be accomplished in sequence form without re-
sorting the agent form we can formulate our problem with
the sequence form exploiting the LCP formulation discussed
in Appendix B. We can formulate the search for σ1(ǫ)
and σ2(ǫ) as the search for two perturbed strategies x1(ǫ)
and x2(ǫ) such that the following constraints hold (the con-
straints over x2(ǫ) are analogous):

F1x1(ǫ) = f1 (12)

x1(ǫ) >L 0 (13)

F
T
2
v2(ǫ) −U

T
2
x1(ǫ) ≥L 0 (14)

(FT
2
v2(ǫ) −U

T
2
x1(ǫ))q = 0 ∀q ∈ Q2, σ2,a(q) > 0 (15)

min
x1,q(ǫ

k)>0
k < min

x
1,q′

(ǫk)>0
k

∀a(q) ∈ ρ(w), a(q′) ∈ ρ(w′),
w,w

′ ∈H1,h, h ∈H1,

σ1,a(q) > 0, σ
1,a(q′) = 0

(16)

where constraints (12) state that the strategy is well defined
according to sequence form definition; constraints (13) state
that the strategy is fully mixed (>L means ‘lexico–positive’);
constraints (14) are the dual best response constraints; con-
straints (15) state that, if the behavioral strategy σ2,a(q) has
strictly positive value for the last action of sequence q, then
the best response constraint associated with q must hold
with equality; constraints (16) provide a hierarchical struc-
ture over the lexicographic perturbation of x1(ǫ) forcing in
every information set that the minimum degree k, such that
x1,q(ǫk) is positive when the last action action a(q) of q is
played with σ1,a(q) > 0, is strictly lower than the minimum
degree k′ related to sequences q′s whose last action is played
with σ1,a(q′) = 0.

The above feasibility problem can be solved iteratively as
follows. At each iteration k, we find the values of x1(ǫk).

Each iteration can be formulated as a linear mathematical
programming problem. Iteration k = 0 requires the resolu-
tion of the following mathematical program:

F1x1(ǫ0) = f1 (17)

x1,q(ǫ0) ≥ 0 ∀a(q) ∈ A1, σ1,a(q) > 0 (18)

x1,q(ǫ0) = 0 ∀a(q) ∈ A1, σ1,a(q) = 0 (19)

F
T
2
v2(ǫ0) −U

T
2
x1(ǫ0) ≥ 0 (20)

(FT
2
v2(ǫ0) −U

T
2
x1(ǫ0))q = 0 ∀q ∈ Q2, σ2,a(q) > 0 (21)

where constraints (17) are analogous to (12); constraints (18)
and (19) correspond to (16); constraints (20) and (21) cor-
respond to (14) and (15). The above program is feasible if
σ is a Nash equilibrium. Therefore, if the above program is
infeasible, then the algorithm stops and σ is not a QPE.

From k = 1 on, the mathematical program to solve is:

max ∑
∀k′<k,x1,q(ǫ

k′ )=0

x1,q(ǫk) (22)

F1x1(ǫk) = 0 (23)

x1,q(ǫk) ≥ 0 ∀q ∈ Q1, x1,q(ǫk
′
) = 0, k

′ < k (24)

x1,q(ǫk) ≤ 1 ∀q ∈ Q1 (25)

x1,q(ǫk) = 0

∀q, q′ ∈ Q1, w,w
′ ∈ V1,h,

a(q) ∈ ρ(w), a(q′) ∈ ρ(w′),
σ1,a(q) = 0, σ

1,a(q′) > 0,

x
1,q′ (ǫk

′
) = 0, k

′ < k, h ∈H1

(26)

(FT
2
v2(ǫk) −U

T
2
x1(ǫk))q ≥ 0

∀q ∈ Q2, (FT
2
v2(ǫk

′
)−

U
T
2
x1(ǫk

′
))q = 0, k

′ < k

(27)

(FT
2
v2(ǫk) −U

T
2
x1(ǫk))q = 0 ∀q ∈ Q2, σ2,a(q) > 0 (28)

where constraints (23) grant the strategy to be well defined;
constraints (24) grant that x1(ǫ) is lexico–positive; con-
straints (25) pose an upper bound of 1 over the coefficients
of ǫk (this value does not affect the feasibility of the prob-
lem); constraints (26) force constraints (16); constraints (27)
and (28) force constraints (14) and (15), respectively. The
objective function aims at maximizing the sum of the coef-

ficients x1,q(ǫk) such that x1,q(ǫk′) = 0 for all k′ < k.
The algorithm stops either when x1(ǫ) is strictly lexico–

positive or when the objective function is 0. In the latter
case, it is not possible to find any strictly lexico–positive
x1(ǫ) that satisfies the above constraints and therefore σ is
not a QPE. Otherwise, if there are strictly lexico–positive
x1(ǫ) and x2(ǫ), σ is a QPE.

We discuss the completeness of the algorithm. Note that
the constraints at iteration k depend on the solutions of the
optimization problems at the previous iterations. Given that
a linear optimization problem can admit different optimal
solutions, we have that the possible paths the algorithm can
follow are different. However, it can be observed that the set
of constraints strictly relaxes from iteration k to k′. There-
fore, for all the paths the algorithm can follow, the algo-
rithm always terminates with the same outcome in terms of
existence or non–existence of a strictly lexico–positive x1(ǫ)
(notice that in the case of existence, different paths may lead
to different strictly lexico–positive strategies).

Finally, we show that the number of iteration is in the
worst case linear in the size of the game. At each itera-
tion k, either some x1,q(ǫk) that is zero for every k′ < k be-
comes strictly positive or the algorithm stops with failure.
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Figure 5: Example of strategy profile σ expressed in
behavioral strategies that is a quasi perfect equilib-
rium (σ is represented by using bold lines to denote
actions played with positive probability).

In the worst case, only one sequence becomes strictly lexico–
positive per iteration and therefore the number of iteration
is equal to the number of sequences. Thus, linear mathe-
matical programming being polynomial time, the theorem
is proved. ◻

We provide two examples to which we apply the algorithm
described in the proof of Theorem 4.2.

Example 4.3. Consider the game depicted in Fig. 3 and
the strategy profile σ = (σ1,M1

= 1, σ1,L2
= 1, σ1,R3

= 1, σ2,l1 =
1, σ2,l2 = 1, σ2,r3 = 1). (As shown in Example 3.3, it is an
SE.) We check whether or not it is a QPE. From the applica-
tion of the algorithm we provide in the proof of Theorem 4.2,
we obtain the following x2(ǫ):

l1 r1 l2 r2 l3 r3

ǫ0 1 0 1 0 0 0

ǫ1 0 0 0 0 0 0
.

At iteration 1, the algorithm stops because the objective func-
tion is zero. Indeed, the algorithm cannot put a positive
value on r2 without violating the constraints of best response
of agent 1. As a result, no fully mixed σ2(ǫ) makes σ1 to be
a best response and, therefore, σ is not a QPE.

Example 4.4. Consider the game depicted in Fig. 5 and
the strategy profile σ = (σ1,L1

= 1, σ1,L2
= 1, σ1,R3

= 1, σ2,l1 =
1, σ2,l2 = 1, σ2,r3 = 1). We check whether or not it is a QPE.
From the application of the algorithm we provide in the proof
of Theorem 4.2, we obtain the following fully mixed x2(ǫ):

l1 r1 l2 r2 l3 r3

ǫ
0 1 0 1 0 0 0
ǫ1 −1 1 −2 1 0 1

ǫ2 0 0 0 0 1 −1
,

and the following fully mixed x1(ǫ):
L1 M1 R1 L2 R2 L3 R3

ǫ0 1 0 0 0 0 0 0

ǫ1 −2 1 1 1 0 0 1

ǫ2 0 0 0 −1 1 1 −1
,

therefore σ is a QPE.

Finally, we show that the employment of sequence form,
when each agent takes into account also her own perturba-
tions, presents several problems to verify an EFPE.

b

b b

b bb b

L1 R1

l1 r1 L2 R2

1.1

2.1 1.2

1 , 1 0 , 0 1 , 1 0 , 0

Figure 6: Game used in the proof of Proposition 4.5.

Proposition 4.5. The best response optimization prob-
lem with the sequence form, when each agent takes into ac-
count also her own perturbations, cannot be used to verify
an EFPE.

Proof. Consider the game tree depicted in Fig. 6. At h = 1.2,
the unique optimal strategy is σ1,L2

= 1. Analogously, at
h = 2.1, the unique optimal strategy is σ2,l1 = 1. At h = 1.1,
L1 and/or R1 can be optimal on the basis of the pertur-
bation at the two subgames. For instance, with a pertur-
bation over behavioral strategies such that l2,r1 = ǫ2 and
l1,R2

= ǫ, L1 is strictly better than R1 for agent 1. We show
that maximizing over the expected utility provided by the
sequences L1 cannot be an optimal action. The expected
utility, considering also the own perturbation, provided by
sequence L1 is: EU1(L1) = (1 − l1,R1

(ǫ))(1 − l2,r1(ǫ)) +
l1,R1

(ǫ) − l1,R2
(ǫ) = 1 − l1,R2

(ǫ) − l2,r1(ǫ) + l1,R1
(ǫ)l2,r1(ǫ).

The expected utility, considering also the own perturba-
tion, provided by sequence R1 is: EU1(R1) = l1,L1

(ǫ)(1 −
l2,r1(ǫ))+1−l1,L1

(ǫ)−l1,R2
(ǫ) = 1−l1,R2

(ǫ)−l1,L1
(ǫ)l2,r1(ǫ).

It can be observed that for every possible combination of
l1,L1

(ǫ), l1,R1
(ǫ), l2,r1(ǫ), l1,R2

(ǫ) the inequality EU1(R1) >
EU1(L1) holds, since EU1(R1) − EU1(L1) = l2,r1(ǫ)(1 −
l1,L1

(ǫ)−l1,R1
(ǫ)). Therefore, by maximizing over perturbed

sequences we cannot verify correctly any EFPE that pre-
scribes σ1,L1

= 1. ◻
Notice that the above result does not show that the se-

quence form cannot be used to verify an EFPE at all, but
that, if applicable, the sequence form must be rethought for
this problem (and for the problem to compute an EFPE).

5. CONCLUSIONS AND FUTURE WORKS
We studied the problem to verify whether a solution is a

given solution concept refining the NE for extensive–form
games. This problem is of extraordinary importance. If the
verification of a solution concept is intractable, such a solu-
tion concept cannot be adopted in practice. While verifying
a NE is easy, this may be not the case for NE refinements.
In this paper, we complete the results known in the liter-
ature concerning the verification of a SE and of an QPE,
proving that problems to verify an SE with an arbitrary
number of agents and a QPE with two agents are in P and
we provide two pertinent algorithms based on linear pro-
gramming. We show also that when the input solution is
expressed in (non–perturbed) sequence form even verifying
an SPE is NP–complete and that sequence form, if appli-
cable, must be rethought for the verification of an EFPE.

In future, we aim at completing our results, exploring the
verification of an EFPE with two agents and of a Myerson’s
proper equilibrium with two agents [8].
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APPENDIX

A. LEXICOGRAPHIC PERTURBATIONS
Given an ordered vector z1 ∈ R

n, we say that z1 is lexico–
positive if the first non–zero element of z1 is positive. For-
mally, we write z1 ≥L 0. z1 is strictly lexico–positive if it
is lexico–positive and there is at least a strictly positive ele-
ment. Easily, given a pair of ordered vectors z1,z2 ∈ R

n, we
say that z1 ≥L z2 if and only if z1 − z2 is lexico positive.

A perturbation li,a(ǫ) over action a is a polynomial in ǫ,
e.g., li,a(ǫ) = c1ǫ + c2ǫ

2 + c3ǫ
3 + c4ǫ

4 + . . ., where ck ∈ R. A
perturbation can be represented as one ordered vector in
which the first element is the coefficient c1 of ǫ, the second
element is the coefficient c2 of ǫ2, and so on. That is, when
ǫ goes to zero, ck1

ǫk1 and ck2
ǫk2 are comparable if and only

if k1 = k2. Similarly, a perturbed strategy σi(ǫ) (analo-
gously, xi(ǫ)) can be represented by using an lexico positive
ordered vector per action (sequence). Requiring that a per-
turbed strategy σi(ǫ) (analogously, xi(ǫ)) is fully mixed is
equivalent to requiring that each element σi,a(ǫ) is strictly
lexico positive.

B. QPE COMPUTATION
A QPE with two–agent games can be computed by ap-

plying a specific symbolic perturbation l1(ǫ), l2(ǫ) (see [20]
for the details on the perturbation) to the LCP to find an
NE (the solving algorithm is the same for the computation
of NE). Given a perturbed strategy xi ≥ li(ǫ), we substitute
xi with x̃i + li(ǫ) where x̃i ≥ 0. The resulting symbolically
perturbed LCP is:

x̃i ≥ 0 ∀i ∈ {1, 2} (29)

Fix̃i = fi − Fili(ǫ) ∀i ∈ {1, 2} (30)

F
T
i vi −Uix̃−i ≥ 0 +Uil−i(ǫ) ∀i ∈ {1, 2} (31)

x̃
T
i ⋅ (F

T
i vi −Uix̃−i −Uil−i(ǫ)) = 0 ∀i ∈ {1, 2} (32)

where vi are the dual variables of the best response opti-
mization problems and their values are the expected utilities
associated with the best actions for each information set of
agent i.


